40th United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 28, 2011

USAMO 4. Consider the assertion that for each positive integer $n \ge 2$, the remainder upon dividing 2^{2^n} by $2^n - 1$ is a power of 4. Either prove the assertion or find (with proof) a counterexample.

USAMO 5. Let P be a given point inside quadrilateral ABCD. Points Q_1 and Q_2 are located within ABCD such that

 $\angle Q_1 BC = \angle ABP, \quad \angle Q_1 CB = \angle DCP, \quad \angle Q_2 AD = \angle BAP, \quad \angle Q_2 DA = \angle CDP.$

Prove that $\overline{Q_1Q_2} \parallel \overline{AB}$ if and only if $\overline{Q_1Q_2} \parallel \overline{CD}$.

USAMO 6. Let A be a set with |A| = 225, meaning that A has 225 elements. Suppose further that there are eleven subsets A_1, \ldots, A_{11} of A such that $|A_i| = 45$ for $1 \le i \le 11$ and $|A_i \cap A_j| = 9$ for $1 \le i < j \le 11$. Prove that $|A_1 \cup A_2 \cup \cdots \cup A_{11}| \ge 165$, and give an example for which equality holds.

> Copyright © Committee on the American Mathematics Competitions, Mathematical Association of America