The probability of the needle falling entirely within one of the rectangles is then

mab —2n(a +b) +n*

mab

1_Phoru_

One can simulate the Buffon needle experiment with a computer, and there are
many variations on the Buffon or Laplace needle problems that can be pursued as
calculus exercises or with the assistance of a computer. For example, instead of
parallel lines, one might try a collection of n lines through a single point with
uniform angular spacing between the lines [3]. One might consider other tilings of
the plane (see [6, 9]), say by hexagons rather than by rectangles. Another variation
is to bend the needle and keep the parallel lines. Surprisingly, Barbier [12] gave an
ingenious solution to the original Buffon needle problem by bending the needle
into a circle and computing the probability that the circle crosses one of the
parallel lines! Gnedenko [5] (also see [9]) showed that we obtain the same solution
if the needle is bent into any convex curve. Buffon’s Noodle Problem [7] is to find
the probability of crossing one of the parallels when tossing a wet noodle of fixed
length, but which randomly changes shape on each throw!

H. Solomon [11] also discusses higher dimensional analogues of these problems.
For example, how can the problem be framed if our needle is to be positioned in
euclidean m-space partitioned into parallel hyperplanes or into nonoverlappng
m-dimensional rectangles? The problem is then to find the probability that a
randomly placed vector with norm # lies entirely in one of the cells.
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Tangents to Conics, Eccentrically
Frederick Gass, Miami University, Oxford, OH 45056

Geometrical notions are abundant in calculus, where one learns how problems
involving them can be addressed via the derivative or integral. Interestingly, in the
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case of tangent lines (as I learned by chance, while reading [1]) one can make
old-fashioned ruler and compass constructions as easily for conics as for circles.
Constructions described in [2] and [3] are based upon properties that are somewhat
unique to each of the three families of conic (parabola, ellipse, and flyperbola). My
intent is to show how the eccentricity approach to conics offers a simple unification
of this topic.

Figure 1 shows part of a conic section whose eccentricity is e. Let F be the
focus, / the directrix, P the point of tangency, and Q the foot of the perpendicular
from P to [, so that PF =ePQ. (For two points such as P and F, I will use the
notation PF to mean either the line PF or the distance from P to F, depending
upon context.) Figure 2 shows how the tangent line PT is obtained: Construct the
perpendicular to PF at F, and let T be its intersection with /. (If PF is
perpendicular to /, as when P is a conic’s vertex, then T is a point at infinity,
making PT parallel to I.) A proof that no other point of line PT lies on the conic
is illustrated in Figure 3.

Figure 1 Figure 2

Figure 3

Let P’ be a point on line PT different from P, and let F’ and Q' be the feet of
perpendiculars from P’ to FT and /. Since both PQ/P'Q" and PF/P'F' are equal
to PT/P'T via similar triangles, they are equal to each other. It follows that
P'F'/P'Q" = PF/PQ, which in turn is equal to e. Therefore P'F’'=eP’'Q’, which
means that P'F # eP’'Q’. So P’ is not on the conic.
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Figure 3 is also the scene of an interesting fact about the relationship between
angles ZTPF and £TPQ. Since PF/PQ = e, we can divide numerator and denomi-
nator by PT and conclude that (cos£ TPF)/(cos£ TPQ) = e.
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Lottery Drawings Often Have Consecutive Numbers
David M. Berman, University of New Orleans, LA 70148

There are few random processes more avidly watched than the state lottery
drawings in which six numbered balls are chosen from a set of 44 (in Louisiana;
other states vary.) People have been surprised to notice that the winning selection
often contains two consecutive numbers. We can compute the probability of this:
happening, and see that it is actually greater than one half.

The probability can be computed using standard counting techniques found in
any advanced combinatorics book; in fact, it appears implicitly as a problem in
[1, p. 72] and [4, p. 59]. The purpose of this note is to make the solution accessible
to the student who knows only the elementary principles of counting.

Let us begin by counting the number of ways that g identical objects can be
distributed among p labelled boxes. Think of the objects lined up in a row. We can
assign them to the boxes by inserting p — 1 markers into the row: Box 1 will get the
objects (if any) to the left of marker 1; box 2 will get those between marker 1 and
marker 2; etc.

How many ways can this be done? What we have is a row of g +p — 1 things: g
objects and p — 1 markers. The question is how many ways we can choose which
p — 1 of the things will be the markers: C(q +p — 1, p — 1). We sum this up as:

Theorem. [1], [4] The number of ways that q identical objects can be distributed
among p labelled boxes is C(q+p —1,p — 1).

This theorem is simple enough, but as in so many counting problems, the hard
part is deciding for our problem what we should consider to be the objects and the
boxes.

Consider the general case of choosing & numbered balls from a set of n. Think
of the n — k losing balls as objects and the k£ winning balls as dividing them into
k + 1 boxes: those before the first, those between the first and second, etc.

Using the theorem, the number of ways this can be done is

Cn—k+[k+1]-1,[k+1]-1)=C(n,k)

as we knew it must be.
Now, possibly some of these boxes will be empty; in fact, a box will be empty
precisely when two winning numbers are consecutive. So to count the number of
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