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The Theorem of Cosines for Pyramids
Alexander Kheyfits (alexander.kheyfits@bcc.cuny.edu), Bronx Community College,
CUNY, Bronx, NY 10453

The classical three-millennia-old Pythagorean theorem is still irresistibly attractive
for lovers of mathematics—see, for example, [1] or a recent survey [8] for its numer-
ous old and new generalizations. It can be extended to 3-space in various ways. A
straightforward extension states that the square of a diagonal of a right rectangular
parallelepiped is equal to the sum of squares of its adjacent edges. A less trivial gener-
alization is the following result, which can be found in good collections of geometric
problems as well as in a popular calculus textbook [7, p. 858]:

(PTT) The Pythagorean theorem for tetrahedra with a trirectangular ver-
tex. In a tetrahedron with a trirectangular vertex, the square of the area of the op-
posite face to this vertex is equal to the sum of the squares of the areas of three other
faces.

Consider a triangle with sides a, b, c and the angle C opposite side c. The classical
Pythagorean theorem is a particular case of the Theorem or Law of Cosines, c2 =
a2 + b2 − 2ab cos C , if we specify here C to be a right angle. Similarly, statement
(PTT) is a special case of the following assertion, if one puts θ12 = θ13 = θ23 = π/2
in (1) below.

(TCT) The Theorem of Cosines for Tetrahedra. In any tetrahedron with faces
f0, f1, f2, f3, let A0, A1, A2, A3 be their areas and θ12, θ13, θ23 be the dihedral angles
between, respectively, faces f1 and f2, f1 and f3, f2 and f3. Then

A2
0 = A2

1 + A2
2 + A2

3 − 2A1 A2 cos θ12 − 2A1 A3 cos θ13 − 2A2 A3 cos θ23. (1)

Hereafter, all dihedral angles between faces of a polyhedron are measured inside the
polyhedron.

Being younger than the Pythagorean Theorem, this statement is just about four cen-
turies old (Faulhaber [3], see [5, p. 1007]). As is shown below, (1) can be generalized
to any pyramid.
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Proof. The proof of (1) can be carried over by using the vector equation (see [7,
p. 858])

v0 + v1 + v2 + v3 = 0, (2)

where the vector vi is perpendicular to fi , pointing outward, and such that |vi | = Ai .
To prove (2), it is enough to express these vectors through the vectors corresponding
to the three adjacent edges of the tetrahedron.

To deduce (1) from (2), it is enough to rewrite (2) as −v0 = v1 + v2 + v3 and then
to dot-square both sides of the latter equation, keeping in mind that the angle between
vi and v j is supplementary to θi j .

Since any face of a tetrahedron can be designated as its base, there are three more
equations similar to (1). It is worth noting also that unlike the plane theorem of cosines
above, where it is always true that a2 + b2 − 2ab cos C ≥ 0 for any real a, b, C , the
right-hand side of (1) can be negative. To see this, it suffices to consider A1 = A2 = A3

and θ12 = θ13 = θ23 < π

3 . Indeed, in a tetrahedron these parameters cannot be assigned
arbitrarily, since it is known [4, p. 50] that in any trihedral angle it must be θ12 + θ13 +
θ23 > π .

If a plane domain can be triangulated or approximated by triangulable domains, one
can use the same method to prove a slightly more general result [6, p. 517]:

The sum of the squares of the areas of the projections of a plane region on the
three coordinate planes equals the square of the area of the region.

Let us return to the (PTT) statement and denote the lengths of the pairwise perpen-
dicular edges of a trirectangular tetrahedron by a, b, c. Then the areas of the lateral
faces are 1

2 a · b, 1
2 a · c, 1

2 b · c, and the third edges of these faces, which are the sides of
f0, are Q = √

a2 + b2, R = √
a2 + c2, and S = √

b2 + c2. Substituting these quan-
tities into (1) with cos θ12 = cos θ13 = cos θ23 = 0, we deduce after some algebraic
transformations that

A0 = √
p(p − Q)(p − R)(p − S), (3)

where p = (1/2)(Q + R + S) is the half-perimeter of the face f0. Noting that all these
transformations are reversible, we see that the Pythagorean theorem for a trirectangular
tetrahedron (PTT) is equivalent to the Heron formula (3) expressing the area of a
plane triangle through the lengths of its sides.

Our goal in this note is to present the following generalization of (1) to arbitrary,
even non-convex pyramids.

(TCP) The Theorem of Cosines for Pyramids. In any pyramid with faces
f0, f1, f2, . . . , fn, n ≥ 3, let A0, A1, A2, . . . , An be their areas and let θi j be the
dihedral angles between faces fi and f j , 1 ≤ i < j ≤ n. Then

A2
0 = A2

1 + A2
2 + · · · + A2

n − 2
∑

1≤i< j≤n

Ai A j cos θi j . (4)

Proof. Clearly, it suffices to extend equation (2) to this case and then to find the dot
product v0 · v0 as before. First we consider a quadrangular pyramid with a base f0 and
lateral faces f1, . . . , f4. The base always, even if it is not convex, has a diagonal that
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dissects it into two triangles, f01 and f02. The areas of f01 and f02 add up to the area of
f0, so v01 + v02 = v0, where v0i is an outward vector orthogonal to fi , i = 1, 2, such
that |v0i | is the area of fi . These triangles are bases of two disjoint tetrahedra, whose
union is the given pyramid. Let f̃ be the common lateral face of these tetrahedra, then
the corresponding outward vectors, perpendicular to f̃ in the two tetrahedra, have the
same magnitude and the opposite directions. Thus, writing down equation (2) for each
of these two tetrahedra and adding these equations, we arrive at the following equation
for any quadrangular pyramid,

v0 + v1 + v2 + v3 + v4 = 0,

where as before, v j is the outward vector, perpendicular to the face f j , such that |v j | is
the area of f j , 1 ≤ j ≤ 4. A similar equation for any pyramid with an n−gonal base
for any n ≥ 3,

v0 + v1 + v2 + · · · + vn = 0,

follows by mathematical induction.

Since any polyhedron can be decomposed into tetrahedra [4, p. 67], we can use the
same argument as in the proof to derive an analog of (4) for any polyhedron with any
of its faces singled out as the base; the sum on the right will include all dihedral angles
between all faces excluding the base. In essence this assertion is just three-centuries
old and can be traced back to Carnot [2, p. 313].

Consider, for example, a right prism with a rectangular base. The face f , parallel to
the base, is perpendicular to any lateral face, so that all corresponding cosines vanish.
The same holds true for each pair of adjacent lateral faces. Next, if f ′ and f ′′ are
two parallel lateral faces, then the corresponding orthogonal vectors v′ and v′′ have
opposite directions but equal magnitudes, and the dihedral angle between these two
faces is zero; thus, (A′)2 + (A′′)2 − 2A′ A′′ cos θ = 0. The same is valid for another
pair of opposite faces, and (4) reduces to a trivial equation A0 = A, that is, the opposite
faces in such a prism have equal areas. A similar, but slightly more involved argument
works for any prism.

It should be also mentioned that the known equations

cos α = cos β cos γ + sin β sin γ cos A,

cos A = − cos B cos C + sin B sin C cos α,

where α, β, γ are the plane angles of a trihedral angle and A, B, C are its opposite
dihedral angles, are also sometimes called (the first and second) 3-dimensional cosine
theorems of spherical trigonometry. We leave proofs of these equations as an exercise
to the reader.

Acknowledgment. This work was partially supported by Bronx Community College.

References

1. C. B. Boyer, History of Analytic Geometry, Scripta Mathematics, Yeshiva Univ., 1956.
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◦

Logarithmic Differentiation: Two Wrongs Make A Right
Noah Samuel Brannen (sam.brannen@sonoma.edu) and Ben Ford (ben.ford@sonoma.
edu), Sonoma State University, Rohnert Park, CA 94928

You’re teaching a Calculus class, and get to the point in the course where it is
time to discuss logarithmic differentiation. As usual, you begin by asking the class “If
f (x) = xx , what is f ′(x)?”

One student raises his hand and says “That’s just the power rule. It’s xxx−1.” An-
other student says “That’s just for when the exponent is constant. This has x in the
exponent, so it’s like ex , but when it’s not e you need to put the log in. So it’s (ln x)xx .”
Smiling, you point out that just as one is assuming that n is a constant when one uses
the formula for the derivative of xn , one is assuming that a is a constant when one
uses the formula for the derivative of ax . Since neither the base nor the exponent of
xx is constant, the function f (x) = xx is neither a power function nor an exponential
function, and therefore the derivative of xx cannot be found using either of these rules.
Instead, you say, we will use a technique called logarithmic differentiation.

(Pedagogical aside: Of course, here you have the option of using the definition xx =
ex ln x ; you have already covered methods for differentiating this. But the technique of
using logarithmic differentiation to break the natural log of a function into a sum of
easily-differentiable summands is a nice one, and this is a very good context in which
to introduce it.)

At this point a student in the back of the class raises her hand and says “Isn’t
f (x) = xx a combination of a power function and an exponential function, and there-
fore shouldn’t the derivative be a combination of the derivative of a power function
and the derivative of an exponential function?”

Trying not to discourage the student, you attempt to take her question seriously. You
ask if she means that the derivative should be the sum of the two answers given by the
first two students. She replies “sure.”

You decide to indulge the student, saying “Let’s see what happens. The sum of the
two answers is xxx−1 + (ln x)xx . The real answer can be found as follows: First, we let
y = xx . Then we take the natural logartithm of both sides, obtaining ln y = ln(xx) =
x ln x . Differentiating both sides of this equation with respect to x gives us

y′

y
= (1)(ln x) + x

(
1

x

)
= ln x + 1,

and multiplying both sides by y yields

y′ = y(ln x + 1).

Substituting xx for y, we see that the derivative y′ of y = xx is

y′ = xx(ln x + 1).”
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