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A
t first thought, it might seem like the selection of units
for length and other physical quantities would be
arbitrary—so how could it involve any significant

mathematics?
But creating the world’s first system of measurements that

would not be arbitrary was one of the announced goals of the
leaders of the French Revolution after they seized power in
1789. That is why they had to recruit some of the most eminent
mathematicians of the time to work on the problem of defining
the meter, which would be the new system’s fundamental unit.
The contentious and painful birth of the meter turned out to be
an exciting chapter in the application of mathematics, a story
that ties together seemingly disparate threads in the develop-
ment of trigonometry, calculus, and differential equations.

In France in 1789, even the king saw the need for a new set
of units to replace the roughly 250,000 different weights and
measures that were being used locally in towns and rural areas.
That confusing patchwork had caused countless disputes to
erupt, whenever taxes were collected or goods were bought
and sold.

But French scientists and legislators were vexed: how were
they going to define the meter in a way that would reflect
nature only, instead of a particular locality or culture? Even as
revolutionary conflict and the Napoleonic wars raged in the
1790s, some of the most contentious debates carried out with-
in the new French governing assemblies focused on this ques-
tion.

Two camps emerged. One side argued for basing the defi-
nition of the meter on a pendulum clock, which would be cal-
ibrated in size so as to swing to and fro exactly once per sec-
ond. The other side argued that the meter should be based on
the dimensions of the entire planet, specifically, one ten-mil-
lionth of the distance from the Equator to the North Pole.
Getting Your Bearings by Keeping Time

To see why the definition of the meter came down to a
choice between the swing of a pendulum and the size of the
Earth takes us back to the Age of Exploration, when precision
about time and space first became important in Europe. A sci-
entific understanding of pendulum clocks and the dimensions
of the planet had helped France and other countries become

naval powers, since it allowed them to solve the age-old nau-
tical problem of finding one’s position at sea.

Nowadays, with GPS satellites and inertial guidance sys-
tems all around us, we tend to forget just how difficult it was
for explorers like Columbus and Cartier to find their coordi-
nates. Figuring out your latitude, or angular coordinate north
or south of the Equator, was a fairly straightforward calcula-
tion, based on using a quadrant or sextant to record the angle
of the Sun or other stars above the horizon. For example, at
night in the northern hemisphere, the angle of Polaris (the
North Star) above the horizon, in degrees, is almost exactly
the latitude of the observer, and an astronomical table could be
consulted to improve accuracy.

By contrast, figuring out your longitude, or east-west posi-
tion, had long been a major puzzle. The ability to compute lon-
gitude was a critical national resource as European powers
vied for naval supremacy and staked colonial claims across
entire oceans. Two scientific academies had actually been
established to find a solution to the longitude problem: the
British Royal Society (1662) and the French Royal Academy
of Sciences (1666). The French group had scored a “coup” by
quickly hiring the Dutch physicist Christiaan Huygens, who
had patented the world’s first practical pendulum clock ten
years earlier. 

Every scientist knew that an accurate clock provided a solu-
tion to the longitude problem. Here’s how: Let’s say that a ship
sailed west from the port of Le Havre, France with a clock set
to local time. Suppose that at sea some days later, at one hour
after sunrise, the clock indicated that back in Le Havre it was
already 4 1/2 hours after sunrise. Then the ship would be west
of port by 4.5 – 1 = 3.5 hours (or what we might today call 3.5
“time zones”), which translates to 3.5 /24 = 14.58% of the way
around the Earth. To convert this into a distance west of Le
Havre, start with the total distance around the Equator, which
was known to be something in the vicinity of 20,500,000 tois-
es (the toise, defined as six “royal feet,” was one of the units of
length in pre-metric France). Since the distance around the
Earth decreases as you move above or below the Equator (see
Figure 1), the 49 1/2 degree latitude of Le Havre would have
to be taken into account, leading to the conclusion that the ship
was west of that port by

.1458 3 20,500,000 3 cos (49.58) ≈ 1,940,000 toises.
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“Here is a story that ties together seemingly disparate threads in the

development of trigonometry, calculus, and differential equations.”
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This strategy for determining longitude was first proposed
by the Dutch mathematician Regnier Gemma Frisius in 1530.
(December 8, 2008 marks the 500th anniversary of his birth.)
In English, it is known as the horological method, horology
(the word is related to “hour”) being the practice of time-keep-
ing. Notice, from the above example, that the two most diffi-
cult-to-acquire bits of information needed in the horological
approach are (1) the global circumference and (2) the local
time back in home port. 
How a Pendulum Clock Works

It was the pendulum that first made the horological solution
to the longitude problem seem potentially workable, because
pendulum clocks can keep fairly accurate time through day
and night, for weeks on end.

In the mathematically simplest kind of pendulum, a small
object called a bob is attached to a long cord (see Figure 2).
The bob has negligible size compared to the cord, and the cord
has negligible mass compared to the bob. When given a push,
the bob swings back and forth and, if the friction or resistance
are negligible, no energy is lost, so the amplitude of the oscil-
lation remains constant. Early in the 1600s, the Italian scientist
Galileo had noticed that in such a simple pendulum, the time
needed per swing is affected quite a bit by the length of the
cord, but not at all by the weight of the bob, and barely at all
by the amplitude of the swing.

The reason for this became clear not long after the discov-
ery of calculus. Applying Newton’s laws of motion to analyze
the forces acting on a simple pendulum led to a differential
equation,

where u is the angular displacement of the pendulum from its
vertical rest position, t is elapsed time, m is the mass of the
bob, L the length of the cord, and g the acceleration due to
gravity, about 32.088 feet per second per second for any object
near the Earth’s surface. Upon dividing, one gets

Because of the presence of the sine term, this is a difficult non-
linear differential equation. But if the angle of swing,u,
remains relatively small, then sinu ≈ u (in radian measure) and
the equation becomes linear,

with general solution (check it):

Under these simplifying assumptions, then, the oscillation of
the pendulum was found to have a time period

which varies with the length L of the cord and the acceleration
g caused by gravity, but not with the mass or amplitude of the
bob. Try substituting a length of three feet and see what the
predicted time period is. Then, try swinging an object on a
thread or string having a length of your choice, and see how
well the above formula models the motion. If you tried this
experiment on the surface of the moon, where the gravitation-
al acceleration is weaker, the cord length L would need to be
made proportionally smaller for the pendulum to beat at the
same frequency as on Earth. (The angular amplitude, by the
way, is                   and is determined purely by the position and
velocity that you give the bob when you set it swinging.)

Huygens improved on the simple pendulum by inventing
the cycloidal pendulum in 1658, published later in his treatise
Horologium oscillatorium. Brilliantly, he figured out that if the
bob traverses not a circular arc but a cycloidal one (see Figure
3), then its period T is given exactly by the above formula no
matter how large the amplitude of motion. (A cycloid is the
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Figure 1. A cross-section shows why the distance involved in

traveling around the Earth at a given latitude is proportional to the

cosine of that latitude.

Figure 2. In a simple pendulum, the bob B traverses a circular

arc PQ. If the angular amplitude of the oscillation is kept small,

then its time period is nearly independent of that amplitude.
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arching periodic curve traced out by a point on a circle as the
circle rolls along a straight line; it is described by the paramet-
ric equations x = a(t – sin t), y = a(1 – cos t), where a is the
radius of the circle). The bob’s motion is then truly
isochronous, meaning that it takes the same time to swing
regardless of its amplitude; for large amplitudes, the bob trav-
els farther, but faster on average to make up the time.

The pendulum clock that Huygens patented was based on
this cycloidal design. The cord swings against a pair of wood-
en planks, or “jaws,” each shaped to form part of an inverted
cycloidal arch. Surprisingly, as Huygens discovered, the path
traced by the bob itself is an exact copy of the same cycloid
used to shape the jaws. In his patent, each “beat” of the pen-
dulum advanced a system of gears, in effect counting the sec-
onds ticked in order to keep track of elapsed time. In practice,
the design was imperfect because of the considerable friction
between the cord and the jaws. But more importantly, Huy-
gens’s work on this and related problems helped lay the foun-
dation for what came to be called the calculus of variations, a
branch of analysis that is especially rich with applications.

Equation (1) above implies that to design a pendulum clock
that beats at a certain frequency, say once or twice per second,
the inventor needed to be precise about the length of the cord,
but didn’t need to worry about the weight of the bob or the
amplitude of the swing. A frequency of one beat per second
required a cord length of about 1/2 toise (3 royal feet), while
two beats per second (i.e., one complete swing back and forth)
called for a cord that was one-quarter as long. These were the
most common beat frequencies used for land and marine
clocks at the time. 
Swing Locally, Tract Globally

The same French Royal Academy of Sciences that hired
Huygens to help solve the longitude problem found itself,
more than a century later, suddenly charged with inventing a
revolutionary new system of units that would be “universal,”
in the sense of not favoring particular people or nations over

others. A Commission of Weights and Measures was estab-
lished by the Academy in 1790, chaired by military engineer/
mathematician Jean-Charles de Borda. The other members
were the renowned scientists Laplace, Legendre, Lavoisier,
and Condorcet. 

The French revolutionaries thought of their ideals of “liber-
ty, equality, and fraternity” as reflecting a modern scientific
outlook, and in turn these scientists charged with inventing the
metric system were determined that their work would uphold
those ideals. Accordingly, they searched for units of measure-
ment that were dictated by universal principles of nature,
instead of by humans with their local preferences, prejudices,
and historical accidents.

The Commission considered two main strategies for setting
the standard length of a meter. I like to call these the proposals
to “swing locally” or “tract globally,” because they were
based, respectively, on local knowledge about a pendulum’s
motion and on global knowledge about the Earth’s circumfer-
ence. 

The “swing locally” proposal seemed the more promising
at first, because it was fairly simple. A meter would be defined
as the cord length needed to give a pendulum a frequency of
one swing per second, or one complete cycle every two sec-
onds. This length L was already well known from the experi-
ence with pendulum clocks, as summarized above. On the
Commission’s recommendation, the French National Assem-
bly adopted this proposal, introduced by Talleyrand on May 8,
1790.

But there were problems in defining the meter this way.
First, it would mean that the meter’s definition was based on
that of a time unit (the second), making the meter a less than
fundamental unit. The second itself was criticized as an arbi-
trary unit. (Four years later, the French government would
decree a decimal system of time, but it was widely ignored and
quickly abandoned.)

Even worse is the fact that the period of a pendulum varies
from place to place on the Earth’s surface! To see why, recall
what Newton had shown: the Earth’s gravitational force—
including your own weight—increases as you get closer to the
center of the Earth. A little calculus applied to equation (1)
shows that if the gravitational acceleration increases by a cer-
tain percentage, then the pendulum’s period decreases by half
that percentage:

In fact, if you combine equation (1) directly with Newton’s
Law of Gravity, you find that the time period T of a pendulum
is directly proportional to its distance from the center of the
Earth. This means that a pendulum swings a bit more slowly
on a mountaintop than it does along a nearby coastline.

dT
T

dg
g= − 1

2

Figure 3. In a cycloidal pendulum, the bob B traverses a cycloidal

arc PQ, congruent to that used to make the jaws against which the

cord swings. The time period of each swing is completely inde-

pendent of the amplitude.

(2)
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More significant is the effect of the “equatorial bulge” of
the planet. Newton and Huygens had predicted that the Earth
is a slightly squashed or oblate spheroid due to the centrifugal
force of its spinning. If the planet’s surface is an elliptical
spheroid of eccentricity 1/230, as Newton had estimated, then
the length of a pendulum would need to be varied significant-
ly in order for it to have a 1-second swing at all localities. To
test this theory, the French Royal Academy of Sciences had
sent surveying expeditions to Peru and Lapland in 1735-44.
Their land-survey data confirmed that the length of one degree
along a meridian of longitude is greater near the Equator than
near the North Pole. They were able to corroborate this finding
by measuring how much more slowly a pendulum oscillated in
the first location than in the second.

Clairaut, a mathematician who participated in the Lapland
expedition headed by Maupertuis, published a groundbreak-
ing study Théorie de la Figure de la Terre (1743) that gave a
theoretical framework for the data on oblateness. He modeled
the Earth as an incompressible and noncirculating fluid, rotat-
ing and subject to gravitational and centrifugal forces. In the
simplified case of a two-dimensional field with components P
and Q, Clairaut found that incompressibility implies that a
quantity (now called “divergence”) vanishes,

while noncirculation implies that a quantity (now called
“curl”) vanishes,

He then found that oblate ellipsoids were indeed equilibrium
solutions satisfying the above constraints. This work by
Clairaut would be fundamental to the field of hydrodynamics,
the mathematical study of fluid flow. It also contributed to the
concept of analytic function, the starting point in the field of
complex analysis developed in the 1800s by Cauchy and Rie-
mann.

The findings by Clairaut, Maupertuis and others proved that
defining the length of a meter by the pendulum formula (1)
would mean privileging one location, above all others on the
Earth, at which to base the definition. For this reason, the pen-
dulum proposal was abandoned after less than a year. The
strategy to “swing locally” turned out to be inherently too local
to meet the globalist ideals of the Revolution. 
Measuring the Whole Planet

On March 26, 1791 the French National Assembly accept-
ed the rival proposal: to base the new unit on the size of the
Earth itself. The meter would be defined as one ten-millionth
of the distance from the Equator to the North Pole. Since it
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was the girth of the planet itself that would be measured, this
proposal to “tract globally” promised to transcend local and
national differences.

But this new plan was plagued by issues of its own. First,
the size of the Earth was still unknown with any real preci-
sion. It is true that estimates had improved during the previous
decades of marine navigation, so that it was already known
that a meter, defined in this way, would end up being slightly
longer than in the pendulum-based way. But to make the meter
a workably precise standard of length under this proposal, the
circumference of the planet would need to be measured much
more accurately.

Second, it was clear that meridians of longitude varied in
length because of topographic features like continents, oceans,
mountains, and valleys. French officials had no choice but to
select and measure a particular meridian, and (surprise!) they
selected the one passing through their home turf, Paris.

The astronomers Méchain and Delambre were appointed to
head up teams carrying out a vast land survey to tract the
length of this meridian between Barcelona, Spain and
Dunkerque, at the northern tip of France. The distance between
these two points would then be extrapolated, using their
known latitudes, to find the size of the whole planet. It was
argued that this would give an accurate measurement of the
Earth because (1) the effects of the globe’s oblateness were
thought to be negligible in France, since it is about midway
between the Equator and the North Pole; and (2) the effects of
topography were thought to be about average in France, since
it has both mountains and coastlines.

The French surveying project involved an elaborate series
of ground measurements using sightings of light signals from
hilltops, church steeples, and other high points. Distances were
expressed in terms of the standard toise, an old iron bar kept
near Paris. The key mathematical method employed was
triangulation, a technique in plane trigonometry used to deter-
mine the position of one point from those of two known points
(see Figure 4). Frisius, mentioned above for his horological
solution of the longitude problem, was also the inventor of tri-
angulation. His method requires, in addition to the positions of
the two known points, only the two adjacent angles of the tri-
angle they form with the third point. The French surveying
teams were able to measure these angles with great accuracy
thanks to the use of a repeating circle, an instrument with a
pair of rotating telescopes that had been cleverly designed a
decade earlier by Borda, the Commission Chairman men-
tioned above.

The French meridian measurement entailed hundreds of
observations in a vast mesh of triangles. Because the location
of each new survey station was calculated relative to previous
ones, in an iterative fashion, the team knew that imprecisions
would tend to magnify during the surveying process. Thus,

Continued on page 31
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results had to be repeatedly cross-checked and adjusted. Such
long-range Earth surveying, or geodesy, emerged as one of the
most fertile areas for the development and use of applied math-
ematics. To control measurement errors, you try to find
approximate solutions of large over-determined systems of
equations, and to apply statistical methods such as least-
squares regression.

Many other problems plagued the French earth-measure-
ment teams, some of them technical and others caused by the

volatile political and military situation. What was originally
seen as a one-year surveying project ended up taking seven
years. Finally, in 1798, the metric standard was set and a con-
ference was held to promote its use internationally.

The comprehensive findings of the meridian-survey effort
were later published in three volumes (1806-10), which not
only presented the triangulation data but included a whole his-
tory of geodesy and a full discussion of the oblateness of the
Earth. Napoleon Bonaparte, the revolutionary leader and gen-
eral who had crowned himself emperor, was presented with
the first volume by Delambre.

Napoleon, a former artillery lieutenant, was highly trained
in mathematics and science. The emperor looked over the
impressive volume from Delambre and reportedly remarked,
“Conquests will come and go, but this work will endure.” And
it has.
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Figure 4. In surveying by triangulation, the known positions of

two points A and B can be used to determine the relative position

of any nearby point C. The calculation involves the distance d

between the two known points, and the angular bearings a and b

to the third point. First, the angle at C is found by subtracting from

p radians the sum of the two angles a and b. The lengths AC and

BC can then be computed by the Law of Sines. Next, the altitude

of the triangle is found by multiplying AC by sin(a) or BC by sin(b);

this gives the offset of C in the direction orthogonal to the line AB.

Multiplying instead by the cosines of those angles provides offsets

in the other direction.

Continued from page 17


	Schwartz1
	Schwartz2

