THE TEACHING OF CONCRETE MATHEMATICS
JOHN W. TUKEY, Princeton University and Bell Telephone Laboratories, Inc.

1. Introduction. One syndrome must, from time to time, disturb the sleep
of all concerned with the applications of mathematics,—a syndrome never dis-
cussed in open meeting, perhaps because of its sensitivity. It seems to be gen-
erally agreed that “applied mathematics” is more difficult than “pure mathe-
matics” in requiring more maturity and more years of study before useful re-
sults are attained. Today’s leaders in “applied mathematics” were mainly
trained in “pure mathematics.” Yet from the point of view of research potential
and related intellectual ability the students who study in “applied” fields do not
compare in strength with those who go into “pure” mathematics! Is this not a
paradoxical situation?

One can try to make the situation appear less paradoxical by going further,
and asserting that: “Just as today’s leaders in the applied fields have come
mainly by conversion from the pure, so too will tomorrow’s!” (A statement
which is undoubtedly true for tomorrow!) But what of the day after tomorrow?
Should conversion be inevitable? If it is not, as the writer believes, then the
answer must lie in the early training of our students.

Two causes deflect students from the “applied” to the “pure” today:

(1) a feeling among teachers that the “applied” is beneath the “pure,”
(2) a failure to present the “applied” so that it is as intellectually stimulat-
ing as the “pure.”

Given the temperaments and intellectual orientations of collegiate teachers of
mathematics, it is clear that (1) is an inevitable consequence of (2) and that
direct (or slanting) attacks on (1) are useless. To improve the situation we must
deal with (2), when (1) will, more or less slowly, take care of itself.

How then, may we make “applied” or “concrete” mathematics more stimu-
lating? Many ideas may be needed in the long run, but here are some which
appeal strongly to the writer:

(a) we may strive to develop the areas of formulation and approximation,
where applied mathematics has failed to heed the admonition “physician,
heal thyself.”

Success here could give us something of a truly mathematical nature worthy of

being taught as applied mathematics. At the best, this is a long-range program
(and some may term it visionary)—it is discussed briefly in Section 7.

(b) we may introduce more generality into each stage of the teaching of con-
crete mathematics—for example, after meeting one or two expansions
into eigenfunctions, we may give a nonrigorous introduction to eigen-
function expansions in general.

This program could begin tomorrow, or even today, and needs no detailed spell-
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2 THE TEACHING OF CONCRETE MATHEMATICS [January

ing out here. It will only succeed, however, if it is focussed on concepts rather
than rigor. Usually the physicist or other user will not only omit all rigor in his
justified haste to treat a particular point, but he will omit or gloss over many
concepts of general interest and help. It is for the mathematician to introduce
the student to the majority of the concepts first, letting the rigor wait till its
appropriate time. New concepts should be injected into the student as gently
as possible!

(c) we may emphasize the study of computational procedures in their own
right by discussing their general properties—the mathematics of com-
putation—rather than merely grinding through them.

All of these changes require teaching time and student’s time. If we are realistic,
we must find time, or at any rate most of it, by saving it elsewhere. Where is time
now occupied? With the mechanics of computation, numerical and algebraic.
How can it be freed? By reorienting our attitude toward computation—by
trying to make it less of a road block.

The key to the immediate attack, then, lies in our attitude and practices
concerning computation, taken in a most general sense, and its techniques.

As we succeed with such a program, shifting emphasis from avoidable labor
of computation to broader concepts on the one hand and the mathematics of
computation on the other, we shall be teaching better 20th-century mathe-
matics—better for mathematicians to teach—and better for students to learn.

2. Attitudes toward computation. Computation may be numerical or “alge-
braic” where the latter term seems in practice to cover all forms of systematic
manipulation which are not merely numerical—polynomials, trigonometric func-
tions, indefinite integration, summation (not summability) of series, tensors
and logic, to name a few, all have algebras in the sense of orderly procedures of
computation. In their essentials, the practices of these diverse forms of com-
putation are the same. Given input data, one performs more-or-less-or-much-less
routine operations with the intent of reaching output results of a predetermined
form. Interest centers in the certainty, efficiency, and ease of manipulation of
the operations. A certain amount of practice is useful, both to promote under-
standing (which is not helped appreciably by still more extended practice) and
to provide a little facility of manipulation (usually a little suffices).

Numerical computation, through the centuries, has often faced up to reality
and made things easier. The use of logarithmic tables, even by those who do
not know how to recompute them, and of desk calculators and, now, electronic
calculators, even by those who cannot repair them, has been a commonplace.
Today the “software” comprising the carefully planned interpretive routines,
compilers, and other aspects of automative programming are at least as im-
portant to the modern electronic calculator as its “hardware” of tubes, transis-
tors, wires, tapes and the like. When a student or a user begins to use an elec-
tronic calculator, we do not ask him to learn all the details of the automatic
programming—and surely not to learn why these details were chosen instead of
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1958] THE TEACHING OF CONCRETE MATHEMATICS 3

others. A few students and users will develop slowly into designers or program-
mers, but their number will be few and their treatment special. Let us look to
the analogy in all forms of computation.

Throughout computation, since the usual student will not compute steadily,
but rather occasionally, even if he continues to compute all his life, emphasis
is best laid on methods which are easy to remember—and, more importantly
still, easy to relearn when forgotten. We are really concerned with the continu-
ing capabilities of the student, including those which require supplementation
by some re-study when used, rather than with student behavior in a final exam-
ination.

There are some students (but how few!) who will go on to compute steadily.
They require special training, but their needs should not prejudice the training
of the larger student body. We do the specialists no injustice to teach them the
easy-to-remember way first, even though it may take 109, or 209, or 509,
or even 1009, longer than the fanciest method when in steady use. This will not
dull their interest in, and appreciation of, the fast, hard-to-remember methods.
But if we teach the hard-to-remember method first, the occasional computer
will never get to the easy-to-remember method, never have a method he can
use when he meets a real problem, and thus never solve the problem.

3. An example from numerical computation. But, some may say, teaching
easy-to-remember methods means teaching technique, and ideas and concepts
will suffer. This is not so. Let us take Aitken’s method of interpolation, [3],
[4], as an example. The basic problem is to pass a polynomial through given
points (x1, y1), (%2, ¥2), (s, ¥s), and so on. If P(x) with numerical subscripts
represents a polynomial passing through the points indicated by the subscripts
(thus Piu(x) passes through points 1, 2 and 4), and if “—?” stands for any col-
lection of subscripts other than < or j then

[(x — %) P_i(%) + (x5 — 2) Pi(x)]/(%; — )

passes through all the points corresponding to “—” and through points ¢ and j-
The argument which shows this is simple, direct, and truly mathematical. Hence
we may define

(#; — ®) P_ij(%) = (& — x:) P—j(x) + (x5 — x) P_i(x)
and starting with
Py(x) = Yes
Pyi(x) = [(x — x)yn + (xn — x)ya]/(xh )

Yo — Yo ® + XrYg — XgYh

X — X, Xp — X,

’

obtain all the interpolating polynomials we may desire.
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4 THE TEACHING OF CONCRETE MATHEMATICS [January

If all we wish is the value of the interpolating polynomial at a given x, then
the process reduces itself to successive linear interpolations; thus, for x=6.1
and a particular array of x; and v;, we have:

z X Xi—% Yi=ps D1 Do Diass Dr234s
1 7 0.9 .84510

2 5 —-1.1 .69897 .77935

3 8 1.9 .90309 .79391 .78469

4 4 -2.1 .60206 .77219 .78723 .78580

5 10 3.9 1.0000 .79863 .78359 .78573 .78578

Every computation here is straightforward linear interpolation or extrapolation.
Thus

(0.9)(.69897) + (1.1)(.84510)

77935 =
2.0
—1.1)(.77219 2.1)(.77935
78723 = ( X i;_ (2.1)( ) )

and so on. Undoubtedly this is the easiest of all polynomial interpolation
schemes to learn or relearn. (Even though, in the hands of the professional com-
puter, it may be a little slow by comparison with some other schemes, its nearly-
iterative and checking features are quite valuable.)

It is easy to learn, yet its teaching is not mainly teaching technique. What
has to be taught, in order that its functioning be understood is not technique,
but rather (i) that there will be an interpolating polynomial, (ii) that linear
interpolation between two equal values returns the same value, (iii) that linear
interpolation at an endpoint returns the given value. The algorithm for the
interpolating polynomial now follows, and from it the numerical algorithm.
After learning a few things of mathematical content (he may even be led to try
other operations in place of linear interpolation) the student is equipped to do
polynomial interpolation of any order, direct or inverse (for no properties of
the spacing of the x; were used), without the need to recall or look up any co-
efficients.

The more computation that we can teach in such a form, the better—both
for applied mathematics and for pure mathematics.

4. An example from algebraic computation. Formal integration is another
example of computation. It points a road we should travel, quite a different road
from that just indicated. Some teachers of calculus seem to fear integral tables,
apparently feeling that their students should not only be able to develop all the
elementary formulas, but should have had to do each several times! What is
this but teaching unnecessary technique? In Newton's day these formulas were
new and interested mathematicians. Today they are of use, rather than inter-
est. So why should we not strive to make them useful? This means learning how
to use integral tables, rather than how to derive them.
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1958] THE TEACHING OF CONCRETE MATHEMATICS 5

Some fear the development of “handbook engineers”—persons who cannot
operate without handbooks. This fear is complex; s.e., it has both _r_gi and
imaginary parts. The ex-student who cannot integrate [x'dx or [+/1—x%xdx
with relative ease would be a discredit to the mathematics department, but need
inability to find [(14x%)~%/2dx or [sin? @ cos*6df, without either a handbook or
considerable pain, matter? The writer cannot see that it does. (He himself can
work out the transformations, but would rather walk across the hall and borrow
an integral table. Does this make him less of a mathematician—or only less of
a computer?)

If the time that would otherwise be spent in learning how to derive integra-
tion formulas were diverted, not away from “mathematics,” but to the introduc-
tion of additional mathematical ideas, we should make a great gain. In part,
this could be done within the integral tables themselves. Consider the treatment
of [x*f(x)dx for some relatively simple f(x) for which all such integrals are
elementary. The most classical integral tables gave formulas for =1, =2 and
usually a reduction formula for lowering # by one or two units. Then came tables
which gave the explicit result for n=1, =2, n=3, and n=4 before the user
had to resort to the reduction formula. Next perhaps to =6, and so on. The
more extended tables are more useful, but some mathematicians find them over-
elaborate.

Why has no one taken the logical next steps? First, the value of [x"f(x)dx
will be a finite series. We do have notation, including the use of summation
signs, with which to represent finite series. Can we not give the worked-out form
for [xf(x)dx for general # in nearly every case?

Would this not be much more useful than a reduction formula? Why should
user after user have to go through the same operations to deduce the same finite
series from the reduction formula? Not only might we save labor by giving the
finite series once and for all, but it is quite likely that we might hint successfully,
to students and to users, that generality can mean less work. As mathematicians
we should favor such hints.

Second, there is a deeper opportunity. Our integral tables give [x"f(x)dx,
and in some applications we may get such expressions, but in others the user is
concerned with [P(x)f(x)dx where P(x) is a particular polynomial. Once we
realize that fx"f(x)dx corresponds to a finite series, it follows that [P(x)f(x)dx
is also a finite (double) series. If we invert the order of summation, we shall
usually find the answer to be a finite series, each of whose coefficients is of the
form bj0a0+ -+ + +bjm@n, where P(x) =ao+awx+ - - - +anx™ In more abstract
terms, the vector of final coefficients is obtained from the vector #; of polynomial
coefficients by multiplication with a constant matrix b;; with numerical entries.
We need not use those fearsome words—but we can tabulate the numerical
values of the b;; and explain how to use them. To the extent that students and
users make use of tables of b;;, they are being introduced to the practice of
matrix computation, and, implicitly, to the idea of a linear transformation.

We could use an integral table, were it rightly constructed, to introduce its
users to such important mathematical ideas and notations as matrices, summa-
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6 THE TEACHING OF CONCRETE MATHEMATICS [January

tion sign technique, and linear transformations. If these things come in as an
alternative method—one not taught in class, but acceptable in home work or
examination—as an alternative method which saves work, they will have by far
the greatest chance of penetrating the indifference of the student or user not
yet awakened to mathematics.

If a good table of indefinite integrals on this pattern takes 500 handbook-
sized pages—with a thumb-index and keys like a book on birds or fishes—
should we complain? Or even feel badly? The writer has a waiting, gaping
vacancy on his desk for such a volume, which might appropriately be called
“Integral Tables for the Occasional Integrator”—as do many of his colleagues.
The student need not have to have all 500 pages—we can make up a student’s
50-page version, containing the first 30 pages, one page in 7 for the next 70,
and one page in 40 thereafter (it would not harm the student or weaken the
effect if its paging showed the gaps). But the user would have a place for all 500
pages. If the table were laid out and explained properly, a student who had once
learned to use it could relearn readily, as an ex-student, just what he needed in
a specific situation. Such a person would not be looked down upon as a “hand-
book engineer,” but rather looked up to as a user of mathematics who was con-
trolling his computational problems, and not letting them control him.

5. Some nonexistent examples. There are other sorts of computation—and
most of them lack even the beginnings of the tables and handbooks which would
make their use easier, or even easy. A complete catalog would be lengthy, but
some examples may be illuminating.

The National Bureau of Standards, with support from the National Science
Foundation, has undertaken the preparation of a table of functions. Some think
of this as a revision of Jahnke and Emde’s table [1], now nearly 50 years old,
but others think of it as more nearly the first approximation to a “Numerical
Tables for the Occasional Figurer.” It may well show a substantial amount of
this last aspect, and, to the extent it does, it will tend to make numerical com-
putation less of a bar to the applications of mathematics.

Consider ordinary differential equations. What is “ordinary” about them
from the user’s standpoint? The writer knows of but one table of solutions [2],
and has no reason to be tremendously encouraged about its usefulness. Yet there
are a number of possibilities. Our books on intermediate differential equations
discuss the reduction of second-order linear equations to standard form—yet,
though a number of second-order linear equations have been solved, who has
ever seen a table of solutions for such equations after reduction to standard
form. Why should there not be such a table?

Our books on elementary differential equations have followed for 60 years the
mold of Murray’s book ([5], 1897)—a book written but two years after Cantor
introduced the union of two sets as a formal operation. Such books contain
some relatively widely useful methods of solution, and some special methods
which amused 19th-century mathematicians. Today they tend to say a little
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1958] THE TEACHING OF CONCRETE MATHEMATICS 7

more about solutions in series, and, even, numerical solutions. If we had a
“Differential Equation Table for the Occasional Integrator,” we could condemn
the minor techniques to the lumber room, and instead teach vastly more im-
portant, suggestive, and stimulating topics such as solution in series and numer-
ical solution.

Modern mathematics devotes a great part of its attention to linear expan-
sions of one sort or another. And many linear expansions are of great practical
importance. The process of finding coefficients can almost always be regarded
as a process of biorthogonal expansion—yet who has seen even a little table of
biorthogonal expansions, to say nothing of the “Biorthogonal Expansion Tables
for the Occasional Expander.”

Let the reader continue the list.

6. Sources. Where are the better integral tables, the usable differential equa-
tion tables, the first biorthogonal expansion tables, and all the others, to come
from? The writer does not know, but—there are many members of the Mathe-
matical Association of America who are competent mathematicians, fitted to do
original work, yet not stimulated enough by current abstract mathematics to
be carrying on important research. If only a small portion of them were to con-
sider the interest and reward associated with trying to make these forms of
computation simple, general, and easy to learn or relearn, there would be hands
enough to do much. (Many of these tasks could well be done cooperatively by
substantial groups.)

The successful completion of such tasks would do much to aid the healthy
and mutually supporting growth of pure and applied mathematics in America—
let us hope that they will be completed.

7. Formulation and approximation. Finally, a word about two areas where
we have not explored far enough to see which way we should follow—but which
we should clearly attack and exploit—formulation and approximation.

It is agreed that formulation of the problem is usually the most important
stage in “applied mathematics,” just as insight into what theorem is true and
(probably) provable is often the most important stage in “pure mathematics.”
In each case the formation of new concepts or the refinements of old concepts is
likely to be an essential step. Insofar as a concept-former is a philosopher, all
mathematicians need to be philosophers (of a very special sort).

The formulation of the problem is of the essence—yet who has studied the
problem of formulation, who has tried to explain it to the student? Pélya wrote
“How to Solve It”; who will now write “How to Formulate It”? Probably no
one person can do it; many must work together, almost all of whom must be
mathematicians—though they will usually have other skills as well. Studying
the problem of formulation, formulating better and better approximations to
it, finding useful concepts for its treatment—these are tasks for “applied mathe-
maticians” skilled in formulation.

It is easy to argue that a book on “How to Formulate It” will be empty
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of real intellectual content. It would have been easy to argue 30 years ago that
a book on the theory of games would lack intellectual content. In the past
30 years many relevant and useful concepts kave been formulated in game the-
ory. In the next 30 years many relevant and useful concepts could be formulated
in formulation theory. Perhaps it is time to start, even if the task may be
harder.

If we tried to write “How to Formulate It” today we would strike mainly
questions: Where can we find examples to adequately set forth the principles?
(What are the principles, anyway?). What kind of exercises can be used as home-
work? And so on, and on, and on. Yet, if “applied mathematics” is to grow
properly, if there is to be something teachable and worthy of the name “applied
mathematics,” someone must tackle this problem—and eventually there must
be developed a technique of wide usefulness and acceptability for teaching. This
will not be easy, but it is badly needed.

What of approximation? Why is it paired with formulation? It, too, is a
major stage in “applied mathematics,” a matter of tactics rather than strategy
perhaps, but surely a major stage. Without good approximations we should be
lost, yet who knows what concepts are important in approximation? (From a
routine mathematics course one would feel that taking the first terms of some
series, power or Fourier or perhaps something more complex, was the natural
approximation when only a few terms were permissible, yet this is often very
wrong! How many connect the (C, 1) summability of most Fourier series with
practical approximations?) Yet a reasonable number of concepts have already
been isolated, and are to be found by looking in corners. Many more concepts
are undoubtedly near the surface. A discussion of approximation from the point
of view of concepts and principles rather than labor would undoubtedly bring
out much that was worthwhile. Here is another area for the formulators!

Who will begin to study approximation theory, rather than the theory of
various specific approximations? Who will try to collect the important concepts
in approximation, and try to add to them? What will be the results?

The suggestion of this section is merely this: Just as there is an applied
mathematics of games, genetics, and mechanics, so there should be an applied
mathematics (at least in terms of concepts, perhaps with techniques and opera-
tions) of the applications of mathematics. When there is, mathematicians will
be able to teach “the applications of mathematics.” At present only individual
applications can be taught (and it is not likely to be too good for pure mathe-
maticians to teach applications).

8. Summary. In brief we have said and argued that:

(1) the teaching of any form of computation should be directed (in relatively
elementary or general courses) toward the occasional computer rather
than the steady computer;

(2) this requires emphasis on simple, easy-to-learn-or-relearn methods;
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(3) such emphasis need not mean emphasis on techniques, but rather may,
and should, bring in more mathematical ideas than its converse, as
exemplified by Aitken’s interpolation procedure;

(4) the use of integral tables in teaching elementary calculus should be
greatly broadened;

(5) integral tables could be redesigned to bring in the beginnings of matrices,
finite summation, etc., as methods of saving labor;

(6) many other forms of table, e.g., solutions of differential equations in
standard form, biorthogonal expansions, are badly needed;

(7) there are mathematicians competent to develop such tables who the
writer feels would gain enjoyment and satisfaction from their prepara-
tion;

(8) areduction in the labor of computation is the only visible way of finding
the time and effort to make the study of computation more rewarding;

(9) there is much to be done in connection with the development of applied
mathematics of formulation and approximation.
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ON THE LIMITING EQUILIBRIUM OF n MASSES
D. J. BENNEY, Canterbury University College, New Zealand

1. The general problem. A rigid framework rests on a rough horizontal plane
(coefficient of friction u), being in contact with the plane at the #41 points
Ay, - -+, A,. Let the normal reactions at these points be W, - - -, W, respec-
tively. A horizontal force P is applied at 4, making an angle § with a fixed
direction, the magnitude of P being gradually increased until equilibrium is
about to be disturbed. The initial displacement of the framework can be repre-
sented as a rotation about an instantaneous center I. Our problem is to investi-
gate possible positions for I, and, in particular, to consider whether I may
coincide with any of the points 4,. If I coincides with 4, then friction will be
limiting at each point 4,, s#r, while if I is distinct from 4, the friction will be
limiting at all points A4,.
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