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The mean value theorem is a well known result usually covered in a first semester
calculus course. There are many other types of mean value theorems that are less well
known. In 1958, T. M. Flett [3] proved one such result. Specifically, if f:[a, b] = R is
differentiable and satisfies f'(a) = f'(b), then there exists 7 in the open interval (a, b)
such that f(n) —f(a) = (n—a)f'(n). Ficure 1 shows the nice geometric interpreta-
tion of this result. If the curve y = f(x) has a tangent at each point in [a, b], and if the
tangents at (@, f(a)) and (b, f(b)) are parallel, then there is an intermediate point 7
such that the tangent at (7, f(n)) passes through the point (a, f(a)). For other
examples of mean value theorems we refer the reader to [4]-[9].

y=f(a)+f'(n)(x-a)
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FIGURE 1

Geometric interpretation of Flett’s theorem.

These results do not, in general, immediately extend to holomorphic functions of a
complex variable. For the case of Rolle’s theorem, the function f(z)=e*—1 has
value 0 at z=0 and z =2, but f'(z) =¢* has no zeros in the complex plane.
Evard and Jafari [1] get around this difficulty by working with the real and imaginary
parts of a holomorphic function. Another approach is taken by Samuelsson in [8]. The
goal of this note is to prove a version of Flett’s theorem for holomorphic functions of a
complex variable in the spirit of Evard and Jafari.

The first step is to extend Flett’s mean value theorem for real functions to a result
that does not depend on the hypothesis f'(a) = f'(b), but reduces to Flett's theorem
when this is the case.
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THEOREM 1. If f:[a,b] = R is a differentiable function, then there exists a point
n € (a, b) such that

£ ~f(a) = (n=a)f (m) - 2 LI gy
Proof. Consider the ausiliary function 4 :[a, b] > R defined by
w(x) =f(x) - g O =L (g2
Then ¢ is differentiable on [a, b], and
w(x) =f(x) - LOZL@ gy

It follows that '(a) = ¢'(b) =f'(a). Applying Flett’s mean value theorem to ¢ gives
y(n) — ¢(a) = (n— a)y'(n) for some n € (a, b). Rewriting ¢ and ¢’ in terms of f

gives the asserted result.

Our next step is to introduce some notation. Let C denote the set of complex
numbers. For distinct ¢ and b in C, let [a, b] denote the set {a +t(b — a)|t €[0,1]};
we will refer to [a,b] as a line segment or a closed interval in C. Similarly, (a, b)
denotes the set {a + t(b — a)|t € (0, 1)}.

Flett’s theorem is not valid for complex valued functions of a complex variable. To
see this, consider the function f(z) =e* —z. Then f is holomorphic, and f'(z) =
¢* — 1. Therefore, we have f'(2kmi)=e?™ —1=0 for all integers k. In particular,
£'(0) = f'(2i), that is, the derivatives of f at the endpoints of the closed interval
[0,27i ] are equal. Nevertheless, the equation

f(z) =f(0) =f'(=)=

has no solution on the interval (0,27i), as we now show. The equation above gives
(1 —z)=¢77 and, since z =iy, we get 1 —iy = cosy — isiny. The comparison of the
real and imaginary parts gives the system cosy =1 and siny =y, which has no
solution in the interval (0, 2r). Thus Flett’s theorem fails in the complex domain.

We now present a generalization of Theorem 1 for holomorphic functions where,
for any two complex numbers u and v,

{u,v) = Re(ud).

THEOREM 2. Let f be a holomorphic function defined on an open convex subset D
of C. Let a and b be two distinct points in D. Then there exist z,, z, € (a, b) such that

Re(/(21)) = <l A RIS (g

and

b—a,—i|lf(zy) —f(a m( ' (b)=F(a
in(f ) - S UCD D L TG S @,
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Proof. Let u(z) = Re(f(z)) and v(z) = Im(f(z)) for z € D. We now define the
auxiliary function ¢:[0,1] — R by

¢(t) =<b—a,f(a+t(b-a))), (1)

which is
¢(t) =Re(b—a)u(a+t(b—a)) +Im(b—a)v(a+t(b—a))
for every ¢ € [0, 1]. Therefore, using the Cauchy—Riemann equations, we get

¢'(t)y=<b—-a,(b—a)f'(a+t(b—a)))

= Re((b - a)®) 252 "”(Z) + Tm((b —0)2)%;)
~ b —ap 242)

=|b—al Re(f'(2)).
Applying Theorem 1 to ¢ on [0, 1], we obtain

L (1) = (1) - (0) + 3 LHZLO (¢ oy

for some t; € (0, 1). Thus

B1b — afRe(f/(21)) = #(1) — $(0) + 5 [#(1) — #'(0)] 2,

where z; =a+t,(b—a). Further since z;=a+t(b—a) and LE [0,1], we
have t,|b — al*=<(b—a,z, —a). Hence the equation ¢,|b — al? Re(f"(z)) =
o(t)) — ¢>(0) + 3['(D) - d)'(O)]t1 reduces to

$(t) =$(0) , 1 ¢'(1) —¢(0),
nb—af 2 |baf

Re(f'(z)) =

1.

Using (1) and the fact that z; = a +t(b — @) in the above equation, we obtain

Re(f (1)) = LB | ROV (). (2)

Letting g = —if, we have

(?v(z) _ du(z)
9y

Re(g'(2)) = =Im(f"(z))-

Now, applying the first part to g, we obtain

Re(g () = B gLl S Rl 2ga)

for some z, € (a, b). By (2) the above yields

(' (20)) = L2 UG D, 3 In(FCD (), -

a)

and the proof is complete.
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The next corollary follows immediately; it is the complex version of Flett’s mean
value theorem.

COROLLARY. Let f be a holomorphic function defined on an open convex subset D
of C. Let a and b be two distinct points in D, and f'(a) =f'(b). Then there exist
z1, 29 € (a, b) such that

b—a,f(z)—f(a
Re(f'(zl))=< b _ft(z,zi _ig 2

and

b—a,—i o) —f(a
ey - el ).

Returning to our original example f(z) =e* —z, z; and z, predicted by Theorem
2 have values z; = 4.49341i and z, = 2.33112i.

There are many ways to generalize the results of this note. For example, in 1966,
Trahan [9] extended Flett’s theorem by replacing the boundary condition f'(a) =f'(b)

with [ (@) =ml[f'(b) —m] >0, where m= w A similar modification
of the Corollary gives an extension of Trahan’s result to the complex plane. Specifi-

cally, replace the boundary condition f'(a) = f'(b) with the conditions
[Re(f'(@)) — m;][Re(f'(D)) —m;] >0 and [Im(f"(a)) — m, [[Im(f"(b)) —m,]> 0,

where m; = G’—Zb%hb)—:gi»— and m, = <b_a<’b__i[({(bh1;>f(”)]>. In 1995, Evard, Jafari,

and Polyakov [2] extended Rolle’s theorem for holomorphic functions on line seg-
ments [1] to a result satisfied by arbitrary curves connecting ¢ and b where
f(a) =f(b). For their result to hold the domain must satisfy a relatively weak almost
convexity condition. The same method could be used here, but we wish to limit
ourselves to a more classical setting.
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