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Michael J. Mossinghoff

1. INTRODUCTION: MAKING MONEY. With a title like this, one might expect
to find described here some unsolved problem assigned a decidedly paltry bounty by
a strapped mathematical institute, or perhaps a pet question from an eccentric, but
thrifty, individual. Indeed, this is an article about how to make money, but it is not
at all about some scheme to earn income. Rather, it concerns how actually to make
money, specifically, how to design a one-dollar coin.

The United States has had little success in the last quarter century with its dollar
coins. The Susan B. Anthony dollar was introduced in 1979, but with its round shape,
silvery appearance, and milled edge, it was too similar to the quarter to gain much
acceptance in everyday commerce. It was discontinued after only three years (though
it appeared again briefly in 1999). In 2000, the Sacagawea dollar was put into circu-
lation, and this coin is certainly more distinctive, with a golden color and a smooth
edge. However, it has never gained wide acceptance in the U.S., no doubt in large
part because one-dollar bills continue to be produced by the Bureau of Engraving and
Printing.

In contrast, Canada replaced its dollar bills with a very successful coin in 1989, the
“loonie.” It is bronze in appearance, has no milled edge, and sports a polygonal shape.
Its eleven sides give it a distinctive feel when fumbling for change at a bus stop or a
newspaper stand. So perhaps redesigning the U.S. coin to have a unique shape would
aid its acceptance in everyday circulation.

Suppose then that you have been appointed by the Department of the Treasury to
oversee the creation of a new one-dollar coin for circulation in the U.S. You quickly
realize that many parties have great interest in the design and shape of the new coin.

• The Secretary of the Treasury, mindful of the lukewarm reception for the two recent
round coins, and aware of the success of the hendecagonal Canadian dollar, directs
you to design a coin with a polygonal shape.

• The vending industry is very concerned with the diameter of the coin, so represen-
tatives lobby your office intensely to adopt a value that won’t force them to retool
their machines.

• Sculptors planning to submit designs for the faces would like to have the largest
possible area for their work.

• Federal law requires that certain phrases appear on the coin, like E PLURIBUS UNUM

and IN GOD WE TRUST, as well as the year of issuance. But to give the sculptors
more room, you plan to inscribe as much of this information as possible on the edge
of the coin, not on its faces. Thus, you need a coin with large perimeter.

To satisfy all these interests, you therefore need to design a coin with a polygonal
shape, fixed diameter, maximal area, and large perimeter. Is it possible to satisfy all
these demands? Are regular polygons optimal? Does the answer depend on the number
of sides you choose for the coin?

Your worries would certainly be over if you could ignore both the restriction on
the shape and the requirement on the diameter. In that case, you could first determine
the perimeter from the length of the required inscriptions, then determine a shape with
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the largest possible area given this perimeter. This is the isoperimetric problem in the
plane, and it is well known that the circle is the optimal configuration. This problem
was first studied extensively by the great Swiss geometer Jakob Steiner (in [25], for
instance), though it was Karl Weierstrass who supplied the first complete proof of the
optimality of the circle (see also Viktor Blåsjö’s piece “The Isoperimetric Problem” in
the June–July 2005 issue of this MONTHLY [5]).

The requirement for a polygonal shape comes directly from the Secretary, however,
so this demand is unlikely to be negotiable. Suppose then that you remove only the
diameter restriction, fix the number of sides at n, and again determine the required
perimeter first. Then you need to determine an n-gon with fixed perimeter and maximal
area. This is the polygonal isoperimetric problem, and here again the solution is simple.
It is well known that for any fixed n the regular polygon alone has maximal area
among all n-gons with fixed perimeter. We supply a simple proof of this in the next
section.

You realize, however, that shaking even a single vending machine is a risky propo-
sition, so rattling the entire industry may not exactly be conducive to your health. You
wisely decide therefore to attack the problem with the full set of constraints. You find
then that you need to solve two isodiametric problems for polygons, one for the area
and one for the perimeter. More precisely, you need to answer the following questions
for a fixed integer n (≥ 3).

• What is the maximum area of a polygon with n sides and fixed diameter?
• What is the maximum perimeter of a convex polygon with n sides and fixed diam-

eter?

Both of these questions are discussed in [8, Problem B6]. Solutions to the correspond-
ing problems for planar curves of fixed diameter have long been known, and the circle
is again the optimal configuration in both cases. The area problem was resolved by
Ludwig Bieberbach in 1915 [3], the perimeter question by Artur Rosenthal and Otto
Szász shortly thereafter [23].

The isodiametric problems for polygons were first studied by Karl Reinhardt,
Bieberbach’s first student, in 1922 [22]. He solved the area problem for odd values of
n, showing that the regular n-gon is best possible. Then, in an appendix that seems
to have been missed in some of the later literature, he proved that the regular n-gon
is never optimal when n is an even number and n ≥ 6. He also solved the perimeter
problem for all but a very thin set of positive integers. Some more details on the history
of these problems appear later in this article, along with Reinhardt’s proofs, including
the sometimes overlooked result on the area for even n.

Later, we look more closely at the area problem and study how we might construct
some better polygons when the number of sides is even. We investigate the perimeter
problem, too, and examine the question of whether a single polygon can have both
maximal area and optimal perimeter for its diameter. Then, armed with more knowl-
edge about these isodiametric problems for polygons, maybe we can make a good
recommendation to the Secretary on the shape of a new $1 coin.

2. THE ISOPERIMETRIC PROBLEM FOR POLYGONS. We begin with a
simple proof that the regular polygon is optimal in the isoperimetric problem. Many
proofs of this are known (see, for instance, [2], [6], [9], or [11]), and several of these
arguments are described very nicely by Blåsjö [5]. The proof here relies on two well-
known formulas in classical geometry linking the perimeter and area of a polygon:
Heron’s formula for triangles and a generalization for quadrilaterals.
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Heron’s Formula. The area A of a triangle having side-lengths a, b, and c satisfies

A2 = s(s − a)(s − b)(s − c),

where s denotes half the perimeter of the triangle, s = (a + b + c)/2.

Generalized Brahmagupta’s Formula. The area A of a quadrilateral having side-
lengths a, b, c, and d satisfies

A2 = (s − a)(s − b)(s − c)(s − d) − abcd cos2 θ,

where s denotes half the perimeter, s = (a + b + c + d)/2, and θ denotes the average
of a pair of opposite interior angles of the quadrilateral.

The seventh-century Indian mathematician Brahmagupta obtained this formula in
the special case when the last term vanishes. It is well known that this occurs precisely
when the quadrilateral is cyclic, that is, when it can be inscribed in a circle. The general
formula was apparently first noted in 1842 by Bretschneider [7] and Strehlke [26]; a
succinct proof can be found in [14, p. 250].

Theorem. Among all convex polygons with n sides and fixed perimeter, the regular
polygon alone has the largest area.

Proof. Suppose that P is a convex polygon with n sides and perimeter L . If P is not
equilateral, then find two adjacent edges of different lengths, and adjust the middle
vertex of T = �uvw as in Figure 1a to create a new triangle T ′ that corrects this
imbalance. Using Heron’s formula, we see that

4A(T )2 = s(−a + b + c)(a − b + c)(s − c)

= s(c2 − (a − b)2)(s − c)

< sc2(s − c) = 4A(T ′)2,

so P does not have maximal area.

v’

u w

v

w’

u w

v’

(a) (b)
Figure 1.

Note that the polygon obtained here is not convex if the vertex that follows w in
Figure 1a lies in the shaded zone shown, but if this is the case, the reflection illustrated
in Figure 1b transforms it into a convex polygon with the same perimeter and larger
area.

Next, suppose that P is equilateral but not equiangular, and find two adjacent ver-
tices for which the interior angles in P are not equal. Adjust these vertices as in
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Figure 2 to balance the angles. Then the parallelogram obtained has the property that
two opposite angles sum to π , so the last term in the generalized Brahmagupta’s for-
mula now vanishes, while the rest of the formula is undisturbed. Once again P is not
optimal.

One still needs to establish that a maximum exists: this was the element missing
from Steiner’s proofs and was the piece first supplied by Weierstrass. A standard com-
pactness argument takes care of this (Weierstrass’s proof can be found in [5]).

After a quick computation of the area of a regular n-gon having perimeter L , we
can rephrase this result as an inequality.

Isoperimetric Inequality for Polygons. The area A of a convex polygon with n sides
having perimeter L satisfies

A ≤ L2

4n
cot(π/n),

with equality only for the regular n-gon.

In particular, then, the area satisfies A < L2/4π . But the small gap between these
two bounds proves useful later in our discussion of the isodiametric problems for poly-
gons. Also, it’s worth noting that some proofs of the full isoperimetric inequality for
planar curves (4π A ≤ L2) use this result for polygons, employing a polygonal approx-
imation at some step. Edler’s proof [12] in fact uses such a strategy; a nice explanation
can be found again in [5].

3. REULEAUX POLYGONS. Before turning to our isodiametric problems, we
need to introduce some interesting geometric shapes that have very useful properties.
A planar figure has constant width if its height never varies as it rolls across the floor.
More formally, a convex, closed set C in the plane has constant width d if every pair of
parallel lines supporting C are distance d apart. The circle certainly has this property,
but there are many other shapes that enjoy it as well, including the Reuleaux polygons,
named for the nineteenth-century German mechanical engineer Franz Reuleaux. A
Reuleaux polygon is defined as a set of constant width whose boundary consists of
a finite number of circular arcs of the same radius. Note that a Reuleaux polygon is
not a polygon in the traditional sense, since its edges are not line segments, and that
the circle is in fact a special case of a Reuleaux polygon. Reuleaux polygons are em-
ployed in coinage, too: the British twenty- and fifty-pence coins are regular Reuleaux
heptagons.

We need three important facts about Reuleaux polygons. Additional properties of
these shapes, and other sets of constant width, can be found in [13, chap. 7]. Note that
since the diameter of a (closed) set is the largest possible distance between two points
selected from the set, the diameter of a Reuleaux polygon is the same as its width.
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(1) The boundary of a Reuleaux polygon consists of an odd number of circular arcs.

Proof. Suppose that R is a Reuleaux polygon with diameter d, and that v and w are
adjacent vertices of R having distance d from another vertex u. Draw a circular arc of
radius d centered at each of u, v, and w to obtain the dashed shape shown in Figure 3,
which encompasses R. Draw the vertical dashed line from u to the middle of the arc
vw. Then every vertex of R on one side of this line must have distance d from exactly
two vertices on the other side of the line, except for v and w, which each have one
such vertex on the line. It follows that R has the same number of vertices on each side
of the line, and adding u makes an odd number.

v w

u

Figure 3.

(2) A Reuleaux polygon with diameter d has perimeter πd.

Proof. The set of line segments of length d that connect two vertices of such a
Reuleaux polygon is a circuit forming a star with n points, and the sum of the angles
at the points of such a star is π .

(3) If P is a polygon with diameter d, then there exists a Reuleaux polygon with diam-
eter d containing P.

Proof. Let x and y be vertices of P that are distance d apart, and draw the line L that
passes through x and y. Choose a side of L (henceforth called the “left” side), and
draw circular arcs to that side of L with centers x , y, and those vertices of P to the
right of L , as in Figure 4a. Mark the points of intersection. Then draw arcs of radius d
on the right side of L centered at the intersection points of the arcs to the left side of
L , as in Figure 4b. The figure composed of all the circular arcs is a Reuleaux polygon
of diameter d that contains P .

Figure 5 shows the Reuleaux polygons constructed by this method using some reg-
ular polygons. It’s evident that the figures obtained when the number of sides is even
are quite different from those made when it is odd, and this discrepancy is ultimately
the source of the difference in the even and odd cases of the isodiametric problem for
the area. We next look at Reinhardt’s results for these problems.

4. ISODIAMETRIC PROBLEMS AND KARL REINHARDT. Reinhardt pre-
sented a nice geometric solution to the perimeter problem when the number of sides is
odd.
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Figure 4. Constructing a Reuleaux polygon.

(a) (b)

(c) (d)
Figure 5. Reuleaux polygons constructed from some regular polygons.

Theorem (Reinhardt). Suppose that n is an odd integer. Among all convex polygons
with n sides and fixed diameter, the regular polygon has the largest perimeter.

Proof. Assume that P is a convex polygon with diameter d and an odd number n of
sides. Construct a Reuleaux polygon R of diameter d containing P using the method
we described in section 3. We can assume that P is inscribed in R, since otherwise
we could create a polygon with the same diameter and larger perimeter by moving a
vertex to the boundary of R. Since R has perimeter πd, we can form a semicircle of
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radius d by realigning all the arcs on the boundary of R in succession into one large
arc. (Start with a vertex of R that is also a vertex of P .) Mark the vertices of P where
they occurred on the component arcs of the semicircle, and connect these points with
line segments to form a polygonal path � consisting of n line segments. Figure 6 shows
the semicircle and path obtained when P is the regular hexagon of Figure 5d. Here,
we’ve started at the top vertex of the hexagon and proceeded around the boundary
clockwise to form the semicircle.

Figure 6.

Notice that the first three line segments in � here have exactly the same length as the
corresponding edges of the original hexagon. The last three segments in �, however,
are slightly longer than their counterparts in the polygon, since the realignment of
arcs in these cases stretches these segments slightly. Figure 7 illustrates this stretching
phenomenon, which occurs whenever adjacent vertices of P lie on different arcs of R.

Next, it is straightforward to show that a path composed of a fixed number of line
segments inscribed in a semicircle has maximal length precisely when the segments
have equal length. It follows therefore that P has maximal perimeter when P is equi-
lateral and each vertex of R is also a vertex of P . This is certainly the case for the
regular n-gon.

Figure 7.

Reinhardt’s construction gives us quite a bit more than just the solution to the
perimeter problem for odd n. More broadly, it resolves this problem whenever n has
an odd factor. To see this, suppose that m is a nontrivial odd factor of n. Construct the
regular Reuleaux polygon R with m sides, subdivide each of its bounding arcs into
n/m subarcs of equal length, and let P be the convex hull of these points. Then P is
equilateral, and R has no extra vertices lying outside P , so P has maximal perimeter.
Figure 8a illustrates the case n = 6 and m = 3.

Also, we see that when n is odd the optimal configuration in this problem is unique
only when n is prime. Figures 8b and 8c show the two enneagons (nine-sided poly-
gons) with unit diameter and maximal perimeter, one inscribed in a regular Reuleaux
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(a) n = 6 (b) n = 9

(c) n = 9 (d) n = 12
Figure 8. Some polygons with maximal perimeter.

enneagon and the other in a Reuleaux triangle, and Figure 8d exhibits one of the two
dodecagons with this property (the other is obtained by subdividing the Reuleaux tri-
angle). The Reuleaux polygon for this last figure is not even equilateral! But when n
is even, the regular n-gon is never among the optimal configurations.

In addition, we can solve the isodiametric problem for the area when n is odd by
combining the perimeter result with the isoperimetric theorem for polygons.

Theorem (Reinhardt). Suppose that n is an odd integer. Among all convex polygons
with n sides and fixed diameter, the regular polygon has the largest area.

Proof. Assume that P has n sides and diameter d but that P is not regular. Then the
regular n-gon with diameter d has equal or larger perimeter. If it is larger, then dilate
P to create a polygon P ′ with the same shape as P and with perimeter equal to that of
the regular n-gon with diameter d. Because the regular n-gon alone has maximal area
among all polygons with the same perimeter, the area of P is strictly less than the area
of the regular n-gon.

Finally, we obtain two useful inequalities for polygons. The first bounds the perime-
ter of an n-gon in terms of its diameter and comes from computing the length of an
equilateral path with n segments inscribed in a semicircle. The second relates the area
to the diameter and results from combining the first inequality with the isoperimetric
inequality for polygons. Other proofs of inequality (1) and closely related inequalities
appear for example in [17], [19], or [28].

Isodiametric Inequalities for Polygons. If a convex polygon has n sides, diameter d,
perimeter L , and area A, then
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L ≤ 2dn sin(π/2n), (1)

and

2A ≤ d2n cos(π/n) tan(π/2n). (2)

Equality is achieved in (1) if n has an odd factor, and the regular n-gon is optimal if n
is odd. In (2), equality is achieved when n is odd only by the regular n-gon.

As with the isoperimetric inequality, these inequalities for polygons are somewhat
stronger than the classical isodiametric inequalities for convex curves in the plane,
L ≤ πd and 4A ≤ πd2. These small refinements will prove useful in our later investi-
gations.

Later we return to the perimeter problem in the remaining case when n is a power
of 2, but first we turn to the area problem and a hidden result of Reinhardt. Just after
his proofs for the odd case, Reinhardt writes [22, p. 259]:

It is clear that the final argument breaks down if n is an even number. In this case
the problem remains unsolved.

He then investigates the various convex n-gons with fixed diameter that exhibit the
maximal perimeter. This is a long section of his article, treating different cases that
depend on the factorization of n. But after this, at the end of the paper, he abruptly
returns to the isodiametric problems for the case of even n, showing that the regular
n-gon never achieves the maximal area or perimeter when n is even and at least six. No
hint of this result appears earlier in the article, so it seems possible that this epilogue
was added after the original manuscript was prepared for publication. As a result, it is
quite easy to overlook.

We can describe the essence of Reinhardt’s argument with a diagram of a regular
octagon in Figure 9a. The same process works for any regular n-gon when n is even
and n ≥ 6.

In the figure, v and w are opposite vertices in the regular octagon P with diameter d.
Let P ′ be an octagon of the same diameter obtained by replacing v and w with v′ and
w′ a short distance away, as shown. Then P and P ′ have the same area, but P ′ has

z

x

y

w’

v’ v

u
x’

w

v’

u x

v

(a) (b)
Figure 9.
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larger perimeter. This is easy to see by imagining a mirror along the line connecting
v and v′, as in Figure 9b. In addition, the segment v′y is not perpendicular to xz.
Consequently, we can replace x with a vertex x ′ lying up the circular arc of radius
d drawn about z in such a way that the line x ′z intersects v′ y in an angle closer to
π/2, while still maintaining the same diameter. This makes another polygon P ′′ with
diameter d and larger area.

We can summarize these results in the following theorem:

Theorem (Reinhardt). Let n be an even integer greater than five. Among all convex
polygons with n sides and diameter d, the regular n-gon has neither maximal area nor
maximal perimeter.

In the perimeter problem, the only new information surfaces when n is a power of 2,
so with this result we can slightly strengthen our earlier statement: the regular n-gon
has the optimal perimeter if and only if n is odd.

These results of Reinhardt for even n have since been rediscovered. In the perimeter
problem, Tamvakis [27] showed in 1987 that the regular 2m-gon is not optimal by
constructing the polygons Tn that we describe in section 6. The area problem has seen
much more interest. In 1956, Lenz [19] investigated the problem of determining the
smallest number of convex sets of bounded diameter required to cover a given convex
set in the plane. One bound he derived depends on the values of the maximal area of an
n-gon with unit diameter for n = 5, 6, and 7. In the same year, he posed the question of
determining the maximal area for even n as an unsolved problem in the Swiss journal
Elemente der Mathematik [18], where Reinhardt’s contribution for the even case is
not mentioned. Two years later, Schäffer [24] supplied a very nice short proof that the
regular n-gon is not optimal for even values of n (≥ 6), apparently without knowledge
of Reinhardt’s work. We omit the details of Schäffer’s proof, but it’s easy to describe
the idea. Center an n-gon at the origin so that two vertices lie on the x-axis. Pull
each of the vertices in the upper half-plane radially away from the origin by a short
distance ε, and push the ones in the lower half-plane radially toward the origin by
the same amount. The resulting polygon has larger area if n ≥ 6, and the diameter is
undisturbed if ε is small.

5. AREA CODE. So what are the optimal n-gons in the area problem when n is
even? From Reinhardt and Schäffer we learn that the regular n-gon is not the answer,
but we would like to know more. Can we explicitly construct polygons with area sub-
stantially closer to the bound given by the isodiametric inequality (2)?

Let’s study the problem first for some small values of n. The case n = 2 doesn’t
look particularly interesting, since these aren’t so much polygons as digons or perhaps
bigons, so maybe we should just let bigons be bigons.1 The case n = 4 is simple to
analyze, for the area A of a convex quadrilateral depends only on the lengths d1 and d2

of its diagonals and their angle θ of intersection: 2A = d1d2 sin θ . Taking d1 = d2 = d,
choosing θ = π/2, and taking care to ensure that the intersection point is sufficiently
central so that the diameter is d, we see there are infinitely many quadrilaterals with
diameter d and maximal area d2/2, including the square. This is, without a doubt, a
four-gon conclusion.

For the case n = 6, Bieri proved in 1961 that the hexagon shown in Figure 10 has
maximal area among all hexagons with fixed diameter that possess axes of symmetry
[4]. Its area is about 3.92% larger than that of the regular hexagon. In 1975, Graham,

1Linguists undoubtedly prefer digons, since this is, etymologically speaking, purely Greek, while bigons
mixes Latin and Greek roots. But digons just aren’t as funny.
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Figure 10. The optimal hexagon.

motivated by Lenz’s question, proved that this hexagon is in fact optimal among all
hexagons with fixed diameter [15]. We define the skeleton of a polygon with diameter
d as the collection of its vertices, together with all the line segments of maximal length
connecting any two of its vertices. For example, the skeleton of a regular hexagon is an
asterisk (∗), while the skeleton of the Bieri-Graham hexagon has a pinwheel shape:
a five-pointed star, with an extra line segment (Figure 10). Graham conjectured that
the optimal n-gon in general has a similar skeleton when n is even: a circuit of length
n − 1, together with a single additional edge connecting to the remaining vertex.

More recently, Audet, Hansen, Messine, and Xiong [1] verified Graham’s conjec-
ture for the case n = 8, showing that the optimal octagon has a skeleton of this form. It
is interesting that other arrangements can also produce octagons with area larger than
that of the regular octagon. Figure 11 shows two octagons with markedly different
skeletons: the first has area about 0.52% larger than the regular octagon; the second is
the optimal octagon, about 2.79% larger than the regular one.

(a) Improved area. (b) Optimal area.
Figure 11. Better octagons.

In hope of gaining some insight into the general case, we can try to construct some
improved n-gons for larger values of n. We assume a skeleton with the pinwheel shape
of Graham’s conjecture, and we further assume the presence of an axis of symmetry,
like we see in the optimal hexagon and octagon. In general, we can describe such a 2m-
gon by selecting m − 2 parameters. Figure 12 shows the strategy for the case m = 4:
choosing α1 determines the angle at the top of the pinwheel, and α2 is the next angle
we meet as we visit the vertices in order in tracing out the skeleton. After this, the
angle at v3 is determined by the constraint on the length of the horizontal line segment
connecting v4 and v5.

We can then write down a lengthy formula for the area in terms of these m − 2
angles and search for good solutions by using some numerical optimization software

May 2006] A $1 PROBLEM 395



v5 v4

v0
v2

v3 v6

v7

α2

α1

v1

Figure 12. Constructing a symmetric 2m-gon given m − 2 angles.

(see [20] for more details). Figure 13 depicts improved polygons created by following
this strategy for even n in the range 10 ≤ n ≤ 20, with the assistance of Mathematica.
Table 1 summarizes the improvement obtained in the area in each case, choosing d = 2
so that the limiting area is simply π . In the table, A(Pn) denotes the area of the regular
n-gon, A(Qn) is the area of the polygon constructed, Mn is the upper bound from the
isodiametric inequality (2), and the last column shows the percentage increase in the
area of Qn over Pn .

Figure 13. Improved polygons Qn for n = 10 through n = 20.

It is not surprising that the percentage area gained in the improved polygons dimin-
ishes with n. After all,

Mn = π − 5π3

12n2
+ π5

120n4
+ O

(
1

n6

)
,
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Table 1. Areas of the improved polygons.

n A(Pn) A(Qn) Mn Gain

6 2.5981 2.6999 2.7846 3.92%
8 2.8284 2.9075 2.9403 2.79%

10 2.9389 2.9965 3.0127 1.96%
12 3.0000 3.0429 3.0520 1.43%
14 3.0372 3.0701 3.0757 1.08%
16 3.0615 3.0874 3.0912 0.85%
18 3.0782 3.0992 3.1017 0.68%
20 3.0902 3.1074 3.1093 0.56%

and, for even n,

A(Pn) = π − 2π3

3n2
+ 2π5

15n4
+ O

(
1

n6

)
,

so Mn − A(Pn) ∼ π3/4n2. Still, it is interesting that A(Qn) appears to approach the
upper bound significantly faster than A(Pn) does as n increases. In fact, a least-squares
fit for n satisfying 10 ≤ n ≤ 20 suggests that the quantity Mn − A(Qn) behaves like
20.2/n3.10, so maybe studying these figures can point us to a more general quantitative
improvement in the isodiametric area problem.

The shapes in Figure 13 all appear to be strikingly symmetric—in each shape, the
angles at the points of the star inside the polygon look very similar, especially for
larger n. In fact, though, the angles α2, α3, . . . , αm−2 vary a bit, so that the lengths of the
polygon’s edges decrease if we trace the boundary from north to south. Nevertheless,
it looks like we can get a reasonable first approximation by choosing all the angles of
the star to have the same value. The star has n − 1 points, so this makes for π/(n − 1)

at each point. Now the convex hull of such a star is simply a regular (n − 1)-gon, and
adding the handle of the pinwheel splits one edge, pulling its midpoint outward by a
short distance. We call the shape we obtain here Rn . Then a short calculation reveals
that its area is given by

A(Rn) = 2 tan

(
π

2n − 2

) (
(n − 2) cos

(
π

n − 1

)
+ 2 cos

(
π

2n − 2

)
− 1

)

= π − 5π3

12n2
− 7π3

12n3
+ O

(
1

n4

)
,

implying that Mn − A(Rn) ∼ 7π3/12n3, which seems to confirm our earlier estimate.
Could Rn ever be optimal? The quadrilateral R4 is indeed one of the infinitely many

optimal arrangements for this value, but Rn is certainly not the best for other small
numbers, since the examples constructed earlier are all better. But what happens for
larger n? The answer, as one might expect, is no, and this can be proved with a more
complicated construction. The details appear in [20], but we can describe the main
idea here.

In the first approximation to the examples of Figure 13, we chose all the angles of
the star to be the same. In fact, however, the angle at the top of the star is significantly
larger than π/(n − 1), and the sequence α2, . . . , αm−2 shows an oscillating pattern,
with the even indices exhibiting values somewhat larger than the odd indices, and this
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wobbling attenuates as one reads down the sequence. As a second approximation, we
can try to incorporate more of this structure into the strategy and optimize over three
free parameters, call them α, β, and γ : set α1 = α, α2 = β + γ , α3 = β − γ , and
αk = β for all the rest. Optimizing the area here lets us construct a polygon Sn with
area larger than that of Rn when n ≥ 6. In fact, analyzing the area of Sn lets us reduce
the 7/12 from the 1/n3 term of A(Rn) to a number slightly smaller than 7/15. Table 2
shows the areas of the polygons Rn and Sn for some small n, along with the area of the
best known polygons Qn from Figure 13.

Table 2. Areas of the improved polygons.

n A(Rn) A(Sn) A(Qn)

10 2.99303 2.99612 2.99655
12 3.04079 3.04259 3.04292
14 3.06875 3.07001 3.07012
16 3.08651 3.08735 3.08745
18 3.09849 3.09911 3.09915
20 3.10695 3.10740 3.10744

6. SECURING THE PERIMETER. Reinhardt’s theorem tells us the optimal value
of the perimeter for a convex n-gon of fixed diameter in every case except when n is
a power of two. Here, we know that the regular n-gon is not optimal, and Reinhardt
showed that the upper bound in the inequality (1) is never attained in this case. Can
we construct optimal polygons, or at least improved ones, for these stubborn cases?
The solution for n = 4 turns out to be easy to describe: our old friend R4, shown in
Figure 14, is the unique solution.

Figure 14. The quadrilateral R4.

Theorem. The unique convex quadrilateral with fixed diameter d and maximal
perimeter is R4, whose perimeter is

L(R4) = 2d

(
1 +

√
2 − √

3

)
.

Proof. Let Q be a quadrilateral with fixed diameter d. We can assume that the diag-
onals of Q both have length d and that they meet at right angles. Let r and s denote
the lengths of the two longest line segments connecting the point of intersection of
the diagonals with vertices of Q, labeled so that r ≥ s. Because Q has diameter d,
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we must have r 2 + s2 ≤ d2. But increasing either r or s alone increases the perimeter,
as we can verify using a geometric argument like the one of Figure 9b, so we can
assume that r 2 + s2 = d2. Accordingly, r must lie between (

√
2/2)d and (

√
3/2)d,

and we can check that the perimeter is increasing in this range. The quadrilateral R4

corresponds to the choice r = (
√

3/2)d.

For higher powers of two, we might hope that that the polygon Rn would come to
our aid again. Let Mn denote the upper bound on the perimeter in the isodiametric
inequality (1). A straightforward computation shows that

Mn − L(Pn) ∼ π3d

8n2
,

whereas

Mn − L(Rn) ∼ 5π3d

96n3
,

so in general the Rn are indeed better. Once again, however, they are not optimal when
n > 4. To see this, we construct one more family of polygons.

Given a positive integer n (≥ 3), write n = 3q + r with r = 0, 1, or 2. Subdivide
r of the bounding arcs of a Reuleaux triangle into q + 1 subarcs of equal size, and
subdivide the remaining 3 − r arcs into q subarcs of equal size. Let Tn denote the
polygon with n sides obtained as the convex hull of the endpoints of these subdivisions.
Thus T4 = R4, Figures 8a and 8c show T6 and T9, while T8 divides two arcs into three
pieces and one into two segments. If n is divisible by 3, then certainly Tn is optimal.
Otherwise, it’s easy to check that

Mn − L(Tn) ∼ π3d

4n4
,

meaning that these polygons are already better than the Rn . Tamvakis [27] introduced
these polygons, asking whether Tn is optimal for all powers of two.

We can answer this question. The octagon Q8 from Figure 11b, which is optimal
in the area problem, already has larger perimeter than T8 (L(Q8) = 3.11924 . . . and
L(T8) = 3.11905 . . . when d = 1), and if we adjust the angles of the pinwheel slightly
to maximize the perimeter rather than the area, we can build an octagon with still
larger perimeter (3.11959 . . .). But we can do even better! By optimizing the shape
of Figure 11a for the perimeter, we can make the octagon shown in Figure 15a. Its
perimeter is 3.12114 . . . , which is more than 99.99% of the upper bound. A similar
construction shows that T16 isn’t optimal either. This time, the optimized pinwheel
falls just short, but the hexadecagon shown in Figure 15b is better, achieving more than
99.9998% of the theoretical maximum. Likewise, Figure 15c illustrates a polygon with
thirty-two sides (a triacontakaidigon, if you prefer) with perimeter larger than T32. In
general, by selecting parameters carefully, we can create a polygon Vn that satisfies

Mn − L(Vn) ∼ π5d

16n5

(see [20] for more details).
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(a) n = 8 (b) n = 16 (c) n = 32
Figure 15. Improved perimeters.

This brings to mind a question raised in the introduction: Is it possible to find a
polygon with fixed diameter having both maximal area and maximal perimeter? We
can answer this now, at least in part: the regular polygon optimizes both quantities
when the number of sides n is odd, and R4 is the unique solution for quadrilaterals.
Also, it’s easy to check that the perimeter of the Bieri-Graham hexagon is smaller
than that of the optimal hexagon in the perimeter problem, by about 0.194%, and
our calculations on octagons rule out the case n = 8. What about larger even values
of n?

Little appears to be known about this, but we can take care of one substantial case.
If n = 2p, with p an odd prime, then it follows from Reinhardt’s paper that there
is a unique convex n-gon with maximal perimeter. To construct it, we simply split
each edge of the regular p-gon, just as we did in Figure 8a for p = 3. The result
follows by verifying that the area of R2p is always larger than that of the polygon
with optimal perimeter. For other even values of n it’s harder to check, since we don’t
know the optimal area, and there is more than one polygon that achieves the maximal
perimeter. It seems reasonable that n = 4 is the only case where a single polygon
with an even number of sides is optimal in both isodiametric problems. Also, since
Reuleaux polygons arise naturally in the perimeter problem, it’s worth noting here that
the Reuleaux triangle has the minimal area among all sets of constant width in the
plane. This is the Blaschke-Lebesgue theorem (see, for instance, [16]).

With all the constraints given to you in your charge to design a new coin for circula-
tion in the U.S., you might well decide to recommend a regular n-gon with n odd. The
vending industry, of course, prefers a shape with constant width, but a regular polygon
with an odd number of sides probably has a tolerable variation in its width, at least
when n is sizable. Still, you’re likely to need at least seven or nine sides. On the other
hand, with the triskaidekaphilic theme of many of the country’s other symbols, maybe
n = 13 is the right choice.

7. SHOW ME THE MONEY. The predicament described in the introduction is not
entirely fictional. In February 2005, a bill entitled “The Presidential $1 Coin Act of
2005” was introduced in the House of Representatives [21]. It would direct the U.S.
Mint to begin issuing a new one-dollar coin beginning in 2007. The design would
feature the Statue of Liberty on the reverse, and the name and likeness of a former
U.S. president on the obverse. The featured chief executive would begin with George
Washington and proceed chronologically through the presidents, four per year, just as
the design on the reverse of the quarter now features each state in turn. (History buffs
might be able to guess the only president to get two coins in the series.)
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The bill passed the House handily in April 2005 (422 to 6) and was referred to the
Senate. There it received a favorable report from the Committee on Banking, Housing,
and Urban Affairs, and as of September 2005 it sat on the Senate legislative calendar.
But with fully seventy-two senators cosponsoring the legislation, its fate seemed hardly
in doubt.

United States Federal Code [10] prescribes the exact diameter of the $1 coin (1.043
inches), mandates a golden color and a “distinctive edge” for it, and requires “tactile
and visual features that make the denomination of the coin readily discernible.” Fur-
ther, the new legislation explicitly stipulates that the phrases E PLURIBUS UNUM and
IN GOD WE TRUST, as well as the year of issuance and any mint mark, be inscribed
on the edge of the coin, in order to maximize space for sculptors and to promote a
new “golden age” of coinage in the U.S. It also directs the Treasury Department to
meet regularly with vending machine manufacturers, transit officials, armored car op-
erators, banks, car wash operators (really), and other groups to help gauge demand and
facilitate the adoption of the new coin.

But nothing in federal law, or in the proposed legislation, requires that the dollar
coin be round.

Added in proof. The Presidential $1 Coin Act passed the Senate unanimously in
November 2005 and was signed into law by President Bush on 22 December 2005.
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Music of the Spheres

Today was a rainbow day
Horizon leaned the right way
Tonight in moonlight
We sleep beneath the stars we sight
Oh, it’s amazing
By the sea, star-gazing
My guiding inspiration all through the years
Has been music and the music of the spheres

Tides are getting strong
I get my guitar to sing you a song
The notes that bring peace
Are numbers from Ancient Greece
Oh, hear a pattern
In the path of Saturn
I marvel at the harmonies that caress our ears
Sweet music and the music of the spheres

I end my simple tune
While stars twinkle ‘round the moon
Like vibrating strings
We resonate with all these things
Oh, chords and notes,
Words and hopes,
Spinning in the myst’ry of why we cry our tears
For music and the music of the spheres

—Submitted by Lawrence Lesser, University of Texas at El Paso
Lyrics copyright Lawrence Mark Lesser. All rights reserved.
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