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Many topics in a sophomore level geometry class can be presented in a very
tangible fashion. For example, spherical geometry can be introduced by bringing
string, stick-um, and a few large rubber balls to class. Students can use these
manipulatives to experiment with the angle sums of spherical triangles, building
intuition that leads to a proof that the area of a spherical triangle is directly related
to its angular excess. (For other examples of exploratory activities in elementary
geometry see [2] and [3].)

While spherical geometry is relatively easy to introduce through such in-class
exercises, hyperbolic geometry is much more difficult. You can bring potato chips
to class to indicate the local geometry of the hyperbolic plane, but it isn’t so easy to
use them to explore geodesics and triangles. Because they are small and brittle, it’s
hard to construct geodesics on potato chips. Also, it’s not clear how to measure
angles on such surfaces. One can estimate angles between geodesics on a sphere
by placing a sheet of paper (= tangent plane) on the sphere, and then measuring
the angle between the tangent lines to the geodesics. You can’t do this with a
physical model of the hyperbolic plane since the hyperbolic plane is negatively
curved, and any tangent plane you make will cut through the surface.

If you are willing to let go of the local hyperbolic structure in favor of a model
that mimics hyperbolic geometry on a large scale, then Thurston paper does the
trick. Thurston paper is briefly described in [5] and [6] and is the subject of exercise
2.1.4 in Thurston’s book [4]. None of these sources discuss the topic we present
here, that the geometry of geodesics in Thurston paper nicely approximates the
geometry of geodesics in the hyperbolic plane. That this approach to hyperbolic
geometry is accessible to students is evidenced by the fact that four of the five
authors wrote the first draft of this paper as part of a student research project!

The Euclidean plane can be subdivided into equilateral triangles, where six
triangles are joined at every vertex. Thurston paper is constructed by joining
together seven equilateral triangles at every vertex. The addition of the extra triangle
causes the system to bend and twist, instead of lying flat like the Euclidean plane.

Figure 1. A photo of Thurston paper.
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It’s a lot of fun to make Thurston paper. With the aid of many hands, a large copy
of Thurston paper can be made in a short amount of time. Students take great
delight in having it wrap around their arms, or using it as a hat. If you've never
made your own copy, we suggest you make one before reading further!

There are bits—actually entire strips—of the Fuclidean plane hidden in Thurston
paper. In the Euclidean plane, constructed from equilateral triangles, there are
corridors consisting of an infinitely long band formed by triangles alternately
pointing up and down. These corridors also exist in Thurston paper.

Figure 2. A Euclidean corridor in Thurston paper.

(In later figures we’ll distort the metric on Thurston paper so that we can represent it
as though it were “flat” on the page. This has the added benefit of making Thurston
paper appear similar to the unit disk model of H?.)

A triangle in Thurston paper consists of three distinct points joined by geodesics
(=locally length minimizing paths). In order to construct triangles in Thurston
paper students need to discover simple rules for finding geodesics. To develop
some intuition, students can experiment with the idea of geodesic in much the same
manner as they would with a sphere. On a sphere one finds geodesics by pulling a
bit of string tight between two points. Similarly, to find the geodesic between a pair
of points in Thurston paper you pinch the two points between your fingers, and
carefully pull the paper tight.

Students quickly discover that if two points are contained in a Euclidean corridor,
then the straight line running between them in the Euclidean corridor is a geodesic
in Thurston paper. So in some sense Thurston paper fails as a model of hyperbolic
geometry; in Thurston paper there are very long and skinny triangles, embedded in
Euclidean corridors, that look exactly like Euclidean triangles. However, once you
step outside of the Euclidean corridors, the geometry of Thurston paper is decidedly
hyperbolic in that the sum of the angles of a triangle can be less than 180°, as we
show in the two examples below.

Take two line segments with common endpoint x that do not intersect any edge
or vertex, except possibly at x itself. These two line segments divide a small metric
neighborhood of x into two pieces, each piece being composed of Euclidean
sectors. One can define the angle formed by the line segments (with respect to a
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chosen side) to be the sum of the Euclidean angles of the sectors. One can show
(and it makes a good exercise for students) that a path p is a geodesic if for any
point x on the path,

e If x is in the interior of a triangle or an edge, then there is a neighborhood
of x in which p is a Euclidean geodesic. [This makes sense if x is interior to a
triangle since our triangles are Euclidean. It also makes sense when x is
interior to an edge, because the union of the two triangles adjoining an edge
is isometric to a Euclidean parallelogram.]

o If x is a vertex, then the angles between the path into and the path out of x,
on both sides, are > 180°.

We refer to the second condition as the 180°-criterion. Using the criteria above one
sees that the line joining X and Y in Figure 3 is a geodesic.

Figure 3. A geodesic in Thurston paper.

Using an Euler characteristic argument one can prove that geodesics in Thurston
paper are unique, but such an argument is beyond the sophomore level. For details
on geodesics in piecewise Fuclidean complexes see [1].

We illustrate the hyperbolicity of Thurston paper with two triangles (sketched in

Figure 4. Two triangles in Thurston paper.

Fig. 4) in which the sum of the interior angles is strictly less than 180°. Remember,
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these flattened pictures are distorted, so the paths drawn are only indications of
where the actual geodesics lie. If you have a copy of Thurston paper handy, we
suggest you find three points in the same relative position and use the pull-the-
paper-tight technique to locate the geodesics.

Triangle UVW. Because there is a Euclidean corridor containing the points V and
W, the geodesic between them is contained in this corridor. The path from U to V
runs along the edges of Thurston paper, and it is easy to check that the 180°-crite-
rion is satisfied at each vertex. Finally, the path joining U to W consists of four
altitudes from four Euclidean triangles. The 180°-criterion holds at the midpoint of
this path because the angle sum on gne side is 180° while it's 240° on the other.

Thﬂggle £ VUW is 30° since UV runs along one side of an equilateral triangle
and UW starts along the altitude of the same triangle. The other two angles require a
bit more ingenuity to measure. Because VW is contained in a Euclidean corridor, we
can accurately represent it as sitting in a thin strip of the Euclidean plane, ignoring
the ambient Thurston paper. So in Figure 5 we emphasize the Euclidean corridor
containing V and W, as well as the geodesics near V and W, and we essentiall_y)
ignore the portion of Thurston paper near U. An initial segment of the geodesic VU
starts at the top of the corridor, and an initial segment of WU forms an altitude of a
triangle in this corridor. By extending the corridor so that UW is the hypotenuse of a
right-angled Euclidean triangle, one sees that ZUVW = tan”"'(Y3 /7)), LVWU=
[tan™'(¥/3 /3)]/2, and most importantly, Z UVW + £ VWU = 30°. So the sum of the
interior angles of triangle UVW is 60°.

Figure 5. The Euclidean corridor containing V and W.

Triangle XYZ. Using similar methods to those in the previous example one can
check that 2 YXZ =tan;)1(\/§ /7). The angles £ XYZ and £ XZY introduce one
further subtlety. Since YA is contained in both YX and YZ, the “angle” formed by
these two distinct geodesics is zero! The same sort of bifurcation occurs with the
geodesics ZY and ZX. If one agrees that these angles should be considered to be
zero, then the sum of the interior angles of this triangle is about 14°. On the other
hand, it's not unreasonable to measure £ XYZ at the point of bifurcation, in which
case techniques like those discussed in the previous example show that the angle
sum is a bit over 79°.

The geometry of geodesics is a nice starting point for further student investiga-
tions. One can find experimental evidence that larger triangles have smaller angle
sums in Thurston paper, although it would be impossible to get any precise
correlation. As in H? there are lines . and points p where there are infinitely many
distinct lines through p that do not intersect &. One can also explore isoperimetric
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inequalities, showing that (roughly speaking) the area enclosed by a circle of radius
7 in Thurston paper grows exponentially as # increases. The particular exploration
you might assign would depend on the goals of your course, but in any event, after
working with Thurston paper your students should have sufficient insight and
motivation to begin a more rigorous discussion of hyperbolic geometry.
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t-Probabilities as Finite Sums
Neil Eklund (eklund@centre.edu), Centre College, Danville, KY 40422-1394

A text [1] has an exercise to derive the #-probability formula,
r(N+1)/2)
VNTT(N/2)
where df denotes the number of degrees of freedom. The purpose of this note is to
show how this expression may be written as a finite sum and thus may be evaluated

by writing a program on any programmable calculator.
Substitute x = N'/? tan § and define ¢ by R=N'"?tan ¢. Then P, becomes

r'((N+1)/2)
Since ¢ depends on N, define for K> 1
I'((K+1)/2)
VaT(K/2)

and note that P, = Q,(N). In order to compute P, we use the reduction formula

Plt>R, df=N]= f (1+x2/N)" YV ax=p,,
R

fﬂ/z cosV 1 9de.
@

Qr=0Qx(N) = fw/z cos®"1 0.db
@

m—1

1
fcos”’ 6 do= %(Sin 0)(cos™ ' 6) + fcos’"_2 0do.

Since Q, and Q, can be computed directly, we have for K> 3

CI((K+1)/2) 1

Ok = \/;F(K/Z) K—1 (sin ‘P)(COSK_Z ‘P)
P((K+1)/2) K=2 capp
AT (K/2) K=1 f(P cos®73 0.de (1)
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