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Figure 7 Figure 8

TI-85 graph of f(x)=(x—2—x+3on
(1, 3].

Figure 8? The requirement is that (f)(b —a) = [*f(x)dx, so the answer is YES:

1
b—a

- b
f=r—[f(x) dx.
a

Now we see that the fundamental theorem of calculus is just a generalization of
the point-average slope formula (2), from step functions to arbitrary piecewise
continuous functions: If f is a piecewise continuous function on [a,b] and F is a
continuous antiderivative of f on [a, b] then

F(b) —F(a) = (f)(b—a) =fa"f(x)dx. 3)

Besides the pedagogical benefit of tying the fundamental theorem of calculus to
ideas already familiar to students, this approach has two other merits. First, it
introduces the fundamental theorem of calculus for piecewise continuous func-
tions, rather than the more limited case of continuous functions. Exercises with
step functions and their continuous piecewise linear antiderivatives, such as
Exercise 5, can introduce the idea in a simple setting. Second, it is important for
students to learn to picture the derivative as an instantaneous rate of change, a
local average velocity, not just as the local slope of a graph. Students all know that
Ax =vAt if the velocity is constant; thus the generalization Ax =DAt = [1v(¢) dt
for a variable velocity function v(t) is very natural, and this is just our formula (3)
in a different setting. This approach to the fundamental theorem of calculus
provides an interpretation of integration as transforming a varying local average
f(x) on [a, b] into a global average over this interval.

a f:f(x)dx _ F(b) - F(a)
fm——- .

—a b—a

This point of view can be helpful in understanding other applications of integrals.

o

Chebyshev’s Theorem: A Geometric Approach
Pat Touhey, College Misericordia, Dallas, PA 18612

Although Chebyshev’s theorem is stated in almost all elementary statistics text-
books, few include a proof. The reason is that the usual algebraic proof is not very
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illuminating to students at this level. Perhaps the geometric approach in this note
would help to clarify the proof, at the same time giving beginning students a better
intuitive feel for the concepts of variance and standard deviation.

Consider a set of numerical data arranged, purely for convenience, in ascending
order, x,, x,,..., x,. The average, or mean, of this data set is defined to be

and the variance is

2 1 g 2
ol== Y (x;—n)"
ni—

Let’s take a look at this last formula. Each term (x; — u)? can be pictured as a
square whose side length is |x; — u |, the distance between the ith data value and
the mean. We will refer to these squares as tiles, denoting by 7; the area of the tile
associated with the data value x;. Thus o?=(1/n)L"_,T;, which means that the
variance may be thought of as the average-sized tile. The standard deviation o of
our data set is then the length of the side of the average-sized tile. By drawing the
tiles associated to a data set, as in Figure 1, a student can visually estimate the
average-sized tile and thus can roughly approximate the variance and standard
deviation. Note that the combined area of n average-sized tiles equals the total
area of all the tiles; that is, no? = ©7_,T,. This seemingly innocuous fact will play a
key role in our proof of Chebyshev’s theorem.

ol

Ty

X X3 X3 M Xp—1 Xn o

Figure 1
A typical data set, with the associated tiles, and the average-sized tile.

The geometric representations of the variance and standard deviation make it
easy to see how these descriptive parameters measure the dispersion of a set of
data. If all the data are bunched up near the mean, it is clear that the average-sized
tile will be small and, consequently, so will its side length. But if even a small
proportion of the data lies far from the mean, the average-sized tile may be rather
large. Chebyshev’s inequality just makes this qualitative observation a bit more
precise.

Chebyshev’s theorem. The proportion (or fraction) of any set of data that lies

farther than k standard deviations from the mean is never more than 1/k?2, for any
positive integer k.
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Thus if the data set contains » elements, Chebyshev’s theorem guarantees that at
most n/k? of these data values lie farther than k standard deviations away from
. Suppose for a moment that we have a data set of n elements for which this is
not the case, for some particular k. Call the elements that lie farther than &
standard deviations away from the mean outsiders. Since every outsider lies at a
distance greater than ko from the mean u, each tile associated with an outsider
has area greater than (ko )? = k?0%. We have assumed the existence of more than
n/k? outsiders, so it follows that the combined area of the outsider tiles must
exceed (n/k?)(k*s?) = no?. But this is impossible—the total area of all the tiles
is no 2. This contradiction proves Chebyshev’s theorem.

In short, Chebyshev’s theorem says all data sets are xenophobic—they cannot
allow too many outsiders, lest the outsiders occupy too much of the total tiled area.

o

Pizza Combinatorics
Griffin Weber and Glenn Weber, Christopher Newport University, Newport News,
VA 23606

Customer: So what’s this new deal?

Pizza Chef: Two pizzas.

Customer: [Towards four-year-old boy] Two pizzas. Write that down.
Pizza Chef: And on the two pizzas choose any toppings—up to five [ from the list
of 11 toppings].

Older Boy: Do you...

Pizza Chef: ...have to pick the same toppings on each pizza? No!
Four-year-old Math Whiz: Then the possibilities are endless.
Customer: What do you mean? Five plus five are ten.

Math Whiz: Actually, there are 1,048,576 possibilities.

Customer: Ten was just a ballpark figure.

Old Man: You got that right.

On November 8, 1993, this popular commercial, “Math Whiz,” first aired on
national television. Probably some viewers dimly recalled from their mathematical
studies that the large number of possibilities has something to do with permuta-
tions, factorials, combinations, or some other long-forgotten technique, but per-
haps only the authors of this article were so intrigued that they investigated
whether the four-year-old “math whiz” was actually correct in his calculations.
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