2nd United States of America Junior Mathematical Olympiad

Day II 12:30 PM - 5 PM EDT

April 28, 2011

- JMO 4. A word is defined as any finite string of letters. A word is a palindrome if it reads the same backwards as forwards. Let a sequence of words W_0, W_1, W_2, \ldots be defined as follows: $W_0 = a, W_1 = b$, and for $n \geq 2, W_n$ is the word formed by writing W_{n-2} followed by W_{n-1} . Prove that for any $n \geq 1$, the word formed by writing W_1, W_2, \ldots, W_n in succession is a palindrome.
- JMO 5. Points A, B, C, D, E lie on circle ω and point P lies outside the circle. The given points are such that (i) lines PB and PD are tangent to ω , (ii) P, A, C are collinear, and (iii) $\overline{DE} \parallel \overline{AC}$. Prove that \overline{BE} bisects \overline{AC} .
- JMO 6. Consider the assertion that for each positive integer $n \ge 2$, the remainder upon dividing 2^{2^n} by $2^n 1$ is a power of 4. Either prove the assertion or find (with proof) a counterexample.