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George Polya warned us a long time ago about the necessity to recognize the many
opportunities presented by and among problems:

Even fairly good students, when they have obtained the solution of the
problem and written down neatly the argument, shut their books and look
for something else. Doing so, they miss an important and instructive phase
of the work. ...A good teacher should understand and impress on his
students the view that no problem whatever is completely exhausted.

One of the first and foremost duties of the teacher is not to give his
students the impression that mathematical problems have little connection
with each other, and no connection at all with anything else. We have a
natural opportunity to investigate the connections of a problem when
looking back at its solution. [1]

Year after year calculus classes work on optimization problems involving geo-
metric figures. Are we teachers, like most textbook authors, limiting our expecta-
tions of students to procedurally correct write-ups of case-specific results with
answers that match those in the back of the book? Or are we encouraging our
students to refle¢t upon their answers, discover patterns in them, and connect
these patterns to those in other problems? I offer here three familiar problems
that will reward extra reflection.

First is the classic problem of maximizing the area of a rectangular field that can
be enclosed on 3 or 4 sides and/or subdivided with a given length of fence.
Consider the ordinary case in which fence lengths for opposite sides, if they both
exist, are equal and any fence length that subdivides the interior is parallel to a
side and equal in length to it. (The existence of a maximum area, of course,
depends upon at least one “vertical” side and one “horizontal” side being fenced.
Otherwise, there is no upper limit to the area that could be fenced in.)

One pattern that becomes evident from looking at one case and then removing
or adding fence lengths for other cases is that the maximum area is achieved when
the sum of the lengths of the “vertical” pieces of fence is equal to the sum of the
lengths of the “horizontal” pieces of fence. Each sum equals one-half of the total
fence length, and so in a sense every maximizing rectangle has one of the
regularities of a square, a striking result. But there is more. The fence problem can
be connected to our second problem: maximizing the volume of a square-base box,
with or without a “lid,” given a total surface areca. One might conjecture an
analogous regularity in the relationship between the total surface area of the
“horizontal” square end(s) and that of the other four “vertical” sides. One might
further investigate this relationship when the box is without one or more “vertical”
sides.

The first table below gives the results after removal of 0, 1, or 2 faces, as well as
the general case of covering m ends and #» sides.

In order to relate our optimal configurations to the cube, we have expressed
values in terms of the length of the edge of an ordinary cube with given surface
area A, thatis, x =y/A/6. The term “end” refers to one of the two “horizontal”
square faces of the box; “side” refers to one of the four “vertical” rectangular
faces; and “Total Area” refers to the total area of the faces that have not been
removed but are to be covered with the given material.
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Optimization of Volume of Box

. Total Total
Critical Values Area Area
Face(s) End Side of of Maximum
Removed Length Height End(s) Side(s) Volume
None x x 2 x? 4 x? x3
1
One End V2 x —_— 2 x? 4 x? 2 x3
7 V2
4 4
One Side x 3* 2 x? 4 x? §x3
Two Ends none none none
One End 41 2 2 4 3
& One Side V2 x 3\/fx 2x 4 §2x
Two Sides x 2 x 2 x? 4 x? 2 x3
2 4 [m 4 [2
GENERAL i . - 2 2 4 52 Y Bt
CASE m n 2 ny m
m,n+0

The conjecture about surface areas is substantiated. For an optimal configura-
tion, we find that the ratio of total surface area of the covered ends to the total
surface area of the covered sides is 1 to 2, just as for the cube!

Where could the calculus student go from here? The next connection might be
to a third classic problem: maximizing the volume of a cylinder with a given surface
area. The basic results are shown in the table below.

In order to connect this cylinder problem to the preceding box problem, we
again use x = /A /6 as our unit of length.

Optimization of Volume of Cylinder

Critical Val Total Total
ritical Values Area Area
Faces of of Maximum
Removed Radius Height Ends Side Volume
1 2 2
None —x —x 2 x? 4 x? 3

—x
Var Vr

2 2 2

One End V - x V — x 2 x? 4 x? 2y = x3

T T m

Here again in each case the surface area ratio of ends to side is 1 to 2.

One might inquire further about the relative sizes of the boxes and cylinders for
a given surface area. Scale drawings or models might prove very fruitful here. One
might also vary the box or cylinder by subdividing the interior with pieces of the
given material to provide “shelves.” See the general case in the table for the box.

Inquiries such as those described above keep mathematics alive as an ongoing,
creative process in our students and not dead as a list of theorems, problems, and
solutions in textbooks. Leon Henkin described it aptly:

One of the big misapprehensions about mathematics that we perpetrate in
our classrooms is that the teacher always seems to know the answer to any
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problem that is discussed. This gives students the idea that there is a book
somewhere with all the right answers to all of the interesting questions,
and that teachers know those answers. And if one could get hold of the
book, one would have everything settled. That’s so unlike the true nature
of mathematics. [2]
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Least Squares and Quadric Surfaces
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We have all seen fairly difficult problems in college algebra texts that would be
easy “if only the student knew calculus.” But have you ever seen a difficult
problem in a calculus text that would be easier if only the student didn’t use
calculus? The purpose of this note is to describe such a problem.

The derivation of the least squares regression line f(x) =ax + b for the n data
points (xy,¥),...,(x,,¥,) (Where n>2 and the x;’s are not all the same) is
commonly presented as an application of minimizing a multivariable function [1],
[2], [3]. The standard approach to this problem is to minimize the sum of the
squared errors

n

s(a,b) = Z(axi+b_yi)2 (1)

i=1

by setting the partial derivatives s,(a, b) and s,(a, b) equal to zero and solving for
a and b, obtaining

nYx;y;— Lx; Ly 1
= 5 b=°“ i il 2
R ST h R e

n

(Here and in the remainder of this note, ¥ means X! ;) This, of course, is
insufficient to show that these values minimize s(a, b); thus we find the following
exercise in [3]: “Use the Second-Partials Test to verify that the formulas given for
a and b yield a minimum.” (The reader is invited to try this exercise before
reading further!)

For the function s(a, b) to have a minimum at the point (a, b) given in (2), the
second-partial test requires that

Saa(@:b)spp(a,b) = [5,,(a,b)]*>0

at that point. Upon computing the derivatives, this reduces to

nYx?—(Lx) >0 3)
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