It turned out that these were not new discoveries. We’d unexpectedly stumbled
upon two old results: the improved trapezoid and Simpson methods are actually
cases n =2 and 3 of Gaussian n-point quadrature. (See [2], for example.) The zeros
of the Legendre polynomial of degree # lead to an n-point quadrature formula that
exactly integrates polynomials through degree 27 — 1. Our factors \/%7 and \/g are
zeros of Legendre polynomials of order 2 and 3; correspondingly, our formulas
work through degree 3 and 5. Tabulated solutions for 2 < 7 < 20 appear in [1] and,
through 7 =200, in [3]. Of course, this approach does not fit into a typical
beginning course.

Our experience showed that substantial improvements to the trapezoidal and
Simpson’s methods can be successfully introduced into a course for beginners,
using little more than pictures and Maple’s simplify command.
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Multiplying and Dividing Polynomials Using Geloxia
Jeff Suzuki (jeffs@bu.edu), College of General Studies, Boston University, Boston,
MA 02215

One popular method for multiplying numbers during the Renaissance was that of
“geloxia” or the grating [1, p. 209]. In this system the two numbers to be multiplied
were written in an “L” shape above a grid of squares divided by diagonals. In Figure
1 is shown the multiplication of 2375 by 127 to give the product 301625. The entry
in each square is the product of the two numbers at the top of the column and the

3074|764 0 Figure 1
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right of the row; for two-digit products the tens digit is written above the diagonal
and the units below. The product is found by summing along the diagonals.

The method was popular, though the difficulty of typesetting the grid meant that
it would fall out of favor after the invention of printing. It is, of course, equivalent to
our method of multiplication, as Figure 2 shows: the product is the sum of all the
numbers in the grid.

The same method can be used to multiply two polynomials. For example, here
is the multiplication of 3x* —5x+ 4 by 2x — 7 to give the product 6x° — 31 x% +
43x — 28: the products of the entries in the rows and columns are entered, the
diagonals are added, and the sums indicated at the foot of each diagonal, as shown
in Figure 3.

2000 300 70 5 3x? -5x 4
200000 | 30000 | 7000 500 100 6x° —10x2 8x 2x
40000 6000 1400 100 20
6x° | —21x? 35x -28 -7
14000 2100 490 35 7
—31x’ 43x -28
Figure 2 Figure 3

There are several advantages to this method. The first is that if students have used
the grating method for multiplying integers they will see that the same method is
used. The usual methods of multiplying integers and polynomials are distinctly
different. A second is that the product is very easy to check as all the partial
products are obviously written down. A third is that, as all the terms along a
diagonal are of the same degree, it is easy to find a term of any desired degree.

The fourth advantage of the grating method is apparent when dealing with
quotients. There are several problems, pedagogically, with the normal method of
long division. The primary problem is that it is so different from the method of
multiplication that the connection between the two operations is often lost.

Using a grating, it is easy to see that they are inverse operations. Let us divide
6x3 —31x* + 43x — 28 by 2x — 7. We write the divisor at the end of the rows (see
Figure 4) and the product at the ends of the diagonals. The sum along the first
diagonal is 6x* so the only cell in the first diagonal contains 6x°. This is the
product of 2x and the term at the top of the first column, so that term is 3x?, as
shown in Figure 5.

Now the first column may be filled in. Since (3x*)(—7) = —21x?, that quantity
can be filled in below the 6 x°. This then determines the entry in the second column
of row 1: since the diagonal sum is —31x? it must be —10x* (see
Figure 6). The term at the top of the second column is now determined: it is —5x.
The remaining cell in the second column contains 35x and this gives 8x as the
entry in the third column of the first row. Now the last term in the quotient, 4, is
determined and the grid may be completely filled in (Figure 7).
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3x?

2x 6x° 2x
6x° -7 6x° -7
-31x? 43x -28 —31x? 43x -28
Figure 4 Figure 5
3x? 3x? -5x 4
6x’ | —10x? 2x 6x* | —10x* | 8x 2x
6x® | —21x? -7 6x* | —21x? 35x -28 -7
—31x? 43x -28 =31’ 43x -28
Figure 6 Figure 7

As mentioned before, the connection between multiplication and division is
retained: the two use the same grid and, by the end of the process, the multiplica-
tion and division grids are identical.

The method handles divisions with remainders as well. Let us divide
4x°—8x*+5x+11 by 2x*—5x+ 4. As before a grating grid is written down,
with several extra columns, as in Figure 8. It is easy to fill in the quotient and the
grid, which then (Figure 9) shows the quotient, 2x + 1 and the remainder, 2 x + 7.

2x°
4)C3 -5x
—8x2 4
5x 11

Figure 8
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2x 1

4x* | 2% | x 7 2x*
4x* | —10x%| -5x -5x
—8x% 8x 4 4
S5x 11
Figure 9

Of course, the grid must be drawn correctly to allow for “missing” entries. Figure
10 is the grid for (x* + 7x% +8)/(x* + 2) =x? + 5 —2/(x* + 2).

x? 0x 5
x* 0x* | 5x* | Ox -2 | x
] 0x* | Ox* | Ox Ox
0x* | 2x° Ox 10 2
Tx*  Ox 8
Figure 10

It is even possible to use the grid method to introduce infinite series. We will
leave it to the reader to divide 1 by —x+ 1 to get 1+ x+x*+x°+ --- with the
hint that the grating should extend indefinitely to the left.
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