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Everyone knows how to play tic-tac-toe. On an n x n board, if a player places n of 
her marks either horizontally, vertically, or diagonally before her opponent can do the 
same, then she wins the game. What if we keep the rules of the game the same but 
increase the number of ways to win? For simplicity, any configuration of n marks 
that produces a win, regardless of whether or not it appears straight, will be called a 
winning line. For example, we will add the four winning lines shown in FIGURE 1 
when playing on the 3 x 3 board. 

X X X X 

X X X X 

X X X X 

Figure 1 New winning lines for 3 x 3 tic-tac-toe 

This brings the total number of winning lines on this board to twelve. Why did we 
decide to add these particular lines? If you know the rudimentaries of finite geometry, 
you can see that the winning lines are prescribed by the geometry of a finite affine 
plane. Otherwise, for now you should just notice that every new line contains exactly 
one mark in each row and each column. You should also notice that these new lines 
make it more difficult to identify a win here than in the standard game. As you will see, 
the reason for this complexity is that lines in an affine plane need not appear straight. 
With this new twist, the game that grew tiresome for us as children is transformed into 
an interesting, geometrically motivated game. 

The geometric intuition required to understand finite planes often proves elusive, as 
our Euclidean-trained minds have preconceived notions of lines and points. The new 
version of tic-tac-toe helps to develop this intuition. Moreover, this game relates geo- 
metric concepts to game-theoretic concepts as the natural question of winning strate- 
gies arises. Since more winning lines mean more possible ways to win, one might 
think that it would be easier to force a win in this new game. Not only is the answer 
to this question nonintuitive, but the difficulty encountered in providing an answer for 
the 4 x 4 board is surprising. 

First, we review Latin squares and affine planes, as well as the relationship between 
them, in order to find the new winning lines. Once you can identify the winning lines, 
you are ready to play tic-tac-toe on the affine plane. Since projective planes are a nat- 
ural extension of affine planes, you will also learn to play tic-tac-toe on these planes. 
You may recall that in the 3 x 3 version of tic-tac-toe we played as children, one 
quickly learns that there is no advantage to being the first player since the game be- 
tween two skilled players always ends in a draw. While this is the case on many finite 
planes, we will show that there are planes where the first player holds the advantage. 
In the event that you are the second player on a plane where a forced draw is possible, 
we provide a computational method that guarantees a draw. We will also show simple 
configurations of points that produce a draw with very few points. 
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Squares and planes 

Consider the 36 officer problem: There are 36 officers, each with one of six rank des- 
ignations and one of six regiment designations. Can the 36 officers be arranged into 
six rows and six columns so that each rank and regiment is represented in each row 
and each column? Leonhard Euler showed this could be done for 9 and 25 officers (try 
it!), but conjectured correctly that it could not be done for 36 officers. In an attempt to 
solve this problem he introduced Latin squares [10]. A Latin square of order n is an 
n x n matrix with entries from Zn = {0, 1, 2, ..., n - 1}, where each number occurs 
exactly once in each row and each column. Examples of Latin squares of orders 2, 3, 
and 4 are given in FIGURE 2. 

[0 2 0 1 2 

10 
1 2 0 1 1 2 0 

1 2 0 2 0 1 

-0 1 2 3- 0 1 2 3- -0 1 2 3- 
1 0 3 2 2 3 0 1 3 2 1 0 
2 3 0 1 3 2 1 0 1 0 3 2 
3 2 1 0 1 0 3 2 2 3 0 1 

Figure 2 Latin squares of orders 2, 3, and 4 

Since it is natural to explain the game of tic-tac-toe on a finite plane by the connection 
between planes and these squares, we begin with an explanation of Latin squares, 
affine planes, and the relationship between them. The material presented in this section 
can be found in any text on affine and projective planes [3, 17]. Readers familiar with 
these concepts may wish to proceed to the next section. 

Latin squares A = [aij ] and B = [bij] are orthogonal if and only if C = [cij ], whose 
entries are the ordered pairs cij = (aij, bij), contains all n2 possible ordered pairs of 
Zn x Zn. A collection of Latin squares is mutually orthogonal (MOLS) if and only if 
each pair is orthogonal. (The Maple command MOLS(p,m,n) produces n MOLS of 
order pm when p is prime and n < pm.) In the examples above, the two Latin squares 
of order 3 are orthogonal, and the three of order 4 are MOLS. Euler's 36 officer prob- 
lem asks if it is possible to find a pair of orthogonal Latin squares of order 6, one 
representing the ranks of the 36 officers and the other representing the regiments. As 
illustrated by the first Latin square of order 3 in FIGURE 2, you can easily produce 
one Latin square of order 6 by continually shifting the elements of your first row to the 
right by one position and wrapping the leftover elements to the beginning. The proof 
of the 36 officer problem shows that you cannot produce a second Latin square orthog- 
onal to the first. (Try it!) Exhaustive solutions [19] to this problem, as well as more 
sophisticated ones [8, 18], can be found in the literature. (Laywine and Mullen [14] 
offer many interesting questions concerning Latin squares.) 

The Euclidean plane is an example of an affine plane, and the axioms of affine 
planes are merely a subset of those from Euclidean geometry. Specifically, an affine 
plane is a nonempty set of points, P, and a nonempty collection of subsets of P (called 
lines), L, that satisfy the following three axioms: 

(1) through any two distinct points there exists a unique line; 

(2) if p is a point, f is a line, and p is not on line e, then there exists a unique line, m, 
that passes through p and is parallel to f, that is, p c m and t n m = 0; 

(3) there are at least two points on each line, and there are at least two lines. 
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When p is a point on line e, we say that p is incident with ?. The Cartesian plane, with 
points and lines defined as usual, is the example we typically envision when reading 
this definition. It is an example of an infinite affine plane. 

Finite affine planes are those with a finite set of points. There is no finite affine 
plane where P contains exactly one, two, or three points. (Why not? What axiom(s) 
of affine planes would such situations violate?) The smallest finite affine plane can be 
given as P = {p, q, r, s} and L = {{p, q}, {p, r}, {p, s}, {q, r}, {q, s}, {r, s}}, which 
is represented by either of the graphs in FIGURE 3. Notice that an intersection of line 
segments does not necessarily indicate the existence of a point in P. 

r s r 

P q P q 

Figure 3 Two graphical representations of the affine plane of order 2 

Using the given axioms, we invite the reader to reproduce the following elementary 
results: On a finite affine plane, each line must contain the same number of points 
and each point is incident with the same number of lines. The number of points on 
each line is called the order of the plane. This is why the diagrams in FIGURE 3 
are described as the affine plane of order 2. In general, an affine plane of order n 
has n points on every line, and each point is incident with n + 1 lines. For any such 
plane, IPI = n2 and ILI = n2 + n. Two lines are parallel if and only if they have 
no common points, and parallelism is an equivalence relation on the set of lines. 
A parallel class consists of a line and all the lines parallel to it. An affine plane 
of order n has n + 1 parallel classes, each containing n lines. As another example, 
FIGURE 4 shows the affine plane of order 3, where P = {a, b, c, d, e, f, g, h, i} 
and L = {{a, b, c}, {d, e, f}, {g, h, i), {a, d, g}, {b, e, h}, {c, f, i}, {a, e, i}, {c, e, g}, 
{a, h, f}, {g, b, f}, {i, b, d}, {c, h, d}}. You can see that each line has three points, 
each point is incident with four lines, IPI = 9, and ILI = 12. The lines {c, e, g}, 
{a, h, f }, and {i, b, d} are parallel and, therefore, form one of the four parallel classes. 

g '\ h i 

. b 
' cb 

Figure 4 Affine plane of order 3 

Although we have seen affine planes of orders 2 and 3, for some orders there is no 
such plane. In fact, determining which orders of affine planes exist is exceptionally dif- 
ficult, and remains a largely open problem. It is well known that there are affine planes 
of order pk where p is prime and k E Z+. (You can read about these in Mellinger's 
article in this issue of the MAGAZINE.) This tells us, for example, that there are affine 
planes of orders 2, 3, 4, 5, 7, 8, and 9. How about 6 and 10? We can answer one of 
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these using the following connection between affine planes and Latin squares: Bose [7] 
showed that an affine plane of order n exists if and only if there exist n - 1 MOLS of 
order n. Using this result, we see that there can be no affine plane of order 6 since 
the solution to the 36 officer problem shows that there is no pair of orthogonal Latin 
squares of order 6. The proof of the nonexistence of the plane of order 10 is much more 
difficult, requiring a great deal of mathematics and an enormous computation to finish 
the proof. (Lam [13] gives an historical account.) It is not known whether an affine 
plane of order 12 exists. In fact, it is unknown whether there are any affine planes that 
do not have prime-power order. Planes of some composite orders, however, are known 
not to exist (see the Bruck-Ryser Theorem [3]). 

This connection between affine planes of order n and the n - 1 MOLS of order n 
can be used to find the lines of the plane quite easily. After arranging the n2 points of 
a finite affine plane in an n x n grid, we will first identify its n + 1 parallel classes, 
which in turn reveals all of the lines. The n horizontal lines form one parallel class, 
and the n vertical lines form another. Each of the remaining n - 1 parallel classes 
corresponds to one of the n - 1 MOLS as follows: the ith line in any parallel class 
is formed by the positions of symbol i in the corresponding Latin square. (Here, i = 
0, 1, ..., n - 1.) For example, using FIGURE 4 and the two orthogonal 3 x 3 Latin 
squares in FIGURE 2, we see that the four parallel classes for the affine plane of order 3 
are 

(i) the horizontal lines {{a, b, c}, {d, e, f}, {g, h, i}}, 

(ii) the vertical lines {{a, d, g}, {b, e, h), {c, f, i}}, 

(iii) the lines indicated by the first Latin square {{c, e, g}, {a, h, f , {i, b, d}}, and 

(iv) the lines indicated by the second Latin square {{g, b, f}, {c, h, d}, {a, e, i}}. 

At this point you might notice that the four lines that do not appear to be straight 
correspond precisely to the winning lines we added to the 3 x 3 tic-tac-toe board, as 
shown in FIGURE 1. 

There is one other type of plane on which we will play tic-tac-toe, namely, a finite 
projective plane. A projective plane is easily constructed from an affine plane of or- 
der n by adding n + 1 points (the points at infinity) and one line (the line at infinity). 
The points are added in this way: Each point at infinity must be incident with the n 
lines of a unique parallel class. (Now you see that n + 1 points must be added since 
there are n + 1 parallel classes on the affine plane of order n.) The line at infinity, 
4., simply consists of the n + 1 points at infinity. For example, the projective plane 
of order 2 can be constructed from the affine plane of order 2 given in FIGURE 3 by 
adding OO = {a, b, c}, as shown in both of the graphs in FIGURE 5. Here we see point 
a is added to the parallel lines {r, p} and {s, q}, b is added to the parallel lines {r, s} 
and {p, q}, and c is added to the parallel lines {q, r} and {p, s}. 

Figure 5 Two graphical representations of the projective plane of order 2 
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Of course, we could have discussed projective planes before affine planes. By defi- 
nition, a projective plane is a nonempty set of points, P, and a nonempty set of lines, 
L, that satisfy the following three axioms: (1) any two distinct lines meet in a unique 
point; (2) any two distinct points have a unique line through them; (3) there are at 
least three points on each line and there are at least two lines. We invite the reader 
to reproduce the following elementary results: On a finite projective plane, each line 
must contain the same number of points. In particular, a projective plane of order n has 
n + 1 points on each line. For any such plane, I P I = ILI = n2 + n + 1. For example, in 
FIGURE 5 we can identify the seven lines of the plane of order 2 as {r, p, a}, {s, q, a}, 
{r, s, bl, {p, q, b}, {q, r, c}, {p, s, c}, and {a, b, c}. Since the number of points is not a 
perfect square, you should notice that we will not be playing tic-tac-toe on an n x n 
grid for these planes. Lastly, just as we were able to construct a projective plane from 
an affine plane, we can do the opposite. Starting with a projective plane of order n, 
removing any line and all of the points with which it is incident forms an affine plane 
of order n. 

Throughout this work the word plane will refer to either an affine or projective 
plane. Affine planes of order n will be represented as trn, and projective planes as rIn. 
All statements about uniqueness are always understood to mean up to isomorphism. 

The game 

A zero-sum game is a game where one player's loss is a gain for the other player(s). 
The standard game of tic-tac-toe is a two-player, zero-sum game on a 3 x 3 board 
where players alternately mark one open cell with an X or an O. For simplicity, we 
will refer to player X as Xeno, player O as Ophelia, and assume that Xeno always 
makes the first move. A player wins by being the first to place three matching marks 
on a line. If a game is complete and no player has won, the game is a draw. Tic-tac-toe 
is an example of a game of perfect information since each choice made by each player 
is known by the other player. Poker is not such a game since players do not reveal their 
cards. 

A strategy is an algorithm that directs the next move for a player based on the cur- 
rent state of the board. A winning strategy for Xeno, for example, is a strategy that is 
guaranteed to produce a win for him. Although there is a best way to play standard 
tic-tac-toe, there is no winning strategy since each player can guarantee that the other 
cannot win. In this case, we say that both players have a drawing strategy, that is, an 
algorithm that leads to a draw. The assumption that both players are knowledgeable 
and play correctly is a standard game-theoretic assumption called the principle of ra- 
tionality, that is, at each move, each player will make a choice leading to a state with 
the greatest utility for that player. 

We give the following definition for tic-tac-toe on a plane of order n. Xeno and 
Ophelia alternately place their marks on any point of the plane that has not already 
been labelled. The first player to claim all of the points on a line wins the game. The 
game is a draw if all points are claimed and neither player has completed a line. In 
order to show the order of play, we will denote Xeno's first move as Xi, his second 
move as X2, and so on. Ophelia's moves are likewise designated. We shall refer to a 
game as an ordered pair [(Xi,.... , Xs), (, ..., Or)] where r = s - 1 or r = s. A 
complete game is one that has resulted in a win or a draw. 

As suggested in the previous section, when playing on 7n we will arrange the n2 
points in an n x n grid. In this way, the cells of the standard n x n tic-tac-toe grid have 
become the points of rrn. When Xeno marks an open cell in the grid with his X, he is 
essentially claiming a point on the affine plane. The n2 + n lines of 7rn are found in 
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this way: n lines are horizontal, n lines are vertical, and the remaining n2 - n lines are 
identified by consulting the n - 1 MOLS of order n. Remember, each of the MOLS of 
order n defines n lines (displayed as identical symbols). Since there are n - 1 MOLS, 
each defining n lines, we have our remaining n(n - 1) lines. For example, the game 
shown on the left in FIGURE 6 is a win for Xeno on the affine plane of order 3 since 
{X2, X3, X4} forms a line, as can be verified by viewing FIGURE 4 or consulting the 
second Latin square of order 3 given in FIGURE 2. The game on the right is a win for 
Ophelia on the affine plane of order 4 since {0 , 03, 06, 07} forms a line, as can be 
verified by consulting the second Latin square of order 4 in FIGURE 2. 

X1 X2 03 X3 
X1 X4 

01 X6 X4 
X3 02 01 

X7 06 02 05 
03 X2 

04 X5 07 

Figure 6 Win for Xeno on 73 and win for Ophelia on 74 

Of the many interesting graph-theoretic, game-theoretic, and combinatorial ques- 
tions this game generates, we will first consider two fundamental questions. 

Question 1: For which planes are there winning strategies? 
Question 2: For which planes can play end in a draw? 

The first question is essentially a game-theoretic question, whereas the second ques- 
tion is fundamentally a geometric question. As regards the first question, in game the- 
ory it is known that in a finite two-player game of perfect information, either one player 
has a winning strategy or both players can force a draw [16]. A "strategy-stealing" ar- 
gument [4, 5] proved by Hales and Jewett [11] shows that in our case it is Xeno who 
has a winning strategy when such a strategy exists. To show this, assume that Ophelia 
has the winning strategy. Let Xeno make a random first move and thereafter follow 
the winning strategy of Ophelia. Specifically, Xeno plays as if he were Ophelia by 
pretending that his first move has not been made. If at any stage of the game he has 
already made the required move, then a random move can be made. Any necessary 
random moves, including the first, cannot harm him since he is merely claiming an- 
other point. This leads Xeno to a win, contradicting the assumption that Ophelia has 
the winning strategy. (Notice that this argument does not apply to Nim, for example, 
since a random move may cause the first player to lose.) Hence, in tic-tac-toe either 
Xeno has a winning strategy or both players have drawing strategies, in which case 
we say Ophelia can force a draw. If no draws exist, then Xeno is guaranteed to have 
a winning strategy. However, the existence of draws is not enough to guarantee that 
Ophelia can force a draw. We discuss the existence of winning strategies for all finite 
planes in the two sections that follow. 

Regarding the second question, a draw is possible when there exists a set T of 
[lP1/21 points such that every line in the plane has points in T and points not in T, 
that is, no line has its points disjoint from T nor contained in T. We will determine 
the planes in which play can end in a draw in the following two sections. Of course, 
knowing that a draw exists does not explain how Ophelia can force the draw. To this 
end, we give a computational method guaranteed to produce a draw in the section on 
weight functions, and we describe simple configurations of draws in the last section of 
the paper. 
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Planes of small order 

There is a unique affine plane of order 2; in it each line has two points, as represented in 
FIGURE 3. Xeno has a trivial winning strategy when playing tic-tac-toe on this plane. 
Namely, if X1 and 01 are chosen arbitrarily, then X2 produces a win for Xeno with the 
line containing X1 and X2, regardless of its placement. Hence, Xeno wins merely by 
being the first player, and a draw is not possible since any two points form a line. 

There is a unique projective plane of order 2; as represented in FIGURE 5, each 
line has three points. Xeno has a winning strategy when playing on this plane as well. 
Namely, if Xl and 01 are chosen arbitrarily, then he chooses X2 to be any point not on 
the line containing Xl and 01. Since there is a line between any two points, 02 must be 
placed on the line containing X1 and X2 (otherwise Xeno wins on his next move). He 
chooses X3 to be the point on the line containing 0 and 02. Then Ophelia must block 
either the line containing X1 and X3 or the line containing X2 and X3 (it is a simple 
matter to see that Ophelia does not already have these lines blocked). Xeno wins on 
his next move when he completes the line that 03 did not block. Even if the principle 
of rationality is violated and Xeno purposely chooses a point unwisely, a draw is not 
possible on F2. Any four points on n 2, no three of which are collinear, form an object 
called a hyperoval, and the complement of this hyperoval is a line. Hence, there does 
not exist a set T c P with ITI = 4 such that T and its complement intersect each line. 

There is a unique affine plane of order 3. As shown in FIGURE 4, each line has three 
points. The winning strategy for Xeno on this plane is identical to the winning strategy 
on n2. (It is interesting to note that playing on this plane is the same as playing on 
a torus version of tic-tac-toe [20].) If the principle of rationality is violated then the 
game could end in a win for Ophelia, but a draw is impossible since there are no draws 
on 73. To show this, assume that a draw is possible and let T be a set of five points 
that meets each line in L without containing any line completely. Let f , e2, and g3 be 
the three lines of one of the parallel classes of 7r3. Without loss of generality, assume 
T meets both l and f3 at two points and e2 at one point. Let T meet XI at points x and 
y, and ?2 at point z. The line between x and z intersects ?3, say at p. The line between 
y and z also intersects f3, say at q. Notice that both of these lines go through z, and 
?3 is not parallel to either of these lines. Therefore, we have p : q since no two lines 
intersect in more than one point. Since T intersects ?3 in two points, if p is not in T 
then q must be in T. So, either line {x, z, p} or {y, z, q} is in T, which contradicts our 
assumption of the existence of a draw. 

The following theorem summarizes our discussion of the analysis of play on the 
planes of small order. 

THEOREM. Xeno has a winning strategy on r2, 7(3, and 112, and no draw is possible 
on these planes. 

Weight functions and planes of larger order 

When we venture beyond the planes of small order the complexity of the game in- 
creases dramatically. The additional points and lines generate a far greater number of 
possible moves for each player. This prevents an easy move-by-move analysis as we 
did in the previous section. This is where Erdos comes to our rescue. The two theo- 
rems that follow are special cases of a result of Erdos and Selfridge [9] that specifies 
conditions under which the second player can force a draw in many positional games. 
Our proofs are a modification of the proof of the Erdos and Selfridge theorem given 
by Lu [15]. 
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To analyze the game on any plane of order n, we need a way to evaluate the state of 
the game at any point during play. It would be helpful to assign a number that in some 
way measures the utility of the state of the game for one of the players. To do this, we 
define functions that assign values to the state of the game when Ophelia is about to 
make her ith move. In order to choose the position for Oi from the unclaimed points 
remaining, she may first wish to consider which line has the best available point. Keep 
in mind that Ophelia forces a draw if she places one of her marks on every line, thereby 
blocking every possible winning line for Xeno. So, any line that Ophelia has already 
blocked can be removed from consideration. Of the unblocked lines remaining, it is 
most important for Ophelia to block lines with the largest number of Xeno's marks. If 
we define the value, or weight, of an unblocked line to be 2-", where u is the number 
of available points on that line, then the lines of greater weight are precisely those with 
more of Xeno's marks, and are therefore urgent for Ophelia to block. As Ophelia is 
about to make her ith move, the weight of the game is defined as the sum of the weights 
of the unblocked lines. The weight of an available point is the sum of the weights of 
any unblocked lines incident with the point. Lastly, the weight of a pair of available 
points on an unblocked line is the weight of the line through these points. 

To give formulas to match these descriptions, we need some notation. Assume 
that the current state of play is [(X1, ..., Xi), (01,..., Oi-1)] and that L represents 
the set of lines. Let Li be the collection of all lines not blocked by Ophelia at the 
ith move for Ophelia, with all of the points previously marked by Xeno deleted, 
that is, Li = {e - {X1,..., Xi} I I E L, t n {(1,.... Oi-_l = 01. So, Li contains 
lines or subsets of lines that have not been blocked by Ophelia. We will let Lo de- 
note the collection when no more moves can be made, that is, the game has ended 
in a win or a draw. We use oo rather than a particular number as the number of 
these collections depends on both the order of the plane and the progress of play. 
Let Pi = P - {XI,..., Xi, 01,..., Oi_-}, the set of points available to Ophelia at 
move Oi. 

With this notation, the weight of the game is 

w(Li) = E 2-11. 
seLi 

For p, q E Pi, the weight of an available point q and the weight of an available pair 
{p, q} are 

w(q I Li)= E 2-sl and w(p, q I Li) = 2-1sl, where {p, q} C s e Li. 
sELi,qEs 

Let's compute examples of these various weights, using the game played on 7r3 as 
shown on the left in FIGURE 6. Here, L1 consists of eight lines of cardinality 3 and four 
partial lines of cardinality 2 (since X1 has been removed), giving w(L1) = 4 2-2 + 
8 . 2-3. For L2 the state of the game is [(X1, X2), (01)], and we eliminate the four lines 
through 01 from consideration. Thus, L2 consists of three lines of cardinality 3, four 
partial lines of cardinality 2, and one of cardinality 1, giving w(L2) = 2-1 + 4 2-2 + 
3 ? 2-3. Since there are four lines through any point on 7r3, we see that w(01 I L1) = 
w(X2 I L1) = 2-2 + 3 2-3. Also, w(X2, 01 I L1) = 2-3. Continuing this example, 
for L3 the state of the game is [(X1, X2, X3), (01, 02)], and we eliminate the seven 
lines through 01 or 02 from consideration. We have w(L3) = 2 2-1 + 3 2-2, 
w(02 I L2) = 2-1 + 2 2-3, w(X3 I L2) = 2 2-2 + 2-3, and w(X3, 02 L2) = 0. 

Consider the difference in weights between two successive states of the game, 
w(Li) - w(Li+i). The only change between Li and Li+l is that Ophelia's ith move 
and Xeno's (i + 1)st move have been made. So, the weights of any lines that do not 
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contain Oi and Xi+ do not change and will therefore cancel each other out. With 
only the lines through these two points remaining, the weights of the lines through 
Xi+i must be subtracted from the weights of the lines through Oi in order to find 
w(Li) - w(Li+l). Since this eliminates the weight of the line that passes through both 
points, the weight of this line must be added back. Thus, it can be seen that 

w(Li) - w(Li+l) = w(Oi I Li) - w(Xi+l Li) + w(Xi+i, Oi I Li). (1) 

The examples given above can be used to demonstrate (1) when i = 1 and i = 2. 
These weight functions enable us to check if we have a draw at any stage of play. 

First notice that if 0 e Li, then w(Li) > 2-0 = 1, Xeno has completed a line and thus, 
has won. On the other hand, if w(Li) < 1 then 0 , Li, and Xeno has not completed 
a line. Also, notice that if w(L,o) < 1 then 0 , Lo and there is a draw. Moreover, 
these weight functions provide strategies for Xeno and Ophelia that will help us de- 
termine the outcome of play on all planes of higher order. Namely, Xeno should min- 
imize w(Li) - 

w(Li+l) in an attempt to keep the weight of Lj, at any stage j of the 
game, above 1, whereas Ophelia should maximize this difference in order to drag the 
overall weight below 1. Hence, by equation (1), Ophelia chooses Oi by maximizing 
w(Oi I Li), and Xeno chooses Xi+l by maximizing w(Xi+i I Li) - w(Xi+ , Oi I Li). 
The power and utility of these weight functions is demonstrated in the proof of the 
following theorem, where the drawing strategy for Ophelia is specified for infinitely 
many projective planes. 

DRAW THEOREM FOR In,. Ophelia can force a draw on every projective plane of 
order n with n > 3. 

Proof To prove that Ophelia can force a draw, we must produce an algorithm that 
prescribes Ophelia's move at any point in the game, and then show that this strategy 
leads to a draw. As noted above, if w(Lo) < 1 then Ophelia has forced a draw. This 
is equivalent to showing two conditions: 

(i) There exists N, where 1 < N < oo, such that w(LN) < 1 and 

(ii) w(Li+,) < w(Li) for all i > N. 

Suppose that the current state of play is [(X1, ..., Xi), (01, ..., Oi-l)], and Ophelia 
must make her ith move. Since the weight functions assign more weight to lines on 
which Xeno is closer to winning, Ophelia should choose a point of maximal weight. 
So, choose Oi E Pi such that w(Oi I Li) = max{w(q L) : q E Pi}. By the choice 
of Oi and (1), we see that the second condition is always satisfied since w(Oi I Li) > 
w(Xi+l I Li). 

For a projective plane of order n, L consists of n + I partial lines of cardinality n 
(once X1 is removed) and (n2 + n + 1) - (n + 1) lines of cardinality n + 1. So, we 
have 

n+l 
n2 2n 2 

w(L) 2-n + 2-(n+) n + 2n + 2 

i=l i=+1 

We see that w(L1) < 1 when n > 4. Thus, Ophelia forces a draw on the projective 
planes of order n > 4 by choosing a point of maximum weight at every stage of the 
game. 

For the projective plane of order 3, recall that there are 13 lines with 4 points on each 
line, and 4 lines through each point. We calculate w(L3) after providing the strategy 
for Ophelia's first two moves. Suppose X1 and 01 are placed arbitrarily. Xeno places 
X2 anywhere. If 01 is already on the line containing X1 and X2, then 02 should not 
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be placed on this line. If 01 is not on the line containing X1 and X2, then 02 should 
be placed on this line. In either case, the configuration before move X3 is represented 
by FIGURE 7. 

X O X 

O 

* * p 

0 

Figure 7 Configuration of [(Xi, X2), (O1, 02)] on n3 

Xeno can place X3 anywhere, leaving only four possible configurations of points, as 
represented in FIGURE 8. As long as w(L3) < 1 in each case, then Ophelia has forced 
a draw. 

X1 01 X2 X1 01 X X X2 X 01 X3 X1 01 X2 

x3 x3 

02 02 X3 02 02 

case (a) case (b) case (c) case (d) 

Figure 8 Possible configurations for [(X1, X2, X3), (01, 02)] on 13 

To calculate w (L3), in all four cases we start by eliminating the four lines containing 
01 and the remaining three lines containing 02. Once these seven lines are eliminated 
from consideration, there are only six lines remaining to be included in the weight 
function. 

Case (a): There are two partial lines through X1 of cardinality 3. There is one par- 
tial line of cardinality 3 through X2, and one partial line through X2 and X3 of cardi- 
nality 2. Through X3 there is one remaining line of cardinality 3. Since only 12 out of 
13 lines have been considered, there is one line of cardinality 4 remaining. This gives 
w(L3) = 2-2 + 4 . 2-3 + 2-4 = 13/16. 

Case (b): There is one partial line through X1 of cardinality 3, and one partial line 
through X1 and X3 of cardinality 2. The same holds for X2. All lines through X3 have 
been considered. Since only 11 of the 13 lines have been considered, there are two lines 
of cardinality 4 remaining. This gives w(L3) = 2 - 22 + 2. 2-3 + 2 . 2-4 = 14/16. 

Case (c): Using similar reasoning, we can show w(L3) = 6 - 2-3 = 6/8. 
Case (d): Likewise, we have w(L3) = 2 2-2 + 3 2-3 + 2-4 = 15/16. 

In all possible cases we have w(L3) < 1. Thus, Ophelia can force a draw on FI3. 

Draws on affine planes 

Using the same technique, we can give the drawing strategy for Ophelia on infinitely 
many affine planes. For an affine plane of order n, L1 consists of n + 1 partial lines of 
cardinality n - 1 (once X1 is removed) and (n2 + n) - (n + 1) lines of cardinality n. 
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So, we have 

n+l n2-1 2 2 1 
w(LI=L2 +(n1 2n n +2 

i=l i=l 

We see that w(LI) < 1 when n > 6. Following the same argument as given in the 
previous proof, we see that Ophelia can force a draw on the affine planes of order n > 7 
(since there is no such plane of order 6). 

The only affine planes remaining are 74 and 75s. It is interesting to note that we 
found greater difficulty determining the outcome of play on rI3, 7r4, and n5 than on 
planes of higher order. While we were able to determine the outcome of play on 13 by 
performing calculations for all possible outcomes by hand, the unsuspected complexity 
of play on 74 and 75 lent itself to analysis by computer. 

Ophelia's drawing strategy for r5 is the same as that given for I3. The initial con- 
figurations are identical to the cases shown in FIGURE 8, and the weight functions 
for each case can be calculated as demonstrated in the previous proof. However, in 75 
some of these cases produced too many subcases to be calculated by hand, and a com- 
puter was used to verify that w(Li) was eventually less than 1. The following theorem 
summarizes these results. 

DRAW THEOREM FOR 7r,,. Ophelia can force a draw on every affine plane of or- 
der n with n > 5. 

There is only one plane left to consider. What happens on the affine plane of order 4? 
The following game shows that draws exist on J74. 

X O X X 

O X O O 

X O X X 

O X O O 

Since we had no examples of a plane for which a winning strategy and draws coex- 
isted, it was natural to expect that Ophelia could force a draw. To our surprise, three 
independent computer algorithms show that Xeno has a winning strategy on this plane. 
The first two programs, written by students J. Yazinski and A. Insogna (University of 
Scranton), use a tree searching algorithm. The third program, written by I. Wanless 
(Oxford University), checks all possible games up to isomorphism. Thus, the affine 
plane of order 4 is the only plane for which Xeno has a winning strategy, and yet, 
draws exist. Finally, we have answered the two questions that we posed after initially 
introducing the game. 

Answer 1: Xeno has a winning strategy on 72, n2, 7J3 and 74. 

Answer 2: Draws exist on irt where n > 4, and on F,, where n > 3. 

Blocking configurations 

Suppose you are playing as Ophelia on one of the infinitely many planes for which 
there is a drawing strategy. The algorithm given in the previous section may guarantee 
a draw, but it requires computations of Eulerian proportion in order to pick a point of 
maximum weight at each move. Since any opponent would surely cry foul were you 
to consult a computer, it could take hours to finish a game using this algorithm! The 
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geometry of these planes suggests a more practical solution. We will relate Ophelia's 
strategy to this geometry in order to demonstrate some configurations (which Ophelia 
would like to construct) that can produce a draw with very few points. The desired 
set of points is called a blocking set, since every line intersects the set, but no line is 
contained in the set. More information on similar configurations can be found in recent 
survey articles [6, 12] and the references therein. 

First, let us consider the projective plane of order 3. Since it is easier to understand 
-3 by describing P and L rather than giving its graph, take the elements of the fol- 

lowing array on the left as the point set of this plane, and the right array as a possible 
game. 

1 x 
2 3 4 X X X 

5 6 7 8 9 O O X O O 
10 11 12 X O X 

13 / \ O 

We have simply taken the standard form of r3 and added 1, 5, 9, and 13 as the points 
at infinity. The lines are given by 

{2, 3, 4, 13}, {6, 7, 8, 13}, {10, 11, 12, 13}, {2, 6, 10, 1), {3, 7, 11, 1}, 

{4, 8, 12, 1}, {2, 7, 12, 9}, {3, 8, 10, 9}, {4, 6, 11, 9}, {4, 7, 10, 5}, 

{3, 6, 12, 5}, {2, 8, 11,5}, and {1,5,9, 13}. 

It is easily checked that the game shown on the right above is a draw. The set of points 
marked with X, {1, 2, 3, 4, 7, 10, 12}, and those marked with an O, {5, 6, 8, 9, 11, 13}, 
are both blocking sets. Further inspection shows that these sets have a specific config- 
uration in common. We will focus on Ophelia's blocking set. The line t = {1, 5, 9, 13} 
has all but one point labelled with an O. Through at least one of the points on t marked 
with an 0, say 5, there is a line m = {2, 5, 8, 11 } that also has all but one point marked 
with an O. We also see that lines e and m contain five of the six points that compose 
Ophelia's blocking set. The sixth point lies on the line through points 1 and 2, the 
two points marked with an X on lines t and m. We can find the same configuration in 
Xeno's blocking set by taking ?' = {2, 3, 4, 13} and m' = {2, 7, 12, 9}, which makes 
5 the sixth point since it lies on the line through points 9 and 13. Of course, 10 is an 
extraneous point of the set for Xeno, included for the sake of presenting a complete 
game. 

X1 

03 

04 m 0s X2 

Figure 9 Configuration of a draw on FI3 

Interestingly, every draw on H3 displays such a configuration, as depicted in FIG- 
URE 9. To show this, assume Ophelia has a produced a draw on FI3 with the points in 
the set A = 01, ...0, 06}. If no three points of A are on a line, then through 01 there 
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is a line containing each Oi, 2 < i < 6, and these five lines are distinct. However, this 
is impossible since there cannot be five lines through 01 on H3. (Note also that no 
four points of A are on a line because then A would contain a line.) Hence, some three 
points of A are on a line. Without loss of generality, assume that we now have line e as 
shown in FIGURE 9. X1 has three lines through it other than e. Each of these lines must 
have a point claimed by Ophelia since the set A has a point on every line. Hence, each 
of the remaining three points of A must be incident with exactly one of these lines, 
and a simple check shows that we have the configuration given above. This blocking 
configuration is not unique to 13. It can be generalized to projective planes of higher 
order as shown by the following theorem. 

BLOCKING SETS ON ln THEOREM. On any projective plane of order n with 
n > 3, there exists a blocking set of 2n points. 

Proof. This purely geometric result is shown within the game structure by con- 
structing the blocking set. Let t be a line in a projective plane of order n > 3, with 
points q, ..., qn+l. Suppose Ophelia has accumulated Oi = qi for i = 1, ..., n. On 

in, each of these points is incident with n + 1 lines. Hence n2 + 1 lines now have an 
O on them. 

Assume Xeno claims qn+1, otherwise Ophelia wins. There are n lines through qn+l 
other than e. Label these lines 1, ..., X, as in FIGURE 10. Choose a line m f fe 
through ql and let ,,+i be the intersection of m and f, for i = 1, ..., n - 1. Let 02n be 

any point on 4n other than the intersection of m and C, otherwise Ophelia wins. Since 
n > 2, we are guaranteed that such a point exists. Finally, we have {O0, 02, ..., 02n} 
as the required set of 2n points since each of the n2 + n + 1 lines are incident with a 
point in this set, and no line is contained in this set. 1 

qn+l 

02n 

q2 2'' n-lI 

Oqn+ ?Il O?-n+2 
02n-I 

lFigure 10 Con m 

Figure 10 Configuration of blocking set on n1, 

The blocking set constructed in the proof translates to a drawing strategy for Ophe- 
lia that is free from computation. On a projective plane, Ophelia may attempt to acquire 
points that display such a configuration. At first consideration, the reader might find 
this strategy counterintuitive. If Ophelia's goal is to block every line, then how could it 
make sense to continue to place her marks on lines that are already blocked (E and m)? 
The answer lies in the geometry of these planes. Since each point is incident with n + 1 
lines, 01 blocks n + 1 lines. Since there exists a line between 01 and any other point, 
02 will block n lines regardless of its placement. 03 will block n lines if it is placed on 
e, but only n - 1 lines if not placed on ?. By continuing to place her marks on e, Ophe- 
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lia is maximizing the number of lines blocked by each Oi. The points ql, q2, ... , qn 
claimed by Ophelia, as shown in FIGURE 10, block n2 + 1 of the n2 + n + 1 lines on 
l-n. This is the largest number of lines she can block with n points. 

The blocking set on an affine plane of order greater than 4 displays a similar con- 
figuration, consisting of 2n - 1 points. To show this, let El, ..., in be the lines of a 
parallel class and suppose f, = {ql, q2, ... , qn}, as in FIGURE 11. Let 0i = qi for 
1,..., n - 1, and assume Xeno claims qn. Let tl, mi, ...., mn be the lines through qn, 
and let On- +j be the point of intersection of mj and tj?+ for j = 1, ..., n - 1. Let 
02n-1 be any point on mn that is not collinear with On, ..., 02n-2. This can be done 
because n > 4, that is, there are more than four points on a line. 

ql q2 .... qn-1 qn 

On 
f2 

/ 2n-1 

/ n+l1 

ml m2/ .... / mn 

en 
02n-2 

Figure 11 Configuration of blocking set on run 

Notice that On, On+1, ..., 02n-1 do not lie on a line since this line would have to 
interesect ?I, which it does not. However it may be possible that n - 1 of them lie on 
a line with Oi for i < n - 1. This can be avoided by simply changing the order of 
lines {mi}, which is possible when n > 4. Thus, we have {O1, 02 . ... 02n-1} as the 
required set of 2n - 1 points. This work establishes the following result. 

BLOCKING SETS ON trn THEOREM. On any affine plane of order n with n > 5, 
there exists a blocking set of 2n - 1 points. 

As we can see from these proofs, if Ophelia can place 2n or 2n - 1 marks (depend- 
ing on the type of plane) in the required manner then the game will be a draw. While 
this offers the second player an easy algorithm to follow, it is not a drawing strategy 
since it is not guaranteed to produce a draw. If Xeno's best move happens to be a point 
on the line which was to be part of Ophelia's blocking configuration, then she must 
begin acquiring points on a different line. 

Competitive play 

At the University of Scranton we hold an annual single-elimination "Tic-tac-toe on 
7r4" tournament where students compete for the top spot (and prizes!). It is not un- 
common to see the serious competitors practicing for weeks before the contest. We 
encourage the reader to play too, as we have found that these students gain not only 
an understanding of affine planes, but also develop an intuition for finite geometries 
that reveals properties and symmetries not easily seen by reading definitions in a ge- 
ometry text. For practice on 7r4, try playing against a computer at the author's website: 
academic.uofs.edu/faculty/carrollml/tictactoe/tictactoea4.html. 
We also welcome a proof of the existence of a winning strategy for Xeno on 7r4 that 
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does not rely on a computer. For further reading, surveys of other tic-tac-toe games 
can be found in Beck [2] and Berlekamp, Conway, and Guy [4]. 

Acknowledgments. We thank Jonathan Yazinski, Al Insogna, and Ian Wanless for their enthusiasm in determin- 

ing the outcome of play on 7r4. 

REFERENCES 

1. E. F. Assmus Jr. and J. D. Key, Designs and their Codes, Cambridge University Press, Cambridge, UK, 1992. 
2. J. Beck, Achievement Games and the Probabilistic Method, Combinatorics, Paul Erdos is Eighty, Vol. 1, 

Bolyai Soc. Math. Stud., Janos Bolyai Math. Soc., Budapest, 1993, 51-78. 
3. M. K. Bennett, Affine and Projective Geometry, Wiley, New York, 1995. 
4. E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Vol. 2, Academic 

Press Inc., London-New York, 1982. 
5. K. Binmore, Fun and Games: A Text on Game Theory, D. C. Heath and Co., Lexington, MA, 1992. 
6. A. Blokhuis, Blocking sets in Desarguesian planes, Combinatorics, Paul Erdos is Eighty, Vol. 2, Bolyai Soc. 

Math. Stud., 2, Jfnos Bolyai Math. Soc., Budapest, 1996, 133-155. 
7. R. C. Bose, On the application of the properties of Galois fields to the problem of construction of hyper- 

Graeco-Latin squares, Sankhya 3 (1938), 323-338. 
8. S. T. Dougherty, A coding theoretic solution to the 36 officer problem, Des. Codes Cryptogr. 4 (1994), 123- 

128. 
9. P. Erd6s and J. L. Selfridge, On a combinatorial game, J. Combin. Theory 14 (1973), 298-301. 

10. L. Euler, Recherches Sur une nouvelle espace de quarees magiques, Verb. Zeeuwsch Genootsch. Wetensch. 
Vlissengen 9 (1782), 85-239. Reprinted in L. Euler, Opera Omnia, ser. 1, vol. 7, Tuebner, Berlin-Leipzig, 
1923, 291-392. 

I 1. A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229. 
12. J. W. P. Hirschfeld and I,. Storme, The packing problem in statistics, coding theory, and finite projective 

spaces, R. C. Bose Memorial Conference (Fort Collins, CO, 1995), J. Statist. Plann. Inference 72:1-2 (1998), 
355-380. 

13. C. Lam, The search for a finite projective plane of order 10, Amer Math. Monthly 98 (1991), 305-318. 
14. C. F. Laywine and G. L. Mullen, Discrete Mathematics Using Latin Squares, J. Wiley and Sons, New York, 

1998. 
15. X. Lu, A characterization on n-critical economical generalized tic-tac-toe games, Discrete Math. 110 (1992), 

197-203. 
16. A. Rapoport, Two-Person Game Theory; The Essential Ideas, University of Michigan Press, Ann Arbor, 

1966. 
17. F. W. Stevenson, Projective Planes, W. H. Freeman and Co., San Francisco, 1972. 
18. D. R. Stinson, A short proof of the nonexistence of a pair of orthogonal Latin squares of order six, J. Combin. 

Theory Ser. A 36 (1984), 373-376. 
19. G. Tarry, Le probleme des 36 officers, Compte Rendu Ass. Franc. Pour l'avancement des Sciences 2 (1901), 

170-203. 
20. J. Weeks, Torus and Klein Bottle Games: Tic-Tac-Toe, available at http://www. geometrygames. org/ 

TorusGames/html/TicTacToe.html. 

Cover image: Where did you say that camera was?, by Don MacCubbin 

Jim Henle's article in this issue tells us how to compute the location from which 
a given photograph was taken. This is a potentially confusing problem, but the 
mathematician shown on the cover will solve it quickly after reading Henle's 
article. 

Don MacCubbin is an artist, a photographer, and the Mechanical Engineering 
Lab Manager at Santa Clara University, where he just received his bachelors' 
degree in Studio Art. When he isn't busy with undergrads in the lab, Don ponders 
triangulation as it applies to errant golf balls and missed pool shots. 
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