Partial Fraction Decomposition by Division

Sidney H. Kung (sidneykung@yahoo.com) University of North Florida, Jacksonville FL 32224

In this note, we present a method for the partial fraction decomposition of two algebraic functions: (i) $f(x) /(a x+b)^{t}$ and (ii) $f(x) /\left(p x^{2}+q x+r\right)^{t}$, where $f(x)$ is a polynomial of degree n, t is a positive integer, and $p x^{2}+q x+r$ is an irreducible ($q^{2}<4 p r$) quadratic polynomial. Our algorithm is relatively simple in comparison with those given elsewhere $[\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}]$. The essence of the method is to use repeated division to re-express the numerator polynomial in powers of the normalized denominator. Then upon further divisions, we obtain a sum of partial fractions in the form $A_{i} /(a x+b)^{i}$ or $\left(B_{j} x+C_{j}\right) /\left(p x^{2}+q x+r\right)^{j}$ for the original function.

For (i), we let $c=b / a$, and express $f(x)$ as follows:

$$
\begin{aligned}
f(x) & =A_{n}(x+c)^{n}+A_{n-1}(x+c)^{n-1}+\cdots+A_{2}(x+c)^{2}+A_{1}(x+c)+A_{0} \\
& =(x+c)\left[A_{n}(x+c)^{n-1}+A_{n-1}(x+c)^{n-2}+\cdots+A_{2}(x+c)+A_{1}\right]+A_{0},
\end{aligned}
$$

where each A_{i} is a real coefficient to be determined. Then the remainder after we divide $f(x)$ by $x+c$ gives the value of A_{0}. The quotient is

$$
q_{1}(x)=(x+c)\left[A_{n}(x+c)^{n-2}+A_{n-1}(x+c)^{n-3}+\cdots+A_{3}(x+c)+A_{2}\right]+A_{1} .
$$

If we now divide $q_{1}(x)$ by $x+c$, we see that the next remainder is A_{1} and the quotient is

$$
q_{2}(x)=(x+c)\left[A_{n}(x+c)^{n-3}+A_{n-1}(x+c)^{n-4}+\cdots+A_{3}\right]+A_{2} .
$$

Continuing to divide in this manner $n-1$ times, we get the quotient $q_{n-1}(x)=$ $A_{n}(x+c)+A_{n-1}$. Finally, dividing $q_{n-1}(x)$ by $x+c$, we obtain the last two coefficients, A_{n-1} and A_{n}. Thus, it follows that

$$
\begin{equation*}
\frac{f(x)}{(a x+b)^{t}}=\frac{1}{a^{t}}\left[\frac{A_{n}}{(x+c)^{t-n}}+\frac{A_{n-1}}{(x+c)^{t-n+1}}+\cdots+\frac{A_{1}}{(x+c)^{t-1}}+\frac{A_{0}}{(x+c)^{t}}\right] \tag{1}
\end{equation*}
$$

For example, to find the partial fraction decomposition of $\left(x^{4}+2 x^{3}-x^{2}+5\right) /$ $(2 x-1)^{5}$, we use $c=-1 / 2$ and perform synthetic division to obtain A_{0} through A_{n}.

Substituting the coefficients into (1), we have

$$
\begin{aligned}
\frac{x^{4}+2 x^{3}-x^{2}+5}{(2 x-1)^{5}}= & \frac{1}{2^{5}}\left[\frac{1}{(x-1 / 2)}+\frac{4}{(x-1 / 2)^{2}}+\frac{7 / 2}{(x-1 / 2)^{3}}+\frac{1}{(x-1 / 2)^{4}}\right. \\
& \left.+\frac{81 / 16}{(x-1 / 2)^{5}}\right] \\
= & \frac{1 / 16}{2 x-1}+\frac{1 / 2}{(2 x-1)^{2}}+\frac{7 / 8}{(2 x-1)^{3}} \\
& +\frac{1 / 2}{(2 x-1)^{4}}+\frac{81 / 16}{(2 x-1)^{5}} .
\end{aligned}
$$

For (ii), we let $u=q / p, v=r / p$, and express $f(x)$ in the following form:

$$
\begin{aligned}
f(x)= & B_{(n-1) / 2}\left(x^{2}+u x+v\right)^{(n-1) / 2}+B_{(n-3) / 2}\left(x^{2}+u x+v\right)^{(n-3) / 2}+\cdots \\
& +B_{1}\left(x^{2}+u x+v\right)+B_{0},
\end{aligned}
$$

where each coefficient $B_{k}, k=0,1, \ldots,(n-1) / 2$, is a linear function of x, and where we assume that $n \leq 2 t-1$. In this case, dividing $f(x)$ and each successive quotient by $x^{2}+u x+v$ as described above, we obtain

$$
\begin{align*}
\frac{f(x)}{\left(p x^{2}+q x+r\right)^{t}}= & \frac{1}{p^{t}}\left[\frac{B_{(n-1) / 2}}{\left(x^{2}+u x+v\right)^{t-(n-1) / 2}}\right. \tag{2}\\
& \left.+\frac{B_{(n-3) / 2}}{\left(x^{2}+u x+v\right)^{t-(n-3) / 2}}+\cdots+\frac{B_{0}}{\left(x^{2}+u x+v\right)^{t}}\right] .
\end{align*}
$$

For instance, take the rational function $\left(x^{5}-4 x^{4}+3 x^{2}-2\right) /\left(x^{2}-x+2\right)^{3}$. Then $u=-1$ and $v=2$. Since $(n-1) / 2=2$, we let
$x^{5}-4 x^{4}+3 x^{2}-2=(M x+N)\left(x^{2}-x+2\right)^{2}+(K x+L)\left(x^{2}-x+2\right)+I x+J$.
Since most students are not familiar with the synthetic division technique when the divisor is a quadratic polynomial, long division can be used in place of the following computation to find the coefficients I, J, K, L, M, and N.

				M	N	
1	-3	-5	4	$\mid c c c$		
1	-1	2		1	-2	
	1	-1	2			
	-2	-7	4			
	-2	2	-4			
		-9	8			
		K	L			

Substituting the coefficients in (2) (note that $t-(n-1) / 2=1)$ gives

$$
\frac{x^{5}-4 x^{4}+3 x^{2}-2}{\left(x^{2}-x+2\right)^{3}}=\frac{x-2}{x^{2}-x+2}+\frac{-9 x+8}{\left(x^{2}-x+2\right)^{2}}+\frac{14 x-10}{\left(x^{2}-x+2\right)^{3}}
$$

Note also that $x^{2}-x+2=(x-1 / 2)^{2}+4 / 7$. On the right hand side of the above expression, replacing the coefficients $-2,8$, and -10 in the numerators by $-2+1 / 2 M$, $8+1 / 2 M$, and $-10+1 / 2 M$, respectively, we get

$$
\begin{aligned}
\frac{x^{5}-4 x^{4}+3 x-2}{\left((x-1 / 2)^{2}+7 / 4\right)^{3}}= & \frac{(x-1 / 2)-3 / 2}{(x-1 / 2)^{2}+7 / 4}+\frac{-9(x-1 / 2)+7 / 4}{\left((x-1 / 2)^{2}+7 / 4\right)^{2}} \\
& +\frac{14(x-1 / 2)^{2}-3}{\left((x-1 / 2)^{2}+7 / 4\right)^{3}}
\end{aligned}
$$

This last expression is an easily antidifferentiable form.

References

1. S. Burgstahler, An alternative for certain partial fractions, College Math. J. 15 (1984) 57-58.
2. X.-C. Huang, A short cut to partial fractions, College Math. J. 22 (1991) 413-415.
3. P. T. Joshi, Efficient techniques for partial fractions, College Math. J. 14 (1983) 110-118.
4. J. E. Nymann, An alternative for partial fractions (part of the time), College Math. J. 14 (1983) 60-61.
5. P. Schultz, An algebraic approach to partial fractions, College Math. J. 14 (1983) 346-348.
6. M. R. Spiegel, Partial fractions with repeated linear or quadratic factors, Amer. Math. Monthly 57 (1950) 180-181.
7. T. N. Subramaniam and D. E. G. Malm, How to integrate rational functions, Amer. Math. Monthly 99 (1992) 762-772.
8. J. Wiener, An algebraic approach to partial fractions, College Math. J. 17 (1986) 71-72.

An Elegant Mode for Determining the Mode

D.S. Broca (dsbroca@iimk.ac.in), Indian Institute of Management Kozhikode, Kozhikode 673 571, Kerala, India

For any probability distribution, the mode, like the mean and median, is a measure of central tendency. Geometrically, it represents the relative maximum of the probability density function (pdf) and thus is the most striking feature in the curve's topogra-

