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(0, 2/7, 0), and (0, 0, 1/4), and the outer 2-radius R2(K) is 2/V0. FIGURE 7 
shows this octahedron and the smallest cylinder that contains it. 

(a) The polar dual (b) Smallest cylinder (c) Axial view 

Figure 7 The octahedron in the smallest cylinder 
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In any finite cyclic group, there are exactly d elements x satisfying xci = 1 for each 
divisor d of its order. Consequently, in any finite abelian group, the number of solutions 
of xci = 1 is a multiple of d, since we can write the group as a direct sum of cyclic 
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groups. Remarkably, this result turns out to be true for any finite group. This is a 
fundamental theorem proved by Frobenius [9] more than hundred years ago, in 1895: 

If d is a divisor of the order of a finite group G, then the number of solutions of 
Xd = 1 in G is a multiple of d. 

This result (which we call the Frobenius theorem) has stimulated widespread inter- 
est in counting solutions of equations in groups; details can be found in Finkelstein [8]. 
Many proofs and generalizations of the result are known [1; 2, p. 49; 3, p. 92; 11; 12, 
p. 136; 18, p. 77]. A standard proof (Frobenius's original one) is a consequence of 
the character theory of finite groups (see, for instance, Serre [20, Corollary 2, p. 83]), 
but now many elementary proofs are known. In spite of its fundamental nature, Frobe- 
nius's theorem, unlike the Sylow theorems, has not found its well-deserved place in 
undergraduate texts in algebra. In fact, even most of the recent graduate texts in group 
theory do not include the Frobenius theorem. 

We present our own proof of the Frobenius theorem and some of its applications in 
a way that uses only elementary knowledge of group theory. For this purpose, we refer 
the reader to Herstein's book [13]. In the last section, we also discuss some applications 
of Frobenius's theorem to number theory. 

Comparison with Sylow theory To show how useful the theorem may be, let us 
recall some standard results normally proved using the Sylow theorems in most under- 
graduate texts in algebra. 

It is well known that every group of prime order is cyclic. Are there other natural 
numbers n such that, if G is a group of order n, then G is cyclic? Here is a typical 
approach using Sylow theory: Let n = pq, where p < q are primes. The number 
of Sylow q-subgroups is 1 + kq, for some k such that 1 + kq divides p. As q > p, 
k = 0 and so there is a unique subgroup of order q and which, therefore, is normal. 
If p + q  1, the subgroup of order p is also normal and G, being their direct sum, 
is cyclic. The Frobenius theorem gives a stronger result, allowing us to characterize 
all such values of n. These turn out to be precisely those n for which n and 0 (n) are 
relatively prime (where 0(n) is the number of positive integers less than n that are 
relatively prime to n). 

A group G is called simple if its only normal subgroups are G and {1}. For instance, 
abelian simple groups are just the cyclic groups of prime order. A group is said to be 
solvable if it contains a sequence of normal subgroups {1} = No 4 N1 a  -  a G such 
that each quotient ATi±i /N; is abelian. In particular, a solvable nonabelian group is not 
simple. 

As noted above, in a group G of order pq, where p < q are primes, the Sylow 
q-subgroup is normal and thus G is not simple. With a little more effort the Sylow 
theory shows that the Sylow r -subgroup is normal in a group of order pqr, where 
p < q < r are primes. But Sylow theorems do not work for this purpose if the order of 
the group is a product of more than three distinct primes. Using the Frobenius theorem, 
it can be easily proved that if every Sylow p-subgroup of G is cyclic (for instance, if the 
order of the group is squarefree) and q is the largest prime divisor of the order of group, 
then the Sylow q-subgroup is normal and thus G is not simple. Burnside [2, p. 503] 
remarked, ". . . simple (nonabelian) groups of odd order do not exist." His claim was 
proved in 1963 by Feit and Thompson [7] when they showed that every group of odd 
order is solvable. Indeed, if G is a nonabelian group of odd order, then the commutator 
subgroup G' is a proper normal subgroup showing that G is not simple. 

Using the Frobenius theorem, one can easily prove that a group, all of whose Sylow 
subgroups are cyclic, is solvable. 
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The Frobenius Theorem Throughout, G denotes a finite group and o(g) the order 
of g E G. By I SI, we mean the number of elements in a finite set S. By H < G (resp. 
H < G) we mean that H is a subgroup (normal subgroup) of G. If d divides IGI, then 

Ad 

If S c G, then (S) will denote the subgroup of G geneiated by S. We denote the 

greatest common divisor and least common multiple of m and n by gcd(m, n) and 

lcm(m, n), respectively. For an element a E G, N(a) = {g E G : ag = gal is the 
centralizer of a and C(a) = {gag-1 : g E G} is the conjugacy class of a. We begin 
with the following lemma, which we shall use repeatedly in the paper. 

LEMMA. For any n, the number of elements of order n in G is either 0 or a nonzero 
multiple of 0(n). Furthermore, if a divisor of IGI has the form d = pas, where pa+l 
divides IGI and gcd(p, s) = 1, then the set A = Adp\Ad is either empty or has cardi- 

nality a multiple of 0(13°1+1). 

Proof We define a relation on the elements of G as follows: x is related to y if 
and only if they generate the same subgroup, that is, (x) = (y). Clearly this is an 

equivalence relation. As o(x) = o(xt) if and only if gcd(t, o(x)) = 1, the equivalence 
class of x has q5 (o(x)) elements. Writing G as a disjoint union of its equiv- 
alence classes, it follows that the set of elements of a given order n is a union of 

equivalence classes and, thus, its cardinality is a multiple of 4)(n). 
To prove the second statement, we note that the set A can also be written as {x : 

o(x) = pa+1 si, s1 sl. If A=/0 then it is a union of equivalence classes and the 

equivalence class of any element x with o(x) = pa±lsi has cardinality a multiple of 

(pa+1), since (1)(pa±1si) = 0(pa+1)0(si). It follows that IA| has cardinality a mul- 

tiple of O (pa+ 1). ¦ 

We recall one well-known fact before proving the Frobenius theorem. This is: 

If x E G has o(x) = mn, where gcd(m, n) = 1, then x = yz for some y, z in G 
with o(y) = m, o(z) = n, and yz = zy. 

(Hint for proof: Find integers a and b with am + bn = 1. Set y = Xbn, etc.) 

THEOREM. (FROBENIUS) If d divides IGI then d divides 'Ad I. 

Proof We proceed by double induction on |G| and d. Note that the induction is 
started trivially with IGI = d = 1. Assume IGI > 1 and d < IGI (since the case 
d = IGI is evident) and, that the result holds for larger divisors of IGI and groups 
with order < I G 

Let p be any prime divisor of IGI /c/ and let d = pas, where gcd(p, s) = 1. Let 
A = Adp\Ad. Note that 1Adpl = |Ad| + At and as d divides Adp (by the induction 

hypothesis), it is enough to show that d divides IA I. If A = 0, then we are through, 
so we assume that A A 0. By the lemma, IA l is a multiple of O (pa+1) = pa (p  1). 
Thus we only have to show that s divides IA I. 

Since A = {x : o(x) = pa+151, s1 I s}, the fact noted above shows that every ele- 
ment x of A has the form yz = zy, where o(y) = pa+1 and zs = 1. 

For a E G of order pa+1 , let us define Sa = {ab : b E N(a) and bs = 1}. Define 

Sc(a) = U{S., : x E C(a)}. Then A is a union of the sets Sa. We now show that the 
union is disjoint. Let o(a) = o(ai) = pa+1 and ab = alb' with bs = b i = 1, where 
ab = ba and aibi = biai. Note that (ab)s = (aibi)s implies that as = asi. Since 
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aPa+1 = afa+1 and gcd(pa+1, s) = 1, we have a = a1 showing that A is a disjoint 
union of the sets Sa. So it is enough to show that s divides I Sc(a) I. 

Note that ab --> xax-lxbx-1 is a bijection from Sa --+ Sxax-i. Thus ISc(01 = 
IC (a) Sa I. Let 0 (N (a) / (a)) = k and m = gcd(s, k). Then ab a> b (a) is a bijection 
from 

Sa ly E N(a)I(a) : ys = 11 = ty E N (a) I (a) : ym = 11. 

As N (a) I (a) I < I G I, the induction hypothesis implies that 

Ity E N (a)/ (a) : ym = 111 = ISa I = cm for some natural number c. 

Also ISc(01 = IC(a)IISa I= IGIISal/IN(a)1 = IGIcm I kpa+1. Since both k and s di- 
vide I G I, so does lcm(k, s) = kslm, showing that s divides I Gicml k. Finally, as pa+l 
divides I Glcm 1 k and gcd(p, s) = 1, we see that s divides I Sc(a> I.  

Some applications in group theory In this section, we give some group-theoretic 
applications of the Frobenius theorem, including those stated in the introduction. We 
shall tacitly use the following fact: If d divides IGI and |Ad| = d, then any subgroup 
H of order d coincides with Ad and is thus normal in G. 

APPLICATION 1. Let IGI = pail p22 ... par, where pi < P2 <    < pr are primes. 
If every Sylow p-subgroup of G is cyclic, then a Sylow pr-subgroup is normal in G 
(and is thus unique). Moreover, G is solvable. In particular, if IGI is squarefree and p 
is the largest prime divisor of IGI, then the Sylow p-subgroup is normal in G and G 
is solvable. 

Proof We show that 'Ad I = d for every divisor d of I G I that can be written in a 
particular form, namely d = pi:k pka+k+11 ... Kr, 1 < k < r and fik < ak. We proceed by 
induction on d. For d = I G I, the result follows trivially. Assume d < I GI and that the 
result holds for larger divisors of the given type. Let p be the largest prime divisor of 
IGIld and A = Adp\Ad. As a Sylow p-subgroup is cyclic, A 0 0. By our assumption, 
Adp = dp and by the Frobenius theorem, iAdi = dt for some 1 < t < p. By the 
lemma, p  1 divides dp  dt = d(p  t). As every prime divisor of d is greater 
than or equal to p, gcd(p  1, d) = 1 and so p  lip  t, implying that t = 1. Thus 
lAdl = d and, in particular, I Ae, I = par implying that a Sylow pr-subgroup N is 
normal. Now by induction on the size of the group, N and GIN are solvable and thus 
G is solvable. 

As every group of prime order is cyclic, the "in particular" part is now clear. ¦ 

APPLICATION 2. Let n be a positive integer. Then every group of order n is cyclic 
if and only if gcd(n, 0(n)) = 1. 

Proof One can easily check that gcd(n, 0(n)) = 1 if and only if n is squarefree 
and p 1 q  1, where p and q are prime divisors of n. 

Necessity We exhibit a noncyclic group for each n where gcd(n, 4)(n)) A 1. If p2 1 n, 
for some prime p, then Z x Zp x Znip2 is a noncyclic group of order n (recall that 
Zm x Z,, is cyclic if and only if gcd(m, n) = 1). Now suppose n is squarefree and 
p < q are two prime divisors of n such that p I q  1. As ;MO} is group under 
multiplication modulo q and p I q  1, there exists a subgroup, say H, of order p. 
Define an operation on elements of Zq x H by (x , h)(y, k) = (x + hy, hk). Then 
Zq x H is a group with identity (0, 1) in which (x,h)" = (-12-1x,h"). Note that if 
h A 1, then (1, h)(1, 1) 0 (1, 1)(1, h) showing that G = Zq x H is nonabelian. Thus 
G X Zn/pq is a nonabelian group of order n. 
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Sufficiency We show that 'Ad = d for every divisor d of G We proceed by in- 
duction on d. For d = IGI, the result follows trivially. Assume d < IGI and that the 
result holds for all divisors greater than d. Let p be any prime divisor of G lid and 
A = Adp\Ad. Clearly A By our assumption, lAdpi = dp and by the theorem, 
lAdi dt for some 1 < t < p. Arguing just as in Application 1, we see that that t = 1 
and so lAdi = d. In particular, A pl = p for every prime divisor of I G I , which implies 
that every Sylow p-subgroup is normal. Thus G, being direct sum of its cyclic Sylow 
p-subgroups of co-prime order, is cyclic. ¦ 

Dickson [6] characterized n E N such that every group of order n is abelian. Miller 
and Moreno [17] studied nonabelian groups in which every subgroup is abelian. They 
proved that the order of a nonabelian group whose every proper subgroup is abelian 
can have at most two distinct prime factors. 

As already mentioned, if lAdi = d, then every subgroup of order d coincides with 
Ad and is thus normal. But the converse is not true; a normal subgroup of order 
d may not coincide with Ad. For example, if G = Z2 x Z2 and N = ((1, 0)), 
then N a G and INI = 2, but IA21 = 4. But if N a G and gcd(INI, IG/NI) = 1, 
then N= Aim. To see this let a E Aim. Now aN E GIN implies alGINI E N and 
a E Aim implies aINI = 1 E N. This, in light of gcd(INI, GIN I) = 1, implies that 
a E N. 

A similar argument shows that if K a N a G with gcd(lICI, IN1/1K I) = 1, then 
K < G. For if k E K and g E G, then x = gkg-1 E N. Thus x1N/K1 E K and x1 K1 = 
1 E K = x E K. But this is not true for any chain of normal subgroups. For ex- 
ample, if we take G = A4, N = V4 = {I, (12)(34), (13)(24), (23)(14)1, and K = 

{I, (12)(34)1, then K < N < G but K is not normal in G. What went wrong here 
is the fact that gcd(I K I, IN K I)=/1. 

In 1895, Frobenius conjectured (in the same paper where he proved the theorem 
that bears his name [9]) that if !Ad' = d, then Ad forms a subgroup. The work of 
many group theorists went into proving the conjecture. Its final proof was announced 
in 1991 [14] and the details appeared later [15]. 

Let GI = pain, where p is the smallest prime divisor of G and gcd(p, m) = 1. If 
the Sylow p-subgroup is cyclic, then, as argued in Application 1, An/p4I = n/ pa, for 
all 1 < f < a. Thus, it follows from Frobenius's conjecture that G has subgroups of 
order nIp16, for all 1 < ,8 <a. 

Some applications in number theory Many authors have studied Ad in symmetric 
groups [4, 5, 16, 19]. It is well known that two elements in S, are conjugate if and only 
if they have the same cyclic decomposition [13, p. 88]. So if the cyclic decomposition 
of a E S, into m cycles has ni cycles of length li with li > 1 and Ei lini = n, then 
one can show that the size of the conjugacy class of a in S, is 

n! 
(1) 

and that the number of r-cycles in S is n! I r (n  r)!. The Frobenius theorem gives us 
many useful number-theoretic identities just by finding suitable |Ad| for appropriate 
values of d in symmetric groups. 

APPLICATION 3. For any prime p and any natural number n > p, we have 

n! 
-1 (mod p), 

where t is the largest natural number such that tp < n. 
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Proof As Ap in Ss contains only those elements that are products of p-cycles and 
1-cycles (fixed points), then by equation (1) 

iAp 

where the summand counts those permutations that are the product of k p-cycles and 
n-kp fixed points, and the initial 1 counts the identity permutation. Thus, the result 
follows from the Frobenius theorem. ¦ 

Note that by putting n = p in Application 3, we get Wilson's theorem (that is, 
(p-1)! --__. -1 (mod p) for any prime p). 

APPLICATION 4. If n/2 < pi < p2 < < pk < n, where n E N and each pi is 
prime, then 

t=i 
(mod pi P2...pk). 

Proof Find IA pip2...pk I in Sn as in Application 3 above. ¦ 

Proceeding along the same lines one may obtain many such identities. 
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