$40^{\text {th }}$ United States of America Mathematical Olympiad

Day II 12:30 PM - 5 PM EDT

April 28, 2011

USAMO 4. Consider the assertion that for each positive integer $n \geq 2$, the remainder upon dividing $2^{2^{n}}$ by $2^{n}-1$ is a power of 4 . Either prove the assertion or find (with proof) a counterexample.

USAMO 5. Let P be a given point inside quadrilateral $A B C D$. Points Q_{1} and Q_{2} are located within $A B C D$ such that

$$
\angle Q_{1} B C=\angle A B P, \quad \angle Q_{1} C B=\angle D C P, \quad \angle Q_{2} A D=\angle B A P, \quad \angle Q_{2} D A=\angle C D P
$$

Prove that $\overline{Q_{1} Q_{2}} \| \overline{A B}$ if and only if $\overline{Q_{1} Q_{2}} \| \overline{C D}$.

USAMO 6. Let A be a set with $|A|=225$, meaning that A has 225 elements. Suppose further that there are eleven subsets A_{1}, \ldots, A_{11} of A such that $\left|A_{i}\right|=45$ for $1 \leq i \leq 11$ and $\left|A_{i} \cap A_{j}\right|=9$ for $1 \leq i<j \leq 11$. Prove that $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{11}\right| \geq 165$, and give an example for which equality holds.

