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In this note, we present a method for the partial fraction decomposition of two
algebraic functions: (i) f (x)/(ax + b)t and (ii) f (x)/(px2 + qx + r)t , where f (x) is
a polynomial of degree n, t is a positive integer, and px2 + qx + r is an irreducible
(q2 < 4pr ) quadratic polynomial. Our algorithm is relatively simple in comparison
with those given elsewhere [1, 2, 3, 4, 5, 6, 7, 8]. The essence of the method is to use
repeated division to re-express the numerator polynomial in powers of the normalized
denominator. Then upon further divisions, we obtain a sum of partial fractions in the
form Ai/(ax + b)i or (Bj x + C j )/(px2 + qx + r) j for the original function.

For (i), we let c = b/a, and express f (x) as follows:

f (x) = An(x + c)n + An−1(x + c)n−1 + · · · + A2(x + c)2 + A1(x + c) + A0

= (x + c)[An(x + c)n−1 + An−1(x + c)n−2 + · · · + A2(x + c) + A1] + A0,

where each Ai is a real coefficient to be determined. Then the remainder after we
divide f (x) by x + c gives the value of A0. The quotient is

q1(x) = (x + c)[An(x + c)n−2 + An−1(x + c)n−3 + · · · + A3(x + c) + A2] + A1.

If we now divide q1(x) by x + c, we see that the next remainder is A1 and the quotient
is

q2(x) = (x + c)[An(x + c)n−3 + An−1(x + c)n−4 + · · · + A3] + A2.

Continuing to divide in this manner n − 1 times, we get the quotient qn−1(x) =
An(x + c) + An−1. Finally, dividing qn−1(x) by x + c, we obtain the last two coeffi-
cients, An−1 and An. Thus, it follows that

f (x)

(ax + b)t
= 1

at

[
An

(x + c)t−n
+ An−1

(x + c)t−n+1
+ · · · + A1

(x + c)t−1
+ A0

(x + c)t

]
. (1)

For example, to find the partial fraction decomposition of (x4 + 2x3 − x2 + 5)/

(2x − 1)5, we use c = −1/2 and perform synthetic division to obtain A0 through An .

1/2) 1 2 −1 0 5
1/2 5/4 1/8 1/16

1 5/2 1/4 1/8 | 81/16 ⇐ A0

1/2 3/2 7/8

1 3 7/4 | 1 ⇐ A1

1/2 7/4

1 7/2 | 7/2 ⇐ A2

1/2

A4 ⇒ 1 4 ⇐ A3
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Substituting the coefficients into (1), we have

x4 + 2x3 − x2 + 5

(2x − 1)5
= 1

25

[
1

(x − 1/2)
+ 4

(x − 1/2)2
+ 7/2

(x − 1/2)3
+ 1

(x − 1/2)4

+ 81/16

(x − 1/2)5

]

= 1/16

2x − 1
+ 1/2

(2x − 1)2
+ 7/8

(2x − 1)3

+ 1/2

(2x − 1)4
+ 81/16

(2x − 1)5
.

For (ii), we let u = q/p, v = r/p, and express f (x) in the following form:

f (x) = B(n−1)/2(x2 + ux + v)(n−1)/2 + B(n−3)/2(x2 + ux + v)(n−3)/2 + · · ·

+ B1(x2 + ux + v) + B0,

where each coefficient Bk , k = 0, 1, . . . , (n − 1)/2, is a linear function of x , and
where we assume that n ≤ 2t − 1. In this case, dividing f (x) and each successive
quotient by x2 + ux + v as described above, we obtain

f (x)

(px2 + qx + r)t
= 1

pt

[
B(n−1)/2

(x2 + ux + v)t−(n−1)/2
(2)

+ B(n−3)/2

(x2 + ux + v)t−(n−3)/2
+ · · · + B0

(x2 + ux + v)t

]
.

For instance, take the rational function (x5 − 4x4 + 3x2 − 2)/(x2 − x + 2)3. Then
u = −1 and v = 2. Since (n − 1)/2 = 2, we let

x5 − 4x4 + 3x2 − 2 = (Mx + N )(x2 − x + 2)2 + (K x + L)(x2 − x + 2) + I x + J.

Since most students are not familiar with the synthetic division technique when the
divisor is a quadratic polynomial, long division can be used in place of the following
computation to find the coefficients I , J , K , L , M , and N .

1 −4 0 3 0 −2 | 1 −3 −5 4
1 −1 2 | 1 −1 2

−3 −2 3
−3 3 6

−5 9 0
−5 5 −10

4 10 −2
4 −4 8

14 −10
I J
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M N
1 −3 −5 4 | 1 −2
1 −1 2 | 1 −1 2

−2 −7 4
−2 2 −4

−9 8
K L

Substituting the coefficients in (2) (note that t − (n − 1)/2 = 1) gives

x5 − 4x4 + 3x2 − 2

(x2 − x + 2)3
= x − 2

x2 − x + 2
+ −9x + 8

(x2 − x + 2)2
+ 14x − 10

(x2 − x + 2)3
.

Note also that x2 − x + 2 = (x − 1/2)2 + 4/7. On the right hand side of the above ex-
pression, replacing the coefficients −2, 8, and −10 in the numerators by −2 + 1/2M,

8 + 1/2M, and −10 + 1/2M, respectively, we get

x5 − 4x4 + 3x − 2

((x − 1/2)2 + 7/4)3
= (x − 1/2) − 3/2

(x − 1/2)2 + 7/4
+ −9(x − 1/2) + 7/4

((x − 1/2)2 + 7/4)2

+ 14(x − 1/2)2 − 3

((x − 1/2)2 + 7/4)3
.

This last expression is an easily antidifferentiable form.
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◦

An Elegant Mode for Determining the Mode
D.S. Broca (dsbroca@iimk.ac.in), Indian Institute of Management Kozhikode, Kozhik-
ode 673 571, Kerala, India

For any probability distribution, the mode, like the mean and median, is a measure
of central tendency. Geometrically, it represents the relative maximum of the probabil-
ity density function (pdf) and thus is the most striking feature in the curve’s topogra-
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