
WHAT IS A GROUP RING? 

D. S. PASSMAN 

1. Introduction. Let K be a field. Suppose we are given some three element set {a, (, y} and we 
are asked to form a K-vector space V with this set as a basis. Then certainly we merely take V to be 
the collection of all formal sums a ca + b , (+ c y with a, b, c E K. In the same way if we were 
originally given four, five or six element sets we would again have no difficulty in performing this 
construction. After awhile, however, as the sets get larger, the plus sign becomes tedious and at that 
point we would introduce the E notation. In general, if we are given a finite set S, then the K-vector 
space V with basis S consists of all formal sums ),2s aa * a with coefficients a,a E K. Finally, there is 
no real difficulty in letting S become infinite. We merely restrict the sums Y2a a c to be finite, by 
which we mean that only finitely many nonzero coefficients aa, can occur. 

Of course, addition in V is given by 

(E a, ) )+ (nba a) = E(aa+ba )b a 

and scalar multiplication is just 

b( , a, a) (ba,,) cta. 

Moreover, by identifying 3 E S with the element ,B' = ab, a E V, where b, = 1 and b", = 0 for a , 
we see that V does indeed have this copy of S as a basis and our original problem is solved. 

Now, how do we multiply elements of V? Certainly the coefficient-by-coefficient multiplication 

a, .a) 0 & . a)=(a,) a 

is exceedingly uninteresting and other than that no natural choice seems to exist. So we are stuck. But 
suppose finally that we are told that S is not just any set, but rather that S is in fact a multiplicative 
group. We would then have a natural multiplication for the basis elements and by way of the 
distributive law this could then be extended to all of V. 

Let us now start again. Let K be a field and let G be a multiplicative group, not necessarily finite. 
Then the group ring K[G] is a K-vector space with basis G and with multiplication defined 
distributively using the given multiplication of G. In other words, for the latter we have 

xE a. x (Eby y) E (axby) (xy)- Ecz z, 
xeG y EG x,yEG zeG 

where 

CZ= axby xbx-lz. 
xy=z xEG 

Certainly the associative law in G guarantees the associativity of multiplication in K[G] so K[G] is a 
ring and in fact a K-algebra. It is clear that these easily defined group rings offer rather attractive 
objects of study. Furthermore, as the name implies, this study is a meeting place for two essentially 
different disciplines and indeed the results are frequently a rather nice blending of group theory and 
ring theory. 

Suppose for a moment that G is finite so that K[G] is a finite dimensional K-algebra. Since the 
study of finite dimensional K-algebras (especially semisimple ones over algebraically closed fields) is 
in far better shape than the study of finite groups, the group ring K[G] has historically been used as a 
tool of group theory. This is of course what the ordinary and modular character theory is all about (see 
[21 for example). On the other hand, if G is infinite then neither the group theory nor the ring theory is 
particularly advanced and what becomes interesting here is the interplay between the two. Our main 
concern in this article will be with infinite groups and in the following we shall discuss and prove a few 
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selected results. These results, however, are by no means representative of the entire scope of the 
subject, but rather were chosen because their proofs are both elegant and elementary. Few references 
will be given here, but the interested reader is invited to consult the book [5] or the more recent 
surveys, [4] and [6]. 

2. Zero divisors. Before we go any further, two observations are in order. First, once we identify 
the elements of G with a basis of K[G], then the formal sums and products in , ax x are actually 
ordinary sums and products. In particular, we shall drop the dot in this notation. Second, if H is a 
subgroup of G then, since H is a subset of the basis G, its K-linear span is clearly just K[H]. Thus 
K[H] is embedded naturally in K[G]. 

Now let x be a nonidentity element of G so that G contains the cyclic group (x ). Then K[G] 
contains K[(x)] and we briefly consider the latter group ring. Suppose first that x has finite order 
n > 1. Then 1, x,_ , xn-' are distinct powers of x and the equation 

(1 -X) (1 + x + * + Xn1) = 1-Xn = O 

shows that K[(x)], and hence K[G], has a proper divisor of zero. On the other hand, if x has infinite 
order then all powers of x are distinct and K[(x)] consists of all finite sums of the form E aix. Thus 
this group ring looks something like the polynomial ring K[x] and indeed every element of K[(x)] is 
just a polynomial in x divided by some sufficiently high power of x. Thus K[(x)] is contained in the 
rational function field K(x) and is therefore an integral domain. 

Now what we have shown above is the following. If G has a nonidentity element of finite order, a 
torsion element, then K[G] has a nontrivial divisor of zero, but if G has no nonidentity element of 
finite order, then there are at least no obvious zero divisors. Because of this, and with frankly very 
little additional supporting evidence, it was conjectured that G is torsion free if and only if K[G] has 
no zero divisors. Remarkably this conjecture has held up for over twenty-five years. 

We still know very little about this problem. In fact all we know is that the conjecture is true for 
some rather simple classes of groups as, for example, free groups, or abelian groups. In the latter case 
the proof is even quite easy. Thus, suppose that G is torsion free abelian, and let a, P be elements of 
K[G] with a/3 = 0. Then, clearly, a and ,B belong to K[H] for some finitely generated subgroup 
H C G and, by the fundamental theorem of abelian groups, H is just the direct product of the infinite 
cyclic groups (x,), (x2), - and (x,). It is then quite easy to see that K[H] is contained naturally 
between the polynomial ring K[xX, x * *, x,] and the rational function field K(x1, x2, * * , x,). Indeed, 
K[H] is just the set of all elements in K(x1, X2, * * , x,) which can be written as a polynomial in 
xI, x2, , x, divided by some sufficiently high power of (xI x2... x,). Thus K[H] is certainly an 
integral domain and hence, clearly, either a = 0 or / = 0. Actually the best result to date on this 
conjecture concerns supersolvable groups. Here for the first time nontrivial ring theory comes into 
play but the proof is unfortunately too complicated to give here. 

On a more positive note, there is a variant of the zero divisor problem which we can handle 
effectively. A ring R is said to be prime if aR/ = 0 for a, : E R implies that a = 0 or : = 0. Clearly 
this agrees with the usual definition in the commutative case. In addition, this concept makes more 
sense ardd is more important from a ring-theoretic point of view than the very much more stringent 
condition of no zero divisors. For example, the matrix ring Kn is always prime, even though it does 
have zero divisors for n -' 2. The main result of interest here is as follows. 

THEOREM I. The group ring K[G] is prime if and only if G has no nonidentity finite normal 
subgroup. 

The proof in one direction is quite easy. Suppose H is a nonidentity finite normal subgroup of G 
and set a = Elh EH h, the sum of the finitely many elements of H. If h E H then hH = H so ha = a and 
thus 

a 2 
ha=IHIa. 

hEH 
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In particular, if : = I H I 1 - a then afp = 0. Furthermore, since H is normal in G, we have for all 
x E G, Hx = xH, and hence ax = xa. Therefore a commutes with a basis of K[G], so it is central and 
we have 

aK[G]f = K[G]af = 0. 

Finally, since a and ,, are clearly not zero we see that K[G] is not prime. 
The converse direction is much more difficult and as a starter we must ask ourselves how we are 

going to find a finite normal subgroup in G. Observe that if H is such a subgroup and if h E H, then 
certainly h has finite order, and furthermore, for all x E G we have 

hX = x-1hx E x-1Hx = H. 

Thus all G-conjugates of h are contained in H and so certainly there are only finitely many distinct 
ones. This, therefore, leads us to define two interesting subsets of G, namely, 

A(G) = {x E G 0 x has only finitely many conjugates in G} 

and 

Al(G) = {x E G x has only finitely many conjugates 

in G and x has finite order}. 

At this point a certain amount of group theory obviously comes into play. While the proofs are by 
no means difficult it does seem inappropriate to offer them here. Therefore we just tabulate the 
necessary facts below. See [5, Lemma 19.3] for details. 

LEMMA 1. Let G be a group and let A(G) and Al(G) be defined as above. Then 
(i) A(G) and Al(G) are normal subgroups of G. 
(ii) A(G) : AI(G) and the quotient group A(G)IA+(G) is torsion free abelian. 
(iii) I+(0) # (1) if and only if G has a nonidentity finite normal subgroup. 

Part (iii) above certainly seems to answer our first question. Now observe that if x is any element of 
G, then the G-conjugates of x are in a natural one-to-one correspondence with the right cosets of 
CG(x), the centralizer of x. Thus x E A(G) if and only if [G: CG(x)] < x and we shall need the 
following two basic properties of subgroups of finite index ([5, Lemmas 1.1 and 1.21). 

LEMMA 2. Let G be a group and let H,, H2, , Hn be a finite collection of subgroups of G. 
(i) If [G: H,] is finite for all i, then [: G n H,] is finite. 
(ii) If G is the set theoretic union G = U ,Hig, of finitely many right cosets of the subgroups Hi, 

then for some i we have [G : Hi] finite. 

We can now proceed with the remainder of the proof of Theorem I. If a = Xaxx E K[G], let us 
define the support of a, Supp a, to be the set of all group elements which occur with nonzero 
coefficient in this expression for a. Thus Supp a is a finite subset of G which is empty precisely when 
a = 0. Now suppose that K[G] is not prime and choose nonzero group ring elements a and : with 
aK[G]p = 0. If x E Supp a and y E Supp ( then certainly (x-'a)K[G](Py-') = 0, and furthermore, 
1 E Supp x -'a, 1 E Supp 3y-'. Thus without loss of generality, we may assume that a and ( have 1 in 
their supports. 

Let us now write a = ao + a, and f = go + f3 where Supp ao, Supp go C A(G) and Supp a1, 
Supp S3 Q G - A(G). In other words, we have split a and f into two partial sums, the first one 
containing the group elements in A(G) and the second one containing the rest. Since 1 is contained in 
the supports of a and : we see that ao and go are nonzero elements of K[A(G)]. Our goal here is to 
prove that aofo = 0. Once this is done the theorem will follow easily. Let us suppose by way of 
contradiction that aofo $ 0. Then clearly ao( = aofo + aofl is not zero since Supp aofo C A(G) and 
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Supp aoP3 C G - A(G) so there can be no cancellation between these two summands. Thus we can 
choose z E G to be a fixed element in Supp aof. 

We observe now that if u E Supp ao then [G :CG(U)] is finite and thus, by Lemma 2 (i), 
H= nu ueSuppaoCG(U) has finite index in G. Moreover, if h E H, then h centralizes all elements in 
Supp ao and hence h centralizes ao. Let us now write Supp at = {x1, x2, ,x, } and Supp f = 
{yi, Y2, , ys}. Furthermore, if x, is conjugate to zy7 in G for some i, j, then we choose some fixed 
gi, E G with g-' x,g = zy-'. 

Now let h E H and recall that aK[G]P = 0. Then since ahf = 0 and h centralizes ao, we have 

0 = h-'ahf = h-'(ao+ al)h . ( = ao( + h-'a,h3. 

Thus z occurs in the support of h-'a, hp = - ao( so there must exist i, j with z = h-'xihyj or in other 
words h-'xih = zy7'. But then this says that xi and zy7' are conjugate in G, so by definition of gij we 
have 

h-'xih = zy-' g-' xgij, 

and thus hg-' centralizes xi. We have therefore shown that for each h E H there exists an appropriate 
i, j with h E CG(xi)gi, and hence 

HC U CG(x,)gij. 
I,) 

Now [G H] is finite, so G = UkHwk is a finite union of right cosets of H and we conclude from 
the above that 

G = U CG(X,)giWk. 

We have therefore shown that G can be written as a finite set theoretic union of cosets of the 
subgroups CG(xi) and hence we deduce from Lemma 2 (ii) that for some i, [G CG(xi)] is finite. But 
this says that xi E A(G) and this is the required contradiction, since by definition xi E Supp a1 C 
G - A(G). Thus aofo = 0. 

We can now complete the proof quite quickly and easily. Since ao and gfo are non zero elements of 
K[A(G)] with ao(o = 0 we see that K[A(G)] has nontrivial zero divisors. Hence A(G) cannot possibly 
be torsion free abelian. On the other hand, according to Lemma 1 (ii), A(G)/A+(G) is torsion free 
abelian so we must have A+(G) $ (1). Thus finally we deduce from Lemma 1 (iii) that G has a 
nonidentity finite normal subgroup and the theorem is proved. 

In conclusion, we remark that Theorem I has an amusing application to the zero divisor problem. 
Namely, we can show that if G is a torsion free group then K[G] has nontrivial zero divisors if and 
only if it has nonzero elements of square zero. Of course if a E K[G], a X0 with a2 = 0, then 
certainly K[G] has zero divisors, so this direction is really trivial. In the other direction let a and ( be 
nonzero elements of K[G] with a(p = 0. Since G is torsion free, Theorem I implies immediately that 
K[G] is prime so we have PK[G]aO0. But 

(K[G]a . PK[G]a = PK[G] (a:) K[G]a = 0 

since ap = 0 and hence we see that every element of (K[G]a has square zero. 

3. Idempotents. Let us return again to the group ring of a finite group and consider its regular 
representation. That is, we view V= K[G] as a K-vector space on which K[G] acts as linear 
transformations by right multiplication. In particular, since V is finite dimensional here, each choice 
of a basis for V gives rise to a certain matrix representation for K[G]. More precisely, for each such 
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basis we obtain an appropriate faithful homomorphism r: K[G]-> Kn from K[G] into Kn, the ring of 
n x n matrices over K. Clearly n = dim V = I G 1. 

Suppose first that r corresponds to the natural basis for V, namely G itself. Then for each x E G 
right multiplication by x merely permutes the basis elements. Thus r(x) is a permutation matrix, that 
is a matrix of 0's and l's having precisely one 1 in each row and column. Moreover, if x # 1, then gx k g 
for all g E G so r(x) has only 0 entries on its main diagonal. Hence clearly trace r(x) = 0. On the 
other hand, r(1) is the identity matrix, so trace r(1) = n = 1. Now matrix trace maps are K-linear 
so for a = >a,x E K[G] we obtain finally 

trace r(a) = E ax trace r(x) = a, I G 

In other words, the trace of r(a) is just a fixed scalar multiple of a,, the identity coefficient of a. 
We are therefore led, for arbitrary groups G, to define a map tr: K[G] -> K, called the trace, by 

tr(Iax xy = a,. 

Moreover, it seems reasonable to expect that tr should have certain trace-like behavior and that it 
should prove to be an interesting object for study. Indeed, we observe immediately that tr is a 
K-linear functional on K[G], and furthermore, that for a = E axx, 1 = E b,y we have 

trag = E axby 
xy = I 

and this is symmetric in a and : since xy = 1 if and only if yx = 1. Thus tr a} = tr (a. 
Now one of the most interesting questions about tr concerns idempotents e E K[G] and the values 

taken on by tr e. To see what we might expect these values to be, let us again assume that G is finite. 
Since the trace of a linear transformation is independent of the choice of basis, we compute 

I G t tr e = trace r(e) 

by taking a basis more appropriate for e. Namely we write V as the vector space direct sum 
V = Ve + V(1 - e) and then we choose as a basis for V the union of ones for Ve and for V(1 - e). 
Since e acts like one on the first set and like zero on the second, we conclude therefore that 

I G I tr e = trace r(e) = dim Ve. 

Thus if we are able to divide by I G t in K (that is, if the characteristic of K does not divide I G I) then 

tre = (dim Ve)/!!G . 

In other words, we see that tr e is contained in the prime subfield of K, i.e., the rationals Q if 
char K = 0 or the Galois field GF(p) if char K = p. Furthermore, in characteristic 0 since 0_ 
dim Ve |IGI we have 0?tre - 1 
Now tt turns out that these two properties of tr e are indeed true in general, but we should observe 
that there is a basic distinction between them. The fact that tr e is contained in the prime subfield is 
clearly an algebraic property while the inequality 0 c tr e _ 1 is in some sense analytic in nature. With 
this basic dichotomy in mind, we now proceed to consider some proofs. 

THEOREM II. Let e E K[G] be an idempotent. Then tr e is contained in the prime subfield of K. 

We first consider fields K of characteristic p > 0, and as it turns out, the property of e we use here 
is eP = e. The reason for this is that in algebras over fields of characteristic p the pth power map is 
fairly well behaved. Indeed the identity (a + b)P = aP + bP always holds in commutative K-algebras 
and for noncommutative ones an appropriate generalization exists. To be more precise let A be a 
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K-algebra and define [A, AJ, the commutator subspace of A, to be the subspace generated by all Lie 
products [a, b] = ab - ba with a, b E A. Then the result we are alluding to is the following and a proof 
can be found in [5, Lemma 3.4]. 

LEMMA 3. Let A be an algebra over a field K of characteristic p > 0. If a,, a2, "l am E A and if 
n > 0 is a given integer then there exists an elements b E [A, A with 

(a, + a2+ + **+ a.)Pn = a P1"+ a2Pn + ..+ a 
pn + b. 

With this fact we can now prove the first part of Theorem II. Let e = I a,x be an idempotent in 
K[G] and let S denote the subset of Supp e consisting of all those elements of order a power of p, the 
characteristic of K. Then since S is finite, there exists an appropriate pth power, say pS, with xP' _ 1 
for all x E S. Now let n be any integer with n ? s and we apply Lemma 3 to ePr = e. Thus there exists 
an element y in the commutator subspace of K[GJ with 

e =e pn=E (ax ) x pn+ Y, 

and we proceed to compute the traces of both sides of this equation. Observe first that try = 0 since 
for any a, ,B E K[GJ we have tr a: = tr O3a and hence tr [a, PIJ 0. Also since n _ s it follows that for 
any x E Supp e we have xP" = I if and only if x E S. Thus clearly 

tr e = (a.)P 
= (E a,X) 

xes xE=S 

Now this equation holds for all integers n ? s and in particular if we take n = s and s + 1 we obtain 

(tr e )P -(Eax ) -(E ax ) -tr e . 

Therefore tr e is an element k E K which satisfies k P = k and since all such elements k are contained 
in GF(p), the theorem is proved in characteristic p > 0. 

We now proceed to consider the characteristic 0 case and here we will need the following (see 
[7, Assertions IV, Y, VI]). 

LEMMA 4. Let A = Z[ai, a2,, ar] be an integral domain in characteristic 0 which is finitely 
generated as a ring over the integers Z and let b E A be an element not contained in the rational numbers 
Q. Then there exists a maximal ideal M of A such that F = AIM is a field of characteristic p > 0 for 
some prime p and such that the image of b in F is not contained in GF (p). 

We remark that this fact is an easy consequence of the Extension Theorem for Places if b is 
transcendental over Q. But if b is assumed algebraic, then its possible images in the fields A/M are 
greatly restricted. Fortunately in this case we can apply the Frobenius Density Theorem, a result from 
algebraic number theory, to prove the lemma. 

Now let K have characteristic 0 and let e = E axx be an idempotent in K[GJ. If A = 

Z[ax I x E Supp e], then A is clearly an integral domain in characteristic 0 and A is finitely generated 
as a ring over the integers Z. Furthermore, e is an idempotent in A [GI, where the latter is the subring 
of K[GI consisting of all elements with coefficients in A. Now let M be any maximal ideal of A with 
F = AIM a field of characteristic p >0. Then under the natural homomorphism 

A[G1- *(AIM)[G] = F[G] 

the image of e is an idempotent and hence by the first part of Theorem II the image of tr e is contained 
in GF (p). The second part of Theorem II now follows immediately from Lemma 4 with b = tr e. 

Thus we have proved the first conjectured property of tr e, namely that it is always contained in the 
prime subfield of K and it remains to consider the second property, namely that 0 ? tr e ' 1 if K has 
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characteristic 0. Here the proof is much more technical in nature, it is analytic rather than algebraic, 
and we shall present some basic reductions and then indicate why the proof should work. 

Let K be a field of characteristic 0 and let e = E aXx be an idempotent in K[G]. If F= 
Q(a. I x E Supp e) then F is a finitely generated field extension of Q and e is an idempotent in F[GJ. 
Furthermore, F can be embedded in the complex numbers C and hence again e is an idempotent in 
C[ G]. Thus, as a first reduction, we may clearly assume that K = C is the field of complex numbers. A 
second minor observation is that we need only show that tr e - 0. The reason for this is that if e is an 
idempotent, then so is 1 - e and then 1 - tr e = tr(1 - e) >0 O yields tr e - 1. 

Let us now consider the complex group ring C[G]. As is to be expected when one combines the 
structure of group rings with the richness of the complex numbers, many nice additional properties 
emerge. For example, if a = E axx and : = E b,x are elements of C[G] we set 

(ae, :)=E abxg 

and 

where a is the complex conjugate of a and I a I is its absolute value. Then clearly (, ) defines a 
Hermitian inner product on C[G] with the group elements as an orthonormal basis and with jj jj the 
usual associated norm. Furthermore let a* be given by 

ar* = aXx-1. 

Then the map * is easily seen to satisfy 

(a + f)* = a* + a*, (ap)* = P*a*, a** = a, 

so that * is a ring antiautomorphism of C[G] of order 2, that is, an involution. Now observe that 

(a,,)= tra/3* = trf3*a 

and hence we deduce easily that if y is a third element of C[G], then 

(a, 3y) = (ay*,f3) = (13*a, y). 

In other words, * is the adjoint map with respect to this inner product for both right and left 
multiplication. 

We can now use the above machinery to obtain an alternate proof of the assertion tr e _ 0 at least 
when G is finite. Let I = eC[G] be the right ideal of C[GJ generated by the idempotent e and let I' 
be its orthogonal complement. Then since C[G] is a finite dimensional vector space, we know that 
I + IP = C[G] is a direct sum decomposition. But IP is not just a subspace of C[G], it is in fact also a 
right ideal. To see this let a E I, f E I' and -y E C[G]. Then since I is a right ideal aRy* E I and hence 

(a, 3y) = (ay*, /3) = 0. 

Thus f3y is orthogonal to all a E I and we conclude that fy E IP. 
We have therefore shown that I + I' = C[G] is a decomposition of C[G] as a direct sum of two 

right ideals and we let f + f' = 1 be the corresponding decomposition of 1. As is well known, f and f' 
are then both idempotents with I= fC[G] and I' = f'C[G]. Now f is orthogonal to f'C[G] = 

(1 -f)C[G] so for all a E C[G] we have 

0 = (f, (1 - f)a) = ((1 - f)*f, a) 
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and hence (1- f)*f E C[G] =O. Thus f = f*f so 

f* =(f*f)* =f*f=f 

and we see that f is a self-adjoint idempotent, a projection. It is now an easy matter to complete the 
proof. Since eC[G] = I = fC[G] both e and f are left identities for this ideal and hence we have 

tre = trfe = tref = trf. 

Furthermore f = f*f so 

tre = trf = trf*f= - If I2=0 

and the result follows. 

It is amusing to observe that this proof yields only tr e 0 O and not tr e E Q, but it does have the 
redeeming virtue of being extendable to infinite groups. Of course the finiteness of G was used 
crucially here. In fact it was used to deduce that I + I' = C[G] since such decompositions are not in 
general true for infinite dimensional inner product spaces. But the proof really rests upon the auxiliary 
element f and there is an alternate characterization of this element which we can use. Let a E I and 
consider the distance between a and 1 E C[G]. Then by definition 

d(a,l)2 = -a-112 =(a - 1,a-1) 

and since 1 = f + f' and (a - f,f) = O we have 

d(a, 1)2= (a -f-f', a -f-f ) a-f 11f2+fff '2. 

Thus d (a, 1) f?L f' and equality occurs if and only if a = f. In other words, f is the unique element of 
I which is closest to 1. 

Now let G be an arbitrary group, let e be an idempotent in C[G] and set I = eC[G]. Then we 
define the distance from I to 1 to be 

d = inf d(a, 1)- inf 11 a-1 1 

Since C[G] is no longer complete if G is infinite, there is no reason to believe that some element of I 
exists which is closest to 1. But there certainly exists a sequence of elements of I whose corresponding 
distances approach d. As it turns out, it is convenient to choose a sequence fl,f2, fn., of 
elements of I with 

d2<Ifn -12<d2 + /n4. 

Then this sequence plays the role of the auxiliary element f of the finite case and indeed the final 
conclusion mirrors the original formula tr e = lft 112 obtained above. Namely after a certain amount of 
work with inequalities and approximations, which we will not give here (see [5, Section 22] for details), 
we deduce finally that 

tre = limlInfI2n0. 

This completes the proof. 

4. Semisimplicity. We close with one final problem, the semisimplicity problem. The amusing 
thing about this one is that while it has been worked on for over twenty-five years, it is only recently 
that a viable conjecture has been formulated. In this section we shall discuss the conjecture along with 
some of the early work in characteristic 0. 

We first offer some definitions. If R is a ring, then an R-module V is an additive abelian group 
which admits right multiplication by the elements of R. More precisely, we are given a ring 
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homomorphism R -* End V from R to the endomorphism ring of V ahd by way of this map there is a 
natural action of R on V which we denote by right multiplication. Thus in essence, V is an R-vector 
space. Furthermore we say that V is an irreducible R-module if there are no R-submodules of V 
other than 0 or V itself. For example, if R = F is a field then the irreducible F-modules are precisely 
the one-dimensional F-vector spaces. 

Now what we would like to do is study R in terms of its irreducible modules but there is a natural 
obstruction here. It is quite possible that we cannot even tell the elements of R apart in this manner, 
that is, there could exist two distinct elements r, s E R such that for all irreducible R -modules V and 
for all v E V we have vr = vs. Of course if the above occurs then v(r - s) = 0 and hence we cannot 
distinguish the element r - s from 0. Thus what is of interest here is 

JR = {r E R I Vr = 0 for all irreducible R -modules V}, 

the Jacobson radical of R. This is easily seen to be a two sided ideal of R which can be alternately 
characterized as follows (see [3, Theorem 1. 2. 3]). 

LEMMA 5. Let R be a ring with 1. Then 

JR = Jr E R f 1 - rs is invertible for all s (} R. 

Now a ring is said to be semisimple if its Jacobson radical is zero and this then leads to two 
problems in group rings. The first is to characterize those fields K and groups G with K[G] 
semisimple and then the second, more ambitious problem, is to characterize in general the Jacobson 
radical JK[G]. The initial work here concerned fields of characteristic 0 since for G finite it was a 
classical fact that K[G] is semisimple. Presumably K[G] is always semisimple in characteristic 0 and 
the first result here on infinite groups concerned the field C of complex numbers. 

THEOREM III. For all groups G, C[G] is semisimple. 

For our proof, which closely mirrors the original, we revert to the notation of the previous section 
and we furthermore introduce an auxiliary norm on C[G] by defining I a I = E| ax I if a = , ajx. 
Clearly I a + I ' I a I + I jf and I a/3 I ' a I l I , l . Now let a be a fixed element of JC[GJ. Then for all 
complex numbers 4, 1 - ;a is invertible by Lemma 5 and we consider the map 

f (;)= tr (1 - a)-' . 

This is a complex function of the complex variable ; and we shall show that f is in fact an entire 
function and we will find its Taylor series about the origin. 

For convenience we set g(;) = (1 - ;a)-' so that f(;) = tr g(;). Furthermore, it is clear that all 
g(;) C C[G] commute and hence we have the basic identity 

g ( g (ij) = (1 - {a) -_ (1 - 7a)-' 

=[(1 - qa) - (1 - {afl(l - (a)-'(l - -qa)-' 

=~ (- B)a g (;)g (q).) 

We first show that |g(rq)l is bounded in a neighborhood of ;. Now by the above g(q) = 

gso lg(i1)f lg(;)f+f-l fag(;l Ig(7)f and hence 

Ig(-q) '{ -,q1 lag(;)l}=g(;) l 

In particular, if we choose i1 sufficiently close to g then we can make the factor {.*. } larger than 1/2 
and thus we deduce that q - - implies Ig(iq)IJ?21g(;)I. 

Next we show that f(t) is an entire function. To do this we first plug the above formula for g(Qq) 
into the right hand side of the basic identity to obtain 

g(;) - g(71) = (; - 7)ag(;) {g(') - (a -71)ag(;)g(71) } 
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Then we divide this equation by ; - -q and take traces to obtain 

f )0- f( ) - tr ag(;)2 = _(-7)tr a 2g(;)2g(-). 

Finally since I tr y y I we conclude from the boundedness of I g(77) I in a neighborhood of ; that 

lim = tr ag ()2 

Hence f(;) is an entire function with f(;) given by f'(;) = tr ag(;)2. 
Now we compute the Taylor series for f about the origin. Since f(;) = tr (1 - a )-1 what we clearly 

expect here is that for ; small we can write (1 - {a)-1 as the sum of an appropriate geometric series 
and then obtain f by taking traces. To be more precise and rigorous set 

n 

S = E tr a. 
1=0 

Then 

f ;)-Sn(;) = tr g(;) - ot 

= trg( ){1-(1- a) iai} 

tr tg(;)gn+ 'an+1 

and thus 

If(; Sn ()|_||n+1 I a I n 
+1 

I g(; 

Now by our previous remarks I g(;) is bounded in a neighborhood of zero and hence for sufficiently 
small we deduce that 

lim sn(') = f(0. 
n -r 

We have therefore shown that 

t(0) E; tr a 
. =0 

is the Taylor series expansion for f(;) in a neighborhood of the origin. Furthermore, f is an entire 
function and hence we can invoke a well-known theorem from complex analysis ([1, Theorem 3, pg. 
142]) to deduce that the above series describes f(;) and converges for all ;. In particular we have 

lim tra n = 0 

and this holds for all a E JC[G]. 
We conclude the proof by showing that if JC[G] 0 0 then there exists an element a E JC[G] 

which does not satisfy the above. Indeed, suppose is a nonzero element of JC[G] and set 
a = f3 */1 /3112. Then a E JC[G] since the Jacobson radical is an ideal. Furthermore we have a = a * 
and 

tr a = 11 11-2 tr 3P* = 1 1-2K : 112 = 1. 

Now the powers of a are also symmetric under * so for all m ?0 we have 

tra am+1 = tr a2m( 2m)* 11a2m ?> (tra2m)2. 
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Hence by induction tr a"2' = 1 for all m -0 and this contradicts the fact that tr a' ->0. Thus 
JC[G] = 0 and the result follows. 

Needless-to-say this analytic proof both excited and annoyed the algebraists who rightly viewed 
group rings are an algebraic subject. Later algebraic proofs were indeed given and the best result to 
date in characteristic 0 is as follows. Let K be a field of characteristic 0 which is not algebraic over the 
rationals Q. Then for all groups G, K[G] is semisimple. Furthermore, for all the remaining fields the 
semisimplicity question is equivalent to that of the rational group ring (see[5], Theorem 18.3). 

We should mention at this point that there is an amusing ploy to try to extend the above argument 
to Q[G]. Namely, we again consider f(;)= tr(1 - ;a)-, this time as a map from Q to Q, and we 
observe as before that for | small 

f()= 2 tra'. 
0 

Now the right hand side here describes an analytic function in a neighborhood of the origin and this 
function has the rather strange property that it takes rationals to rationals. The question then is: must 
such a function necessarily be a polynomial? Unfortunately this is not the case and a simple 
counterexample is as follows. Let r,, r2,, rn,... be an enumeration of the nonnegative rationals and 
define 

-( d) 1 (ri- (2 2 _ 22) ... (r- _ 2) 
n=1 n! (r +) (r2 +1)(r+1) 

Then h is easily seen to be an entire function which takes Q to Q and which is not a polynomial. 
Actually, it now seems that the semisimplicity problem for Q[G] will be settled by purely ring 

theoretic means since the result will follow from an appropriate noncommutative analog of the Hilbert 
Nullstellensatz. To be more precise, it has been conjectured that the Jacobson radical of a finitely 
generated algebra is always a nil ideal. This conjecture, along with the known fact ([5] Theorem 18.5) 
that Q[G] has no nonzero nil ideals, would then easily yield JQ[G] = 0. Thus what is really of interest 
is the case of fields of characteristic p > 0 and here we are just beginning to guess at what the answer 
might be. Suppose first that G is finite. Then K[G] is semisimple here if and only if p 4 I G 1. Of 
course this latter condition does not make sense for infinite groups, but the equivalent condition, 
namely that G has no elements of order p, does. None-the-less this is not the right answer. It is not 
true that JK[G] # 0 if and only if G has an element of order p. What does seem to be true is that 
elements of order p do play a role, provided that they are suitably well placed in G. To give this 
ambiguous idea some more meaning we start by quoting a simple fact ([5] Lemmas 16.9 and 17.6). 

LEMMA 6. Let a be an element of the group ring K[G]. Then a E JK[G] if and only if a E JK[H] 
for all finitely generated subgroups H of G with H D Supp a. 

This of course says that whatever "well placed" means exactly, it must surely depend upon how the 
particular element sits in each finitely generated subgroup of G. Now we get more specific. Let H be a 
normal subgroup of G. Then we say that H carries the radical of G if 

JK[G] = JK[H] . K[G]. 

Our goal here is to find an appropriate carrier subgroup H of G such that the structure of JK[H] is 
reasonably well understood. Admittedly this is a somewhat vague statement but we would certainly 
insist that JK[H] be so simple in nature that we can at least decide easily whether or not it is zero. 

The first candidate for H is based upon the A' subgroup and Lemma 6 above. We define 

A+(G) = {x E G I x E A+(L) for all finitely generated subgroups L of G containing x} . 

Then A+(G) is a characteristic subgroup of G and in all of the examples computed so far A+(G) does 
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indeed carry the radical. Furthermore, the ideal 

I = JK[A+(G)] . K[G] 

has been studied in general and it has been found to possess many of the properties expected of the 
Jacobson radical. Thus it now appears that A+(G) carries the radical but we are unfortunately a long 
way from a proof of this fact. Finally we remark that this conjecture has a nice ring theoretic 
interpretation. Namely it is equivalent to the assertion that if G is a finitely generated group, then 
JK[G] is a union of nilpotent ideals. 

Now given the above conjecture, the next natural step is to study A+(G) and JK[A+(G)I and it 
soon becomes apparent that these objects are not as nice as we had hoped for. Indeed A+(G) turns out 
to be just any locally finite group and so the problem of determining JK[A+(G)] is decidedly 
nontrivial. We are therefore faced with the problem of studying locally finite groups in general and 
here a new ingredient comes into play. 

Let G be a locally finite group so that by definition all finitely generated subgroups of G are finite. 
Now if A is such a finite subgroup of G we say that A is locally subnormal in G if A is subnormal in 
all finite groups H with A C H C G. In other words, we demand that each such H has a chain of 
subgroups. 

A = Ho C H1 C C RH = H 

for some n with H, normal in H,?1. Then using these locally subnormal subgroups as building blocks 
in a certain technical manner we can define a new and interesting characteristic subgroup of G 
denoted by J(G). Again it turns out that in all computed examples J(G) carries the radical of G and 
that furthermore the ideal 

I = JK[V(G)J . K[G] 

possesses in general many properties expected of the Jacobson radical. Thus it now appears that if G 
is locally finite then Y(G) carries the radical of G. 

The semisimplicity problem for groups in general has therefore been split into two pieces, namely 
the cases of finitely generated groups and of locally finite groups. Moreover, if we combine the 
corresponding conjectures for each of these cases, then what we expect, or at least hope, is that the 
group Y(A+(G)) carries the radical of G. While this group may appear to be somewhat complicated in 
nature, there are in fact some nice structure theorems for it. Furthermore, and most important, we 
have JK[Y(A+(G))] $ 0 if and only if 5(A+(G)) contains an element of order p. 

Added in Proof. Hopefully reference [4] will appear soon in translation in the Journal of Soviet Mathematics. 
There is a new monograph in Russian by A. A. Bovdi entitled Group Rings. A second volume is anticipated. This 
author is presently working on an expanded and updated version of [5] which will be entitled The Algebraic 
Structure of Group Rings. It will be published in two volumes by Marcel Dekker, Inc. There has been some exciting 
progress recently on the zero divisor problem, in particular in the case of polycyclic-by-finite groups. This can be 
found in the papers by K. A. Brown, On zero divisors in group rings, to appear in the Journal of the London Math 
Society, and by D. R. Farkas and R. L. Snider, K0 and Noetherian group rings, to appear in the Journal of Algebra. 
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A CONNECTED, LOCALLY CONNECTED, 
COUNTABLE HAUSDORFF SPACE 

GERHARD X. RITTER 

In this MONTHLY, 76 (1969) 169-171, A. M. Kirch gave an example of a connected, locally 
connected countable Hausdorff space. We give another, geometrically much simpler, example. The 
example we provide will be a modified version of a connected, but not locally connected, countable 
Hausdorff space constructed by R. H. Bing in [1]. 

Let X = {(a, b) e Q x Q 1 b > O}, where Q denotes the set of rational numbers, and let 0 be a fixed 
irrational number. The points of our space will be the elements of X. With each (a, b) E X and each 
? > 0 we associate two sets L. (a, b) and R. (a, b) which consist of all points of X in the triangles ABC 
and A'B'C', respectively, where A = (a - b/0,O), B = (a - b/0 + ?,0), C = (a - b/0 + ?/2, 0?/2), 
A'= (a + bl0 - ?,0), B' = (a + b10,O), and C'= (a + bl0 - ?12, 0?/2). We now define a basic 
?-neighborhood of (a, b) E X by Ne (a, b) = {(a, b)} U Le (a, b) U Re (a, b). 

Since 0 is irrational, no two points of X can lie on a line with slope 0 or - 0. Thus, for any two 
distinct points of X, we may choose a sufficiently small ? > 0 such that the points lie in disjoint 
?-neighborhoods. Therefore, X is Hausdorff and, obviously, a countable space. 

(a, b) / / / 

L, (a, b) R,.(a, b 

FIG. I 

Figure 1 shows that the closure of each basic E -neighborhood N. (a, b ) consists of the union of four 
infinite strips with slope ? 0 emanating from the bases of the triangles R. (a, b) and L. (a, b). Hence 
the closures of each pair of basic neighborhoods intersect. Therefore, X is connected but not regular 
and, hence, not metrizable. 
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