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Certain results concerning the infinite seem as paradoxical today as they did in
the seventeenth century. The fact that some sets possess proper subsets to which
they are equivalent is as bewildering to today’s undergraduates as it was to Galileo
some three hundred years ago. However, taking that strange property concerning
proper subsets to be the definition of an infinite set allows us to begin a systematic
investigation of the infinite. We deem two sets equivalent if and only if there exists
a one-to-one correspondence from one set to a subset of the other and vice versa.
We then say that the cardinalities of the sets are equal. This method of measuring
the infinite produces some strikingly counterintuitive results.

In this short note, I will present alternative proofs that two well-known sets have
the same cardinality as the set N of natural numbers. Such sets are said to be count-
able (or denumerable). The ideas underlying these proofs, while not new [2], are
also not the ones found in most introductory texts. Additionally, these alternative
proofs seem much more accessible to the computer literate mathematics student of
today than those standard proofs to which we have grown accustomed.

Students sometimes find it hard to believe that the set of rational numbers is
countable. This “proof without words,” due to Cantor (see [3]), embodies the standard
method of constructing a one-to-one map from the set of N x N to N:
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But it has its drawbacks; additional adjustments must be made both to account for
the fact that rational numbers are not simply fractions but equivalence classes of
fractions, and to include the negative rationals. I now offer an alternative proof of
the denumerability of the rationals that neatly avoids these complications.

First recall that every natural number has a unique base 12 representation: a finite
string of symbols, with a nonzero leading entry, chosen from {0,1,2,3,4,5,6,7,8,
9,—,/}, where — represents 10 and / represents 11. The representation is unique.
For example,

3~/ =3(12%) + 10(12") + 11(12°) = 563.
This base 12 representation of the natural numbers will allow us to construct a
one-to-one correspondence from the set of rational numbers, @, to a subset of the

natural numbers, N. (A one-to-one correspondence from N into Q is the obvious
“inclusion.”) The mapping from Q into N is defined by interpreting the symbols of
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the reduced form of a rational number such as —23/17 as the base 12 representation
of a natural number. Thus,

—23/17 — 2536579,

since

10(125) +2(12%) 4 3(12%) + 11(12%) + 1(12%) + 7(12°) = 2536579.

By convention, negative rationals are written with the negative sign in the numer-
ator and the reduced form of zero is —0/1, so the leading symbol is nonzero. The
uniqueness of the reduced form of rational numbers and the uniqueness of the base
12 representation of the natural numbers imply that our map is well defined and
one-to-one.

Exercise 1. Describe the range.

This method of proof can also be adapted to prove that the set of algebraic num-
bers is countable. Recall that an algebraic number is a number satisfying a poly-
nomial equation over Z. Cantor’s proof that the algebraic numbers are countable
involves an argument based on the concept of “height” of a polynomial. The proof
may be found in [3]. A simpler proof based on the degree of a polynomial along
with a diagonal counting argument may be found in [1]. We will prove the de-
numerability via a base 14 argument. We begin by showing that the set Z[z] of
polynomials over Z is countable. Consider the base 14 representation of the natural
numbers as finite strings of symbols, with a nonzero leading entry, chosen from
{0,1,2,3,4,5,6,7,8,9,z,+,—," }, where z represents 10, + represents 11, and so
on. This representation allows us to construct a one-to-one correspondence from
Z|z] to a subset of N. The mapping is best described by example:

32°2 — 2z + 4 — 3(14%) 4 10(147) + 13(145) 4- 2(145) + 12(14*)
+2(14%) +10(14%) + 11(14") + 4(14%) = 5580930422.

Again, by convention, polynomials are written with powers in descending order, the
leading coefficient never includes the + sign, and the zero polynomial is written as
—0. Hence each polynomial uniquely defines a natural number. Since N is obviously
embedded in Z[z], we see that the set of polynomials over Z is countable. Also,
because each polynomial has only a finite number of roots, we may invoke the
fact that a countable union of finite sets is countable and conclude that the set of
algebraic numbers is countable.

Exercise 2. Use an appropriate base 11 representation of the natural numbers to
show that the set of integers is countable.

Exercise 3. Define the word “sentence.” Show that the set of all “sentences” is
denumerable.

Exercise 4. Is the set of all ideas a countable set? Explain.
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Mercator’s Rhumb Lines: A Multivariable Application of Arc Length
John Nord, Saint George’s School, Spokane, WA 99208
Edward Miller, Lewis-Clark State College, Lewiston, ID 83501

One of the areas in calculus that suffer from a lack of approachable application
problems is arc length. The following historical situation can be understood by any
college student and solved by any third-semester calculus student. Our main focus
will be an arc length problem in R? with a closed-form solution.

In 1569, Gerardus Mercator (1512-1594) created a new map that changed the
world, both literally and figuratively. Until then, as sailors navigated the open ocean
by following a fixed compass bearing, they could not map a straight line from point
A to point B that would correspond to a path of constant compass bearing on the
earth’s surface (except in a few special cases).

Mercator’s accomplishment allowed navigators to chart paths of constant bearing,
rbumb lines, between any two points on the map. Using the Mercator map, the
navigator could now draw a line from A to B, then measure the angle this line
makes with a line of longitude. The ship would arrive at destination B by sailing the
measured bearing for the entire trip. Edward Wright, an English mathematician of
the time, gave an excellent method for visualizing Mercator’s map [5]:

Suppose the spherical earth to be represented by a balloon covered with a network
of parallels of latitude and meridians equally spaced. Let the balloon be placed inside
a cylinder whose inside diameter is such that the equator of the sphere just touches
the walls of the cylinder. Then let the balloon be inflated. As it expands, the curved
meridians become straightened and flattened against the walls of the cylinder. At the
same time, each successive parallel finally comes to rest against the walls of the cylinder.
This process goes on to infinity, because the polar regions and the poles themselves
can never be pressed against the walls. If the balloon remains against the sides of the
cylinder, and the cylinder is unrolled and flattened, the impress is a Mercator projection
of the World.

Of course, as is the case with many technological innovations, it took a long
time for Mercator’s map to gain widespread acceptance. In 1581, Michiel Coignet of
Antwerp objected to Mercator’s chart [1]:

There was no sense in laying off a course on a chart according to compass direction
as it appeared on the chart. The rhumb lines radiating from the compass rose might
be straight lines on the chart but the same rhumbs applied to the spherical surface of
the ocean would produce a series of spiral curves that would take a navigator precisely
nowhere.

Four hundred years later the questions remain: “Does a thumb line lead anywhere?”
and “If so, how long is the path?”
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