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For evidence that mathematics—and the origin of mathematical journeys—can arise in unexpected places, 
one needs look no farther than this article. The story begins with a question from a friend about a quilt-
ing circle: how can one arrange five rounds of quilt hand-offs among a group of five quilters so that every 
quilter hands off once to every other quilter? That way each quilter gets to meet every other one, rather 
than, say, always passing to the same person. The friend is not quite able to get this to work, and so appeals 
to Prof. Malmskog. As the authors write, “who could resist”? 

It turns out the quilting hand-offs can be represented in the form of a Latin square. We assign each quil-
ter a number, using the numbers 0, 1,…, n – 1 for n quilters. The quilters are arranged into the left column 
of the Latin square. The quilters they hand-off-to appear in subsequent columns. A sample Latin square for 
four quilters is shown in Figure 1. Notice that the first row indicates quilter 0 hands off to quilter 1, who 
hands off to quilter 3, who hands off to quilter 2.

 

 Figure 1: A Latin square for four quilters

The authors’ goal is to find not just any Latin square, but one in which all the hand-offs are different, so 
that each quilter hands off to each other quilter. The hand-offs from one quilter to another correspond to 
the sequences (i, j) in each row of the Latin square. For instance, in the first row of Figure 1, the sequences 
are (0,1), (1,3), and (3,2). To ensure that every quilter hands off once to every other quilter, we require that 
each pair (i, j) appear one and only one time when reading across rows. Latin squares with this additional 
property are called row-complete, and the Latin square in Figure 1 is an example. In addition to their de-
sirability for quilting circles, row-complete Latin squares play a role in the design of experiments in which 
treatments might have residual effects, such as taste-testing experiments.

Surprisingly, no row-complete Latin squares of order 5 exist, as the authors show using a case analysis. 
So there was a good reason the first author’s friend couldn’t get things to work! The question of determin-
ing whether there is a row-complete Latin square of given size n is a deep one, which remains unresolved 
in full generality. Constructions for even n date from the 1940s, and constructions for odd composite n 
date from the 1990s. The case of prime n, aside from n = 3,5,7, remains mysterious.

You may notice that in the example (1), the sequence of successive differences of elements in each row, 
considered modulo 4, is always 1, 2, 3. Such row-complete Latin squares are called rotational, and it’s pos-
sible to find them whenever n is even. Interestingly, the existence of such Latin squares is equivalent to the 
cyclic group of order n having a group-theoretic property called sequenceability, and a theorem from the 
1960s shows that this holds only for even n.
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The article closes by introducing “quiltdoku” problems: can a partially filled grid be completed to be-
come a row-complete Latin square? A new fabric-themed puzzling craze could be upon us. The authors let 
us accompany them on their journey with clarity, gentleness, and efficiency. By the end, we’ve visited graph 
theory, group theory, combinatorics, and even experimental design—a pleasing patchwork of mathemati-
cal ideas.

Response

We are thrilled and honored to receive the Carl B. Allendoerfer Award!  From the question that sparked 
our inquiry through our continuing investigations today, the work chronicled in this paper has been about 
building connection and community through mathematics.  Even the original quilting question came to us 
through friendship and the surprising reach of a mathematics puzzle segment on a community radio show 
in Colorado—this great question was one of the perks of being known as the radio math lady within a tiny 
world.  This award is especially wonderful to us in this context, because it lets us know that we have con-
nected with the larger world in a meaningful way.  Thank you to the awards committee and to the MAA!  
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