Partial Fraction Decomposition by Division

Sidney H. Kung (sidneykung@yahoo.com) University of North Florida, Jacksonville FL 32224

In this note, we present a method for the partial fraction decomposition of two algebraic functions: (i) $f(x)/(ax + b)^t$ and (ii) $f(x)/(px^2 + qx + r)^t$, where f(x) is a polynomial of degree n, t is a positive integer, and $px^2 + qx + r$ is an irreducible $(q^2 < 4pr)$ quadratic polynomial. Our algorithm is relatively simple in comparison with those given elsewhere [1, 2, 3, 4, 5, 6, 7, 8]. The essence of the method is to use repeated division to re-express the numerator polynomial in powers of the normalized denominator. Then upon further divisions, we obtain a sum of partial fractions in the form $A_i/(ax + b)^i$ or $(B_jx + C_j)/(px^2 + qx + r)^j$ for the original function.

For (i), we let c = b/a, and express f(x) as follows:

$$f(x) = A_n(x+c)^n + A_{n-1}(x+c)^{n-1} + \dots + A_2(x+c)^2 + A_1(x+c) + A_0$$
$$= (x+c)[A_n(x+c)^{n-1} + A_{n-1}(x+c)^{n-2} + \dots + A_2(x+c) + A_1] + A_0$$

where each A_i is a real coefficient to be determined. Then the remainder after we divide f(x) by x + c gives the value of A_0 . The quotient is

$$q_1(x) = (x+c)[A_n(x+c)^{n-2} + A_{n-1}(x+c)^{n-3} + \dots + A_3(x+c) + A_2] + A_1.$$

If we now divide $q_1(x)$ by x + c, we see that the next remainder is A_1 and the quotient is

$$q_2(x) = (x+c)[A_n(x+c)^{n-3} + A_{n-1}(x+c)^{n-4} + \dots + A_3] + A_2.$$

Continuing to divide in this manner n-1 times, we get the quotient $q_{n-1}(x) = A_n(x+c) + A_{n-1}$. Finally, dividing $q_{n-1}(x)$ by x + c, we obtain the last two coefficients, A_{n-1} and A_n . Thus, it follows that

$$\frac{f(x)}{(ax+b)^{t}} = \frac{1}{a^{t}} \left[\frac{A_{n}}{(x+c)^{t-n}} + \frac{A_{n-1}}{(x+c)^{t-n+1}} + \dots + \frac{A_{1}}{(x+c)^{t-1}} + \frac{A_{0}}{(x+c)^{t}} \right].$$
 (1)

For example, to find the partial fraction decomposition of $(x^4 + 2x^3 - x^2 + 5)/(2x - 1)^5$, we use c = -1/2 and perform synthetic division to obtain A_0 through A_n .

1/2)	1	2		-1		0		5
		1/2		5/4		1/8		1/16
	1	5/2		1/4		1/8		$81/16 \Leftarrow A_0$
		1/2		3/2		7/8		
	1	3		7/4		1	$\Leftarrow A_1$	
		1/2		7/4				
	1	7/2		7/2	$\Leftarrow A_2$			
		1/2						
$A_4 \Rightarrow$	1	4	$\Leftarrow A_3$					

Substituting the coefficients into (1), we have

$$\frac{x^4 + 2x^3 - x^2 + 5}{(2x - 1)^5} = \frac{1}{2^5} \left[\frac{1}{(x - 1/2)} + \frac{4}{(x - 1/2)^2} + \frac{7/2}{(x - 1/2)^3} + \frac{1}{(x - 1/2)^4} + \frac{81/16}{(x - 1/2)^5} \right]$$
$$= \frac{1/16}{2x - 1} + \frac{1/2}{(2x - 1)^2} + \frac{7/8}{(2x - 1)^3}$$
$$+ \frac{1/2}{(2x - 1)^4} + \frac{81/16}{(2x - 1)^5}.$$

For (ii), we let u = q/p, v = r/p, and express f(x) in the following form:

$$f(x) = B_{(n-1)/2}(x^2 + ux + v)^{(n-1)/2} + B_{(n-3)/2}(x^2 + ux + v)^{(n-3)/2} + \cdots + B_1(x^2 + ux + v) + B_0,$$

where each coefficient B_k , k = 0, 1, ..., (n-1)/2, is a linear function of x, and where we assume that $n \le 2t - 1$. In this case, dividing f(x) and each successive quotient by $x^2 + ux + v$ as described above, we obtain

$$\frac{f(x)}{(px^2 + qx + r)^t} = \frac{1}{p^t} \left[\frac{B_{(n-1)/2}}{(x^2 + ux + v)^{t - (n-1)/2}} + \frac{B_{(n-3)/2}}{(x^2 + ux + v)^{t - (n-3)/2}} + \dots + \frac{B_0}{(x^2 + ux + v)^t} \right].$$
(2)

For instance, take the rational function $(x^5 - 4x^4 + 3x^2 - 2)/(x^2 - x + 2)^3$. Then u = -1 and v = 2. Since (n - 1)/2 = 2, we let

$$x^{5} - 4x^{4} + 3x^{2} - 2 = (Mx + N)(x^{2} - x + 2)^{2} + (Kx + L)(x^{2} - x + 2) + Ix + J.$$

Since most students are not familiar with the synthetic division technique when the divisor is a quadratic polynomial, long division can be used in place of the following computation to find the coefficients I, J, K, L, M, and N.

1	-4	0	3	0	-2		1	-3	-5	4
1	-1	2					1	-1	2	
	-3	-2	3							
	-3	3	6							
		-5	9	0						
		-5	5	-10						
			4	10	-2					
			4	-4	8					
				14	-10	-				
				Ι	J					

$-3 \\ -1$				1	N - 2 - 1	2
_	$-7 \\ 2$	-				
	-9 K	-				

Substituting the coefficients in (2) (note that t - (n - 1)/2 = 1) gives

$$\frac{x^5 - 4x^4 + 3x^2 - 2}{(x^2 - x + 2)^3} = \frac{x - 2}{x^2 - x + 2} + \frac{-9x + 8}{(x^2 - x + 2)^2} + \frac{14x - 10}{(x^2 - x + 2)^3}.$$

Note also that $x^2 - x + 2 = (x - 1/2)^2 + 4/7$. On the right hand side of the above expression, replacing the coefficients -2, 8, and -10 in the numerators by -2 + 1/2M, 8 + 1/2M, and -10 + 1/2M, respectively, we get

$$\frac{x^5 - 4x^4 + 3x - 2}{((x - 1/2)^2 + 7/4)^3} = \frac{(x - 1/2) - 3/2}{(x - 1/2)^2 + 7/4} + \frac{-9(x - 1/2) + 7/4}{((x - 1/2)^2 + 7/4)^2} + \frac{14(x - 1/2)^2 - 3}{((x - 1/2)^2 + 7/4)^3}.$$

This last expression is an easily antidifferentiable form.

References

- 1. S. Burgstahler, An alternative for certain partial fractions, College Math. J. 15 (1984) 57-58.
- 2. X.-C. Huang, A short cut to partial fractions, College Math. J. 22 (1991) 413-415.
- 3. P. T. Joshi, Efficient techniques for partial fractions, College Math. J. 14 (1983) 110-118.
- 4. J. E. Nymann, An alternative for partial fractions (part of the time), College Math. J. 14 (1983) 60-61.
- 5. P. Schultz, An algebraic approach to partial fractions, College Math. J. 14 (1983) 346-348.
- M. R. Spiegel, Partial fractions with repeated linear or quadratic factors, Amer. Math. Monthly 57 (1950) 180–181.
- 7. T. N. Subramaniam and D. E. G. Malm, How to integrate rational functions, *Amer. Math. Monthly* **99** (1992) 762–772.

8. J. Wiener, An algebraic approach to partial fractions, College Math. J. 17 (1986) 71-72.

An Elegant Mode for Determining the Mode

D.S. Broca (dsbroca@iimk.ac.in), Indian Institute of Management Kozhikode, Kozhikode 673 571, Kerala, India

For any probability distribution, the mode, like the mean and median, is a measure of central tendency. Geometrically, it represents the relative maximum of the probability density function (pdf) and thus is the most striking feature in the curve's topogra-