# $2^{\text {nd }}$ United States of America Junior Mathematical Olympiad 

## Day II 12:30 PM - 5 PM EDT

April 28, 2011

JMO 4. A word is defined as any finite string of letters. A word is a palindrome if it reads the same backwards as forwards. Let a sequence of words $W_{0}, W_{1}, W_{2}, \ldots$ be defined as follows: $W_{0}=a, W_{1}=b$, and for $n \geq 2, W_{n}$ is the word formed by writing $W_{n-2}$ followed by $W_{n-1}$. Prove that for any $n \geq 1$, the word formed by writing $W_{1}, W_{2}, \ldots, W_{n}$ in succession is a palindrome.

JMO 5. Points $A, B, C, D, E$ lie on circle $\omega$ and point $P$ lies outside the circle. The given points are such that (i) lines $P B$ and $P D$ are tangent to $\omega$, (ii) $P, A, C$ are collinear, and (iii) $\overline{D E} \| \overline{A C}$. Prove that $\overline{B E}$ bisects $\overline{A C}$.

JMO 6. Consider the assertion that for each positive integer $n \geq 2$, the remainder upon dividing $2^{2^{n}}$ by $2^{n}-1$ is a power of 4 . Either prove the assertion or find (with proof) a counterexample.

Copyright © Committee on the American Mathematics Competitions, Mathematical Association of America

