
= a2 sinh−1(x/a)

2
+ x

√
a2 + x2

2∫ √
a2 + x2dx = a2 sinh−1(x/a)

2
+ x

√
a2 + x2

2
+ C.
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◦

Area Relations on the Skewed Chessboard
Larry Hoehn (hoehnl@apsu.edu) Austin Peay State University, Clarksville, TN 37044

To the most casual observer it is obvious that the area of the red (white) squares is
equal to the area of the black squares on an ordinary chessboard or checkerboard. But
does this still hold on a skewed chessboard such as in Figure 1? The purpose of this
article is to answer this and other related questions.

Figure 1.

First we consider more precisely what is meant by a skewed chessboard. Our skewed
chessboard is any convex quadrilateral in which each side is divided into eight con-
gruent segments whose corresponding endpoints are joined by cross-segments to form
sixty-four non-overlapping quadrilaterals.

Since the sides of quadrilateral A00 A08 A88 A80 are divided into eight congruent
parts, it is natural to wonder whether the cross-segments, such as A40 A48, are also
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divided into eight congruent parts. To prove that this is the case, we make repeated use
of a result attributed to Pierre Varignon (1654–1722).

Varignon’s Theorem. If B, D, F , H are the consecutive midpoints of the sides of
quadrilateral ACEG, then BDFH is a parallelogram.

Figure 2.

Proof. ([1, p. 53]). By the midsegment, or midline theorem, the line through the
midpoints B and D of �ACE is parallel to and one-half the third side, AE. Similarly
HF is parallel to and one-half AE for �AGE. Therefore, BD and HF are both parallel
and congruent, which implies that BDFH is a parallelogram.

As a corollary of Varignon’s Theorem, we note that HD and BF bisect each other.
This is the actual result needed.

Theorem 1. Each cross-segment of an 8 by 8 skewed chessboard is divided into
eight congruent segments.

Proof. By repeated use of the corollary to Varignon’s Theorem, we can show that
each lattice point Ai j (except the original perimeter points of the chessboard) of Fig-
ure 1 is the midpoint of some quadrilateral’s cross-segments. For example, A44 is
the midpoint of cross-segments A40 A48 and A04 A84 of quadrilateral A00 A08 A88 A80.
Then A42 is the midpoint of cross-segments A40 A44 and A02 A82 of quadrilateral
A00 A04 A84 A80. Likewise, A41 is the midpoint of cross-segments A40 A42 and A01 A81

of quadrilateral A00 A02 A82 A80, and so on. Thus, A41, A42, A43, . . . , A47 divide A40 A48

into eight congruent segments. This process can be repeated to show that each cross-
segment, whether “horizontal” or “vertical,” is divided into eight congruent segments.

Next we concentrate on results involving a few blocks (i.e., “squares” of the chess-
board) rather than the entire chessboard. For convenience we use “�ABC” as both the
symbol for the triangle and also the area of the triangle. Additionally we will also use
a single capital letter to denote the area of a quadrilateral.

Theorem 2. If three adjacent blocks of a skewed chessboard adjoin in a single row
(or column), then the area of the middle one is the arithmetic mean of the areas of the
other two.
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Figure 3.

Proof. Let B, C , F , and G be the respective trisection points of sides AD and EH
of quadrilateral ADEH in Figure 3. Additionally, let M , N , and P be the areas of
the smaller quadrilaterals formed by the trisection points. We wish to show that N =
(1/2)(M + P). It is well known that if two triangles have the same height, then their
areas are proportional to their bases. In Figure 3, for example, �ABG = �CBG and
�AHG = (1/3)�AHE. Therefore,

M + P = (�AHG + �ABG ) + (�EDC + �EFC )

= 1
3�AHE + �CBG + 1

3�EDA + �GFC

= 1
3 (�AHE + �EDA) + (�CBG + �GFC )

= 1
3 (M + N + P) + N = 1

3(M + P) + 4
3 N

Hence, M + P = 2N which completes the proof.

This result can easily be extended to more than 3 adjacent blocks. For example,
if M , N , P , Q are four adjacent blocks in a single row (or column), then M + Q =
N + P since M + P = 2N and N + Q = 2P by Theorem 2. Similarly, if five blocks
M, N , P, Q, R are in a single row, then M + R = N + Q = 2P .

Theorem 3. If four adjacent blocks of a skewed chessboard adjoin so that all share
a common vertex, then the sum of the areas of two “diagonal” blocks is equal to the
sum of the areas of the other two blocks.

Proof. In Figure 2, the vertex I is shared by the four blocks of quadrilateral ACEG.
We must show that M + Q = P + N . Since the diagonals of parallelogram BDFH
bisect each other,

�HIB = �BID = �DIF = �FIH.

Since B and H are the midpoints of two sides of �ACG, and D and F are the mid-
points of two sides of �CEG,

�ABH + �DEF = (
1
4

)�ACG + (
1
4

)�CEG = (
1
4

)
(quad ACEG ).

In the same manner, �HGF + �BCD = (1/4)(quad ACEG ). By combining these
equalities we obtain
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M + Q = (�ABH + �BIH ) + (�DEF + �FID)

= (�ABH + �DEF ) + (�BIH + �FID)

= (
1
4

)
(quad ACEG ) + (�BID + �FIH )

= (�HGF + �BCD) + (�BID + �FIH )

= (�HGF + �FIH ) + (�BID + �BCD)

= P + N .

We note that Theorem 3 is a known result and appears in [2].

Combining Theorems 1, 2, and 3, we can prove additional results by adding and
simplifying several equations. Thus (Figure 4), if we have a 3 by 3 skewed quadrilateral
where each side is trisected, we obtain:

(1) A + F = D + C
(2) A + I = 2E = G + C
(3) B + H = D + F
(4) B + F + G = D + H + C , and
(5) E = 1

9 (A + B + C + D + E + F + G + H + I ).

Figure 4.

In [3], Greenberg gave an arduous, but clever, proof of (5). Since this note was
inspired by (5), we now prove it as follows.

A + B + C + D + E + F + G + H + I

= (A + G) + (C + I ) + (B + H) + (D + F) + E

= 2D + 2F + 2E + 2E + E

= 2(D + F) + 5E

= 2(2E) + 5E

= 9E .

Therefore E = 1
9 times the area of the quadrilateral.
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Using Theorems 1, 2, and 3, the reader can obtain many additional area relations
on n by n skewed chessboards. Finally, we return to the original question. The cross-
segments in bold print of Figure 1 divide the skewed chessboard A00 A08 A88 A80 into
sixteen 2 by 2 blocks. By Theorem 3, the sum of the areas of the black blocks is equal
to the sum of the areas of the white blocks for each of the sixteen 2 by 2 blocks.
Therefore, the total area of the white blocks equals the total area of the black blocks.
Do comparable relationships hold for cubes in a skewed 3-dimensional chessboard?
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◦

On the Monotonicity of
(
1 + 1

n

)n
and

(
1 + 1

n

)n+1

Peter R. Mercer (mercerpr@math.buffalostate.edu), SUNY College at Buffalo, NY
14222.

Since the function f (t) = 1/t is decreasing on (0, +∞), for 0 < a < b we have

f (b)[b − a] ≤
∫ b

a
f (t) dt ≤ f (a)[b − a].

For a = n and b = n + 1, this reduces to

1

n + 1
≤ log

(
1 + 1

n

)
≤ 1

n
. (1)

The inequalities (1) imply (upon multiplication by n) that limn→∞(1 + 1
n )n = e. Al-

though {(1 + 1
n )n} is an increasing sequence and {(1 + 1

n )n+1} is a decreasing sequence,
this cannot be proved by (1) alone; one must use, for example, the Mean Value Theo-
rem, or the Binomial Theorem, or the Arithmetic-Geometric Mean Inequality [4, 3, 2].
Below we refine inequalities (1) to prove these two results, and we get a little bit more.

For any convex function F(t),

F

(
a + b

2

)
[b − a] ≤

∫ b

a
F(t) dt ≤ F(a) + F(b)

2
[b − a]. (2)

(The right-hand side is the area of the trapezoid circumscribed at the endpoints, and
the left-hand side is the area of the trapezoid inscribed at the midpoint. This is known
as Hadamard’s Inequality [1].) For F(t) = 1/t , with a = n and b = n + 1, the in-
equalities (2) become

2

2n + 1
< log

(
1 + 1

n

)
<

2n + 1

2n(n + 1)
. (3)
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