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The Relationship Between Hyperbolic and Exponential
Functions —Revisited
Roger B. Nelsen, Lewis & Clark College, Portland, OR 97219

In the standard calculus course, hyperbolic functions are defined in terms of
exponential functions, i.e., sinh t = 2(e —e~") and cosh ¢ = 1(e’ +¢~*). Later cer-
tain identities are verified, including cosh? ¢ — sinh? t = 1; from which it follows
that the point (cosh t,sinh¢) lies on the right-hand branch of the hyperbola
x2 —y?=1. Thus the name “hyperbolic” is belatedly justified. But this observation
provides no motivation for the choice of these particular combinations of exponen-
tial functions in defining cosh ¢ and sinh ¢.

To remedy this, we can begin with (cosh¢,sinh¢) as a point on the unit
hyperbola x?—y%=1 in a fashion analogous to the definition of the circular
functions (cos ¢,sin ¢) as the coordinates of a point on the unit circle x?+y?=1.
Just as 7 /2 measures the signed area of the circular sector swept out as a radius to
(1,0) rotates to (cos ¢,sin ¢), let us define (cosh ¢,sinh ¢) to be the coordinates of a
point on the right-hand branch of x2 —y?2 =1 so that the “radius” has again swept
out a signed area of ¢/2 (Figures 1 and 2).
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An earlier capsule [CMJ 19 (January 1988) 54-56] demonstrated how a 45°
rotation of axes could be used with this definition to derive the familiar formulas
for the hyperbolic functions in terms of exponential functions. In this capsule, we
replace rotation of axes by integration in polar coordinates (and some elementary
identities with circular functions) to accomplish the same end somewhat more
simply.

To simplify the notation, let (u,v) = (cosh ¢,sinh¢) and set a = arctan(v/u),
a € (=7 /4,7 /4). The shaded region in Figure 2 is bounded by r2cos 26 = 1 (the
polar representation of the hyperbola x?—y?=1) and the rays § =0 and 6 = a.
Hence its (signed) area ¢/2 is equal to 1 [¢r?df = 5 [& sec26 df. Thus
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so that
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and u + v positive), and thus we can construct the following pairs of equations

u+v
But recall that u? —v? =1, so that
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Solving the last pair for u and v gives the familiar expressions for the hyperbolic
cosine and sine.

At this point the reader may ask why we don’t just integrate directly in
rectangular coordinates to find the area of the shaded region in Figure 2. Of
course, this approach can be taken, but it is rather more complicated. It leads to
the integral [(x*—1)'/2dx which, after a trigonometric substitution, becomes
[ sec® 8 d6, requiring integration by parts. We leave the details to the reader.

We close by noting that an approach to the hyperbolic functions involving
motivation along the lines discussed here will generally require delaying their
introduction in the typical calculus course. An examination of several popular
calculus texts reveals that polar coordinates (as well as rotation of axes or
integration by parts) follows the hyperbolic functions—as most authors present
these functions as an application of exponential functions rather than as analogous
to circular functions.
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