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The complex number i which satisfies i2 = −1 is familiar to most undergraduate
mathematics students. Students taking abstract algebra encounter other fields which
contain similar elements such as the extension field Z3[x]/〈x2 + 1〉. Although this
field contains only 9 elements, it also contains an element whose square is −1, that is,
whose square is the additive inverse of the unity element of the field. If k is a field we
will write

√−1 ∈ k to mean that such an element of k exists.
Our purpose is to answer the following question: Under what conditions does a

quadratic extension field contain
√−1? This question and its solution are not com-

monly included in undergraduate algebra courses or texts, but are readily accessible.
While this result is of interest in its own right, it also suggests further avenues of re-
search suitable for undergraduates. We give several questions at the end of the paper as
a starting point. These ideas occured to the author who is an analyst, not an algebraist,
after teaching a two-semester course in abstract algebra.

Recall that if k is a field, and f (x) ∈ k[x] is irreducible, then there is a field ex-
tension K of k in which f (x) has a root z. In particular, if I = 〈 f (x)〉 is the ideal of
k[x] generated by f (x), then we may take K = k[x]/I , with z = x + I . If f (x) is a
quadratic, then K is a quadratic extension field, and we may write K = k(z), the field
generated by k and the element z. In particular, K = {α + βz : α, β ∈ k}.

The condition under which a second degree polynomial with real coefficients has
no real root should be familiar to undergraduate mathematics students. With reference
to the quadratic formula, if f (x) = ax2 + bx + c with a, b, c ∈ R, (and a �= 0), then
f has no real root if and only if b2 − 4ac < 0.

Students of abstract algebra may be pleased to learn that there is also a version of
this condition which holds over more general fields, specifically, those not of charac-
teristic 2. We introduce the following notation: For a commutative ring R, let Sq(R) =
{r 2 : r ∈ R}, the set of all squares of elements of R. Clearly, for c ∈ R, we have√

c ∈ R if and only if c ∈ Sq(R). In particular,
√−1 ∈ k iff −1 ∈ Sq(k).

Lemma. Let k be field with char(k) �= 2. The quadratic polynomial ax2 + bx + c ∈
k[x] has no roots in k, and hence is irreducible over k, if and only if b2 − 4ac �∈ Sq(k).

The proof of the lemma comes from the usual process of completing the square.
Since R always contains the square roots of nonnegative real numbers, this leads to
the familar result for quadratics with real coefficients mentioned above. It also suggests
that the set Sq(k) deserves further study.

For example, the quadratic f (x) = 2x2 + 2x + 1 is irreducible over k = Z7, for
writing k = {0, 1, 2, 3, 4, 5, 6}, we find Sq(k) = {0, 1, 4, 2}. Hence with a = 2, b = 2,
and c = 1, we have b2 − 4ac = 3 �∈ Sq(k). Now, let z be a root of f (x) in an extension
field K . Since f (x) is reducible over K , it follows from the lemma that b2 − 4ac =
3 ∈ Sq(K ). In particular, the element r = 2 + 4z satisfies r 2 = 3. This can be seen
by squaring and substituting for z2. But 4ac − b2 = −3 = 4 = 22 ∈ Sq(k), so that
the element ω = 2−1(2 + 4z) = 1 + 2z satisfies ω2 = −1 ∈ Sq(K ), while −1 = 6 �∈
Sq(k). This fact follows more generally from the theorem below, which answers the
question posed in the introduction. It should be noted that the theorem follows as a
corollary from the main result of [4], as well as from Theorem 3.4 of [2]. However,
both of these, especially [2], use algebraic techniques that are more sophisticated than
those employed here.
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Theorem. Let k be a field which does not contain
√−1. Let f (x) = ax2 + bx + c

be irreducible in k[x], with a �= 0. Let z be a root of f (x) in some extension of k, and
set K = k(z). Then K contains

√−1 if and only if 4ac − b2 ∈ Sq(k).

Proof. Recall that we may write K = {α + βz : α, β ∈ k}. Suppose K contains
an element y such that y2 = −1. We can then write y = α + βz. Using the fact that
az2 + bz + c = 0, we find by squaring and substituting for z2 that

−1 = y2 = (α + βz)2 = α2 + β2z2 + 2αβz

= α2 + β2(−a−1(bz + c)) + 2αβz

= (α2 − a−1cβ2) + z(2αβ − a−1bβ2).

Hence, we have

−1 = α2 − a−1cβ2, and

0 = 2αβ − a−1bβ2.

Now, β �= 0, else
√−1 ∈ k, so the second equation implies that α = (2a)−1bβ. Thus,

−1 = (2a)−2b2β2 − a−1cβ2

= β2(2a)−2(b2 − a−1c(2a)2)

= β2(2a)−2(b2 − 4ac).

Hence, 4ac − b2 = (2aβ−1)2 ∈ Sq(k), as desired.
Conversely, suppose that 4ac − b2 ∈ Sq(k). Since k ⊆ K , 4ac − b2 ∈ Sq(K ). Now,

f (t) = at2 + bt + c is reducible in K [t], so it follows from the lemma that b2 − 4ac ∈
Sq(K ). But this means that their quotient, −1, is in Sq(K ), as desired. (Alternatively,
one can show that if r ∈ k satisfies r 2 = 4ac − b2, then setting ω = r−1(b + 2az) ∈ K ,
we have ω2 = −1 ∈ K .)

Undergraduates are more familiar with extension fields where k = R. Combining
the results of the lemma and the theorem in this setting gives the following corollary.

Corollary. If f (x) = ax2 + bx + c ∈ R[x] is irreducible, then R[x]/〈 f (x)〉 contains√−1.

Note. The assumption that
√−1 �∈ k is necessary in the theorem. Take k = Q(i) =

{α + βi : α, β ∈ Q}, where i ∈ C as usual. (Equivalently, k is the extension field
Q[t]/〈t2 + 1〉.) Now, x2 − 2 is irreducible over k, and K = k(

√
2) contains

√−1,
since k contains it, but in this case, 4ac − b2 = −8, and if (α + βi)2 = −8, we find
α2 − β2 = −8, and αβ = 0, which is impossible since α, β ∈ Q.

We end with some questions. They and the references are meant as a starting point
for beginning researchers. The answers are unknown to the author, but may possibly
be available in the literature.

(a) Characterize fields k such that Sq(k) = k. If char(k) �= 2, must char(k) = 0?
(b) Let k be an infinite field such that −1 �∈ Sq(k). Find conditions on an irreducible

polynomial f ∈ k[x] implying that k[x]/〈 f (x)〉 contains
√−1.
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(c) Let p be an odd prime, and let φp(x) denote the pth cyclotomic polynomial.
Does Q[x]/〈φp(x)〉 contain

√−1?
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