$40^{\text {th }}$ United States of America Mathematical Olympiad
 Day I 12:30 PM - 5 PM EDT

April 27, 2011

USAMO 1. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}+(a+b+c)^{2} \leq 4$. Prove that

$$
\frac{a b+1}{(a+b)^{2}}+\frac{b c+1}{(b+c)^{2}}+\frac{c a+1}{(c+a)^{2}} \geq 3
$$

USAMO 2. An integer is assigned to each vertex of a regular pentagon so that the sum of the five integers is 2011. A turn of a solitaire game consists of subtracting an integer m from each of the integers at two neighboring vertices and adding $2 m$ to the opposite vertex, which is not adjacent to either of the first two vertices. (The amount m and the vertices chosen can vary from turn to turn.) The game is won at a certain vertex if, after some number of turns, that vertex has the number 2011 and the other four vertices have the number 0 . Prove that for any choice of the initial integers, there is exactly one vertex at which the game can be won.

USAMO 3. In hexagon $A B C D E F$, which is nonconvex but not self-intersecting, no pair of opposite sides are parallel. The internal angles satisfy $\angle A=3 \angle D, \angle C=3 \angle F$, and $\angle E=3 \angle B$. Furthermore $A B=D E, B C=E F$, and $C D=F A$. Prove that diagonals $\overline{A D}, \overline{B E}$, and $\overline{C F}$ are concurrent.

