Fanning out. Here are some suggestions and alternatives, their usefulness depending on the abilities of the students involved.

If you leave it to the student to choose f (as in the sample instructions), do not waste many interesting examples such as $r = 1 + \sin \theta$ by showing them as finished fans. The ellipse $r = 6/(2 + \cos \theta)$ is a good example to show. The circle (or one-leafed rose) $r = \sin \theta$ and the four-leaved rose $r = \sin 2\theta$ (which produces only two leaves here) nicely show the result of deleting all points with negative radii

You might consider how to use "overlay" features to handle the possibility that $f(\theta) < 0$, for which an overlay of $r = -f(\theta - \pi)$ is often successful. Or, if more than just the interval $0 \le \theta \le 2\pi$ is involved in a polar sketch, overlays of $r = f(\theta - 2\pi)$, $r = f(\theta + 2\pi)$, $r = f(\theta - 4\pi)$, and so on, may be needed.

Ask students to explain why the choice $0 \le y \le 4.5 \ HM/W$ was made, and have them find the least positive constant c such that $0 \le y \le c \ HM/W$ might produce a fully functional folding fan (Answer: $c = \pi$). This is a fairly difficult question for most students, but hardly impossible.

Tell students who are studying or have studied multivariate calculus to shade in two rectangles, $\pi/4$ wide by M/4 high, on the unfolded strips: one at the top of the strip and one near the middle. Have them use the resulting fan to help explain the r factor in the $dxdy \rightarrow rdrd\theta$ change-of-variable formula for multiple integrals.

A Sequence Related to the Harmonic Series

E. Ray Bobo, Georgetown University, Washington, DC 20057

Since the harmonic series diverges, the series $\sum_{k=n}^{\infty} 1/k$ also diverges for each positive integer n. It follows that there is a least positive integer a(n) such that

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a(n)} > 1,$$

and the resulting sequence a(n) is the focus of our study. Inductions clearly show that

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n-1} < 1 \quad \text{and}$$

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{3n-2} > 1 \quad \text{for } n \ge 2,$$

so we see that $2n - 1 < a(n) \le 3n - 2$ for all $n \ge 2$.

These bounds on a(n) suggest that the sequence a(n)/n may converge to a limit and, since $\int_{n}^{ne} 1/x \, dx = 1$, we expect that limit to be the number e.

To verify this limit, first observe from the definition of a(n) that

$$1 < \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a(n)} \le 1 + \frac{1}{a(n)}$$
.

Then, using the left-hand and right-hand side Riemann sums with the integer partition of the interval [n, a(n)], we get the following bounds for $\int_{n}^{a(n)} 1/x \, dx = \ln[a(n)/n]$:

$$1 - \frac{1}{n} < \frac{1}{n+1} + \dots + \frac{1}{a(n)} < \ln \frac{a(n)}{n} < \frac{1}{n} + \dots + \frac{1}{a(n)-1} \le 1.$$

Thus, since the exponential function is increasing, we have

$$\exp\left(1 - \frac{1}{n}\right) < \frac{a(n)}{n} < e$$

and the pinching theorem yields the result that

$$\lim_{n\to\infty}\frac{a(n)}{n}=e.$$

Apparently, the integer a(n) is located in the interval $I_n = (ne^{1-1/n}, ne)$ whose length is greater than 2 for $n \ge 2$ and increases toward a limiting value of e as n increases. Thus, there are either two or three integers in this interval and the value of a(n) must be one of [ne], [ne] - 1, and [ne] - 2. (This can be more readily seen by utilizing the right-hand sum over [n-1, a(n)] to obtain the slightly looser interval $J_n = (ne - e, ne)$.)

Which one is it? A computer check of $2 \le n \le 2115$ shows no solutions of $a(n) = \lfloor ne \rfloor - 2$ and that for most values of n we have $a(n) = \lfloor ne \rfloor - 1$. Moreover, the exceptional cases in which $a(n) = \lfloor ne \rfloor$ exhibit an intriguing pattern, as shown in Table 1. Note that most differences between consecutive n-values in the table

Table 1 Values of n for which a(n) = [ne]

											*					
_	4	11	18	25	32	36	43	50	57	64	71	75	82	89	96	103
	114	121	128	135	143	146	153	160	167	174						
	185	192	199	206	213	217	224	231	238	245						
	256	263	270	277	284	288	295	302	309	316						
	327	334	341	348	355	359	366	373	380	387						
	398	405	412	419	426	430	437	444	451	458						
	469	476	483	490	497	501	508	515	522	529	536	540	547	554	561	568
	579	586	593	600	607	611	618	625	632	639						
	650	657	664	671	678	682	689	696	703	710						
	721	728	735	742	749	753	760	767	774	781						
	792	799	806	813	820	824	831	838	845	852						
	863	870	877	884	891	895	902	909	916	923						
	934	941	948	955	962	966	973	980	987	994						
1	005	1012	1019	1026	1033											
1	044	1051	1058	1065	1072	1076	1083	1090	1097	1104						
1	115	1122	1129	1136	1143	1147	1154	1161	1168	1175						
1	186	1193	1200	1207	1214	1218	1225	1232	1239	1246						
		1264		1278	1285	1289		1303	1310	1317						
	328	1335	1342	1349	1356	1360	1367	1374	1381	1388						
	399	1406	1413	1420	1427	1431	1438	1445	1452	1459						
	470	1477	1484	1491	1498	1502	1509	1516	1523	1530	1537	1541	1548	1555	1562	1569
	580	1587	1594	1601	1608	1612	1619	1626	1633	1640						
	651	1658	1665	1672	1679	1683	1690	1697	1704	1711						
	.722	1729	1736	1743	1750	1754	1761	1768	1775	1782						
1	793	1800	1807	1814	1821	1825	1832	1839	1846	1853						
	864	1871	1878	1885	1892	1896	1903	1910	1917	1924						
		1942	1949	1956	1963	1967	1974	1981	1988	1995						
	2006	2013	2020		2034											
2	2045	2052	2059	2066	2073	2077	2084	2091	2098	2105						

are 7, syncopated every fifth or sixth entry by a gap of 4 or 11. (Readers seeking to extend this table are advised to employ high-accuracy software.)

Upon further experimentation, one finds that the entries in the table all occur in a larger set of integers n for which $\lfloor ne \rfloor - 2$ is outside the interval I_n ; so this does not characterize the property $a(n) = \lfloor ne \rfloor$, but appears to be a necessary condition. Is it? Does the pattern indicated by the table persists, or does chaos eventually take over? Is $a(n) = \lfloor ne \rfloor - 2$ impossible?

Acknowledgment. I thank Jim Sandefur for his helpful suggestions.

A Normal Density Project

Robert K. Stump, Muhlenberg College, Allentown, PA 18104

The fact that the normal density function

$$n(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

has no closed-form antiderivative [1], [2] can motivate student projects that are organized around the idea of approximating the cumulative distribution function

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt.$$

Useful projects might be devised by combining portions of the following problems, which range from computer algebra and computer graphing exercises for first-year calculus students to challenging problems in advanced calculus or analysis.

- (1) Use a graphing utility to compare the graphs of $f(x) = \exp(-x^2/2)$ and $g_n(x) = (1 + x^2/2n)^{-n}$ for n = 1, 2, 3, ... It is most impressive to see an animation that lets n cycle through the values 1 to 10 and back again.
- (2) Use l'Hôpital's rule to check that

$$\lim_{n \to \infty} \left(1 + \frac{x^2}{2n} \right)^{-n} = \exp\left(-\frac{x^2}{2} \right).$$

Figure 1 $y = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

Figure 2
$$y = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$