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In a first encounter of the study of fields in an abstract algebra course, a student learns about
various subfields of R and C which are usually obtained by adjoining a finite number of elements
to the field Q. The student may also learn about the subfield of R consisting of those real
numbers which are algebraic over Q. Each of these subfields of R has the property that it contains
a countable number of elements. Since the field R is uncountable, the question naturally arises as
to whether there exists an uncountable proper subfield of R. An affirmative answer to this may be
given by appealing to the existence of a transcendental basis of R over @ [1]. The idea of a
transcendental basis is not commonly encountered in an undergraduate abstract algebra course,
but many students do encounter Zorn’s lemma with which one can construct an elementary, yet
interesting, proof of the following proposition.

PROPOSITION. If all proper subfields of a field F contain a countable number of elements, then F
contains a countable number of elements.

To see this, we first note that the prime field of F, which is the smallest subfield of F (the field
generated by the multiplicative identity), is isomorphic either to @ or to a finite field of p
elements. So without loss of generality we may assume that F properly contains its prime field.
Let ¢ be an element of F which is not in the prime field. Define S to be the collection of all
subfields of F which do not contain c¢. S is nonempty because the prime field is in S. Moreover,
the collection S is partially ordered by set inclusion. If { K} is any chain from S, then U K|, is
in S and is an upper bound. By Zorn’s lemma, there exists a maximal subfield M of F which does
not contain c. By assumption M is countable. Let y be an arbitrary element of ;A M. Then M(y)
is a field which properly contains M and, hence, by the maximality of M, we have that ¢ is in
M(y). This means that c¢=p(y)/q(y), where p(y) and ¢(y) are polynomials in y with
coefficients from M. We then obtain p(y)— cq(y) =0, which shows that y is algebraic over the
field M(c). But M(c) is countable and there are only countably many algebraic elements over
M (c¢). (The number of polynomials over a countable field is countable and each polynomial has
only a finite number of roots in the algebraic closure of the field.) Consequently both M and
F\M are countable, which gives us the fact that F is countable.

An immediate corollary to the proposition is that the uncountable field R contains an
uncountable proper subfield.

A few remarks are worth noting. First, keeping the notation of the proof, we see that every
element of the field F is algebraic over M(c¢). Second, the proof is valid for any infinite cardinal
number. That is, if ¥ is any infinite cardinal number and if all proper subfields of F have
cardinality at most N, then F has cardinality at most X. However, it is not true that the field must
be finite if all proper subfields of the field are finite. A standard construction shows that there
exists a countable field all of whose proper subfields are finite. To see this, let F, be the finite
field of p elements for some prime p. There is always an irreducible polynomial of degree 2 over
any finite field of g elements because the number of polynomials of the form x? + ax + b is g>
and the number of those of the form (x — a)(x — b) is ¢ + g(¢—1)/2. Suppose we have defined
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fields Fy,..., F,_, for some n > 2, such that each field is a subfield of the algebraic closure of F;
and F, CF,C --- CF,_;. Then let a, be an element of the algebraic closure of F; which is a
root of an irreducible polynomial in F,_,[x] and define F, = F,_,[a,]. Then FFC F,Cc F;,C ---
and F=U, F, is a countable field. Assume that K is a countable subfield of F. For each a in K,
there is a smallest n(a) such that « is in F,,,. Since « is notin F,,,_;, @ is a generator of the
cyclic group of nonzero elements in F,,,. Hence we have F,,,C K. Since there are countably
many elements in K, sup{#(a): « € K}=oco0. The nesting of the F,’s now shows that F=

UaEz(a) = K
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Imitation of an Iteration
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A most fascinating and frustrating problem is the Collatz 3x + 1 problem. Does repeated
iteration of the function

n
=, n even,

T(n)=1 3,41

2 5

n odd,

always reach 1, for any positive starting point? This convergence to 1 has been verified for n up to
the billions, but a proof of convergence for all » does not yet exist. In fact, the problem seems
intractable as stated, and has a place of honor in R. Guy’s article, “Don’t Try to Solve These
Problems!” [7]. What is known of this problem is probabilistic in nature, such as: “For almost all
positive starting points, there is some iterate smaller than the starting point.”

In this note we consider a generalization of the 3x + 1 problem and prove a fairly strong
probabilistic result. This result is not completely new, but the purpose here is to demonstrate that
a probabilistic model can give information concerning a number-theoretic problem. Finally, we
make a strong conjecture concerning the generalized iteration problem, and present some
empirical data concerning this conjecture.

We deal with the following generalization of the 3x +1 problem. Define a Collatz-type
iteration function C(n) by its action on different residue classes of the positive integers mod d as

n+ b,
C(n)={h,(n)=a’nd :, fornEimodd:O<i<d—1}, (1)

where a;n + b;=0mod d. For example, the function T(n) is given by definition (1) with d =2,
and a,=1, by=0, a, =3, b;=1. Let the trajectory of n be the sequence of iterations
(n,C(n),C®(n),C*(n),...). We say that the trajectory of n converges to a cycle if the sequence
ends in a repeating loop. For example, the trajectory of 13 for T(n) in the 3x +1 problem is
(13,20,10,5,8,4,2,1,2,...), which converges to the cycle (1,2,1). Clearly, the trajectory of n
converges to (1,2,1) in the 3x + 1 problem if and only if some iterate of T'(n) reaches 1, so we
have another way of looking at the problem—by looking at convergence of trajectories.

With the notation in (1), we can now ask the general Collatz-type question: For which functions
C(n) do the trajectories of all positive n converge to a finite set of known cycles?
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