$2^{\text {nd }}$ United States of America Junior Mathematical Olympiad

Day I 12:30 PM - 5 PM EDT

April 27, 2011

JMO 1. Find, with proof, all positive integers n for which $2^{n}+12^{n}+2011^{n}$ is a perfect square.

JMO 2. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}+(a+b+c)^{2} \leq 4$. Prove that

$$
\frac{a b+1}{(a+b)^{2}}+\frac{b c+1}{(b+c)^{2}}+\frac{c a+1}{(c+a)^{2}} \geq 3
$$

JMO 3. For a point $P=\left(a, a^{2}\right)$ in the coordinate plane, let $\ell(P)$ denote the line passing through P with slope $2 a$. Consider the set of triangles with vertices of the form $P_{1}=\left(a_{1}, a_{1}^{2}\right)$, $P_{2}=\left(a_{2}, a_{2}^{2}\right), P_{3}=\left(a_{3}, a_{3}^{2}\right)$, such that the intersections of the lines $\ell\left(P_{1}\right), \ell\left(P_{2}\right), \ell\left(P_{3}\right)$ form an equilateral triangle Δ. Find the locus of the center of Δ as $P_{1} P_{2} P_{3}$ ranges over all such triangles.

Copyright © Committee on the American Mathematics Competitions, Mathematical Association of America

