We have determined $\tau(u_i)$ for only four values of p: 2, 1, 1/2, 2/3. Students may enjoy some of the following projects in analysis and numerical methods:

- (a) plotting τ versus u_i for these four values of p;
- (b) finding other values of p for which the integral equation (3) for u_f is reducible to a transcendental equation, and plotting $\tau(u_i)$ for these;
- (c) a class exercise in which different values of p < 1 are assigned to students or student groups, and each is asked to find the u_i for which $\tau = 1$.

This problem originated from a first-year physics question set by Tim Shirtcliffe. I am grateful to him and to John Harper and Graeme Wake for helpful comments.

Reference

[1] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge, 1967, p. 341.

A Method of Duplicating the Cube

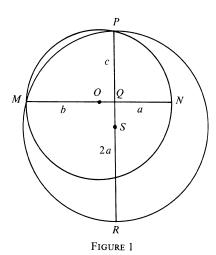
EDWARD V. GRAEF

1814 Kent Road Pittsburgh, PA 15241

V. C. HARRIS

San Diego State University San Diego, CA 92182

The old problem of duplicating the cube—that is, of constructing a cube with volume twice that of a given cube—was solved geometrically in several ways by the ancient Greek mathematicians (see Eves [1] for a summary). It is the purpose of this note to show how analytic geometry can be used to construct two curves which will give one more solution to the problem.



MATHEMATICS MAGAZINE

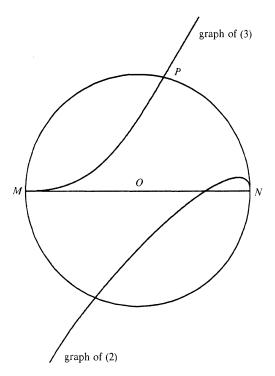


FIGURE 2

Given a cube whose edge has length c, if numbers a and b can be found such that

$$\frac{2a}{b} = \frac{b}{c} = \frac{c}{a},\tag{1}$$

then the problem is solved, because $b^2 = 2ac$ and $c^2 = ab$ imply $b^3 = 2abc$ and $c^3 = abc$, so $b^3 = 2c^3$. The relations (1) can be thought of as relations between segments of two perpendicular chords of intersecting circles (see Figure 1). The problem is, given c and circle MPN with center at the origin O and radius r, to determine circle MPR with center S(x, y) and radius a + (c/2).

First we obtain the locus of the centers of all circles such that |QR| = 2|QN|, without requiring that they also pass through M. The y-coordinate of R is -2a = -2(r-x), and the y-coordinate of P is $(r^2 - x^2)^{1/2}$, so the y-coordinate of P, their midpoint, is

$$y = \frac{1}{2} \left((r^2 - x^2)^{1/2} - 2(r - x) \right). \tag{2}$$

Next we take circles with centers on the graph of (2) which in addition pass through M(-r,0) and obtain the locus of the upper endpoints of their vertical diameters. If T(x,Y) is a point on that locus then, since |ST| = |SM|,

$$Y - y = ((r+x)^2 + y^2)^{1/2},$$
(3)

where y is as in (2). FIGURE 2 shows the graphs of equations (2) and (3). Where the graph of (3) intersects the circle—that is, where $Y = (r^2 - x^2)^{1/2}$ — determines the point P and hence S. This duplicates the cube, because (3) reduces to $(r+x)^3 = 2((r^2 - x^2)^{1/2})^3$, or $b^3 = 2c^3$.

The authors wish to thank the referee for helpful suggestions.

Reference

[1] Howard Eves, An Introduction to the History of Mathematics, Holt, Reinhart and Winston, New York, 1964.