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Exploring Complex-Base Logarithms

STEPHEN P. HUESTIS

University of New Mexico
Albuquerque, NM 87131

Students of complex analysis soon discover that the natural logarithm is a multivalued
function with an infinite number of branches, reflecting the multiple representation of
any complex number. If z=x + iy = (x, y), then in polar form:

2 = rgilo+2mn]
with r = + V22 +y2, 0< 0 <tan '(y/x) <2, and n any integer. Hence
w=In(z) =In(r) +i(0 +2mn).

Interesting patterns arise when multivalued logarithms are generalized to arbitrary
complex bases. To complex base z, the logarithm,

w =log,(25), 1)
is defined by
Zy =2z (2)
Consider now that both z, and z, have multiple representations:
2, = pelo+2mml
2, = rei0+2mn],

Taking the natural logarithm of (2), (1) is equivalent to:

_ In(r) +i(0+2mn)
Y= Tn(p) +i( +2mm) | ()

As m and n independently run through all integers, (3) defines an infinite number of
points in the complex plane that serve as representations of the logarithm of z, to
base z,. What pattern do they describe?

Fix an integer m, and let C,,=¢ + 27mm. Then, as n varies, (3) gives for
w=x+iy:

x=[In(r) *In(p) + C,,* (6 +2mn)] /[In*(p) + C;]
y=[In(p) - (8 +2mn) —In(r) - C,] /[n*(p) +C2].
Replace (0 + 27n) by a continuous variable s that, when eliminated from (4), gives
y=x[In(p)/C,] = In(r)/C,. (5)

That is, for fixed m, points (in the Cartesian plane) corresponding to the base z;
logarithm of z, fall on a straight line of slope [In(p)/C,,] and intercept [ —In(r)/C,.];
they are points for which (s — 6) /2 is an integer. Note that all lines defined by (5)
pass through the point A = (In(r)/In(p), 0), independently of m.

Now fix n in (3) and let D, =(8 + 2mn); replace (¢ + 2mm) by a continuous
variable s to get a parametric expression for the locus of points on which logarithm

(4)
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representations fall as m varies:

x=[In(r) -In(p) + D, -s] /[In2(p) +s2] ©)

y=[In(p) - D, — In(r) - s] /[In®(p) +s2].
Eliminating s from (6) is algebraically more unwieldy than for the fixed m case.
Anyone who plots several examples, however, will no doubt speculate that (6) is a

circle in the Cartesian plane. Substitute (6) into the general equation for a circle with
center (u, v) and radius R:

(x—u)’+ (y—v)*=R%,

and solve for u, v, and R by evaluating at three convenient values of s (for example,
s =0, In(p)D, /In(r), and ®), to show that (6) is equivalent to

[x— In(r) ]2+[y D, r_ In%(r) + D2

2In(p) “2In(p) | 4ln2(p) (7)

As n varies through integer values, (7) defines a family of circles, each with center on
the vertical line x = In(r)/[2In(p)], and passing through the point A. The fact that
each circle (7) intersects each line (5) at A, guarantees another intersection point,
which is the logarithm representation for the corresponding (m, n) pair.

Ficure 1 shows the geometry of intersecting lines and circles for z; =(3,2),
2, =(2, —1), and |ml, |n| < 2; curves are labeled with their m, n values. The point of
common intersection is A = (.627,0); all other intersection points of individual lines
and circles are representations of w. Ficure 2 is the same for z, =(-—1,3),
2, =(.1,.1), with A =(—1.699,0).
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For fixed m, (4) shows that both |x| and |y| — « as |n| = =, so there are logarithm
points arbitrarily far from the origin, along each line (5). For fixed n, the circle (7)
intersects every line (5); as |m| — = their slopes approach zero, so that the intersec-
tion points approach the x (real) axis. Ficures 3 through 6 display this concentration
of logarithm points about the x-axis, for the case z; = (3,2), z, = (2,1). For Ficure 3,
the plot limits are 0 <x <2; —.1 <y <.l (note distortion), and |m|,|n| < 25. Each
successive figure is a blowup of the small boxed region of the preceding figure.
Truncation values for Ficures 4 through 6 are |m|, |n| < 50, 200, and 1000, respec-
tively. Truncation at finite m, n leads to the point-free central band of each figure.
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This elegant pattern of fractal-like ray structures, upon which complex-base loga-
rithms fall, is a particular example of patterns assumed by multiple representations of
arbitrary functions of k complex numbers:

w=1(2,,2y,...,2;).

For example, Gleason [1; p. 324] explicitly comments on the infinite number of
representations of ’

w=1In(z,2,).
In this case, however, the pattern is far less interesting. Expressing z,, z, as above,
w=1In(rp) +i[0+ ¢ +2m(n+m)]

and all representations fall at equal spacing on the single line x = In(rp).
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