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ABOUT THIS BOOKLET 

In the first year of publication over 7,000 copies of these 
recommendations have been distributed to departments of mathematics 
and individual college teachers. Reaction from readers indicates a 
need for several comments on the constructive use of this booklet. 

The introductory pages should be read carefully before the 
course outlines which follow. These passages describe the underly-
ing idealized objectives of the recommendations. Failure to under-
stand these goals can result in misinterpretation of the spirit of 
the outlines. 

The course outlines beginning on page 378 are illustrative 
samples which may be modified to fit local situations. Taken as a 
whole, they represent achievement of long-range goals; however, the 
reader is urged to use them as sources of mathematical ideas out of 
which to construct his own first steps toward these goals. 

The booklet can be used as a guide to several levels of train-
ing in mathematics. The material in the outlines for Basic Under-
graduate Mathematics together with roughly half of the algebra 
course on page 414 is generally considered adequate undergraduate 
preparation for current graduate programs. Departments and students 
are urged to use the booklet in planning curricula and individual 
programs of study. 

BASIC ASSUMPTIONS 

The recommendations presented in this booklet are idealized, 
as are most educational programs described in print. Hence, it is 
necessary to reveal some assumptions which were made by the Panel in 
constructing the suggested program and the course outlines. It is 
fully realized that the assumptions are somewhat unrealistic in the 
sense that few pregraduate programs can now include such courses in 
all detail. However, "honors" programs may well be able now to in-
clude some of these proposals. Such developments may lead to an ab-
sorption of the ideas into regular curricula, and the next task of 
the Panel is to provide indications as to how this may be done. 

The program set forth here is designed for the first four years 
of a sequence of formal course study leading to the Ph.D. It is 
hoped that full-time students seeking a career in research mathema-
tics will obtain the Ph.D. in a total of seven years, with the last 
year spent mainly in seminars and completion of the dissertation. 
Clearly, the number of beginning college students now possessing the 
knowledge and motivation necessary for entry into such a program is 
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small indeed. If they realize their ambitions, these people can be 
expected to contribute to society as producers of mathematics--hence 
the title of the booklet. 

We have thus assumed that the students will begin the program 
with some prior appreciation of mathematical proof, with a secondary 
school background conforming to the highest recommendations of such 
groups as the School Mathematics Study Group. More significantly, 
the program is directed toward all students who have profited fully 
from the mathematical opportunities afforded in their formal study, 
who hunger for deeper insight and more powerful techniques, who are 
intellectually curious and are capable of appreciating the elegance, 
scope, and excitement of mathematics. 

Many persons may feel that no action need be taken to help 
this restricted group of students and, indeed, that it is impossible 
to prevent them from becoming creative, gifted mathematicians. Ad-
mittedly, this assertion is most often made by those who themselves 
have survived despite all adversity. The counterexamples, of course, 
do not survive to testify. 

But the present document does much more than merely recommend 
a program for gifted students. It will also serve as a guide and 
source of ideas to persons interested in evaluating and modifying 
mathematical curricula. The Panel has spent more than two years in 
a critical examination of the basic structure of college mathematics, 
in relation to present mathematical research. It has attempted to 
discern important underlying patterns and to effect some unity, both 
of viewpoint and of technique, within a four-year curriculum. It 
has attempted to make use of the simplification of concept and tech-
nique resulting from recent discoveries, without sacrificing intel-
ligibility. 

The Panel has also agreed upon certain broad objectives for 
the college mathematics program. The student should be introduced 
to the language of mathematics, both in its rigorous and idiomatic 
forms. He should be able to give clear explanations of the meaning 
of certain fundamental concepts, statements, and notations. He 
should acquire a degree of facility with selected mathematical tech-
niques, know proofs of a collection of basic theorems, and have ex-
perience with the construction of proofs. He should be ready to 
read appropriate mathematical literature with understanding and 
enjoyment. He should learn from illustration and experience to cul-
tivate curiosity and the habit of experimentation, to look beyond 
immediate objectives, and to make and test conjectures. 

The student should by these means be led to seek an under-
standing of the place of mathematics in our culture--in particular, 
to appreciate the interplay between mathematics and the sciences. 
The proposed program, in the portions dealing with analysis, ex-
hibits the traditional role of the physical sciences as a source of 
mathematical ideas and techniques. The outlines offered for courses 
in probability and statistics also indicate the emergence of parts 
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of mathematics from problems in the biological and social sciences. 

A list of objectives such as these is largely independent of 
the content of courses and cannot be implemented completely by even 
the best collection of texts. This only emphasizes the obvious point 
that the quality of the mathematical education of the nation rests 
finally upon the caliber and initiative of teachers. We hope that 
the present document will stimulate widespread interest in a continu-
ing examination and reformulation of mathematics programs in the col-
lege. 

THE PROGRAM 

The proposed program of pregraduate mathematical studies falls 
naturally into two parts: Introductory Undergraduate Mathematics 
occupies the first two years, Higher Undergraduate Mathematics the 
last two. As to subject matter, the former naturally is focused on 
the differential and integral calculus, and the latter is devoted 
mainly to basic material in the fields of analysis, algebra, and 
geometry. Each of these terms, however, is stretched beyond its 
traditional meaning to take account of contemporary mathematical 
development. Each of these principal areas is to be supplemented by 
related studies. And the two parts of the program are to be distin-
guished by their method of presentation as well as by their subject 
matter. In particular, the first two years must be shaped so as to 
lead gradually to an appreciation of the nature and role of defini-
tions and proofs and an ability to employ mathematical language with 
precision. The last two years must be designed to merge smoothly 
with beginning graduate study, forming a period in which the most 
basic mathematical concepts, results, and methods are secured so as 
to provide a firm base for subsequent specialization and concentrated 
research. 

We have recognized the pervasive character of linearity by 
recommending the early introduction of linear algebra and the recur-
rent use of linearity in the analysis courses. At the same time the 
analysis courses reflect the traditional role of the empirical sci-
ences as a source of mathematical concepts and methods. 

Geometry is construed so broadly as to contain differential 
geometry, differential topology, and algebraic topology, among others, 
but the spirit of classical geometry has been retained by emphasizing 
theorems having a geometric formulation. 

Breadth, including a knowledge of fields of application, is of 
great value for the most significant mathematical research. Although 
difficult to achieve during the undergraduate years, at least a begin-
ning is essential. For those students able to fit in a considerable 
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variety of courses it is important to attempt to achieve as inte-
grated a picture of mathematics as can be assimilated. In the pres-
ent program the unity of mathematics is illustrated by emphasizing 
algebraic and topological ideas throughout. 

It is important to emphasize that the ability to follow and 
formulate rigorous proofs must be balanced with the development of 
a free-ranging intuition in each mathematical field. Generally 
speaking, a rigorous treatment of some elements of the material 
should appear even in the earliest courses, and the rigorous seg-
ments should increase in length as the student advances to more 
recondite material. But failure to nurture intuition at any level 
can be stifling. 

The idealized assumptions adopted by the Panel and described 
in the previous section, while simplifying the problem of formulat-
ing curriculum by abstracting from the host of practical problems 
which beset individual mathematics departments, are still far from 
sufficient to characterize a unique solution. Members of the Panel 
found themselves with continuing differences of opinion concerning 
such questions as the extent to which courses should deal with appli-
cations outside of mathematics, the order and relative emphasis to 
be given to certain groups of loosely associated topics, and the 
nature of subject development which is required by pedagogical con-
siderations. These differences within the Panel are reflections, of 
course, of the varied attitudes, often strongly held, which prevail 
within the broader mathematical community. 

In order to convey a fairly concrete idea of the nature of the 
program conceived by the Panel, course outlines are furnished in the 
Appendices which follow. To accommodate the variety of viewpoints 
which prevail, more than one outline is presented for certain basic 
courses. Each outline is prefaced by an indication of its scope 
and intended context. 

INTRODUCTORY UNDERGRADUATE MATHEMATICS 

Under the assumption of a student audience with strong mathe-
matical training in high school and with excellent motivation, a 
unified two-year sequence of what might be called "vector space cal-
culus" is recommended as a proper basis for the pregraduate program. 
Consistent with the historical development of calculus and with the 
flavor of modern mathematics, the program suggests that calculus be 
presented so as to introduce and utilize significant notions of 
linear algebra and geometry in the construction of analytic tools for 
the study of transformations of one Euclidean space into another. 
This demands that the material be arranged and presented in such a 
manner that students are ever mindful of mathematics as an inter-

374 



related whole rather than a collection of isolated disciplines. The 
presentation also needs a healthy balance of well-formulated mathe-
matical arguments, of opportunity for discovery through independent 
work in solving problems and proving theorems, and of mathematical 
and physical motivation. The student must learn early that a highly 
significant aspect of mathematics is that of posing the right ques-
tion. 

This program of Introductory Undergraduate Mathematics com-
prises approximately 15 semester hours. Since the standard subjects 
are integrated, only a rough estimate of their proportions can be 
indicated: about nine semester hours of analytic geometry and calcu-
lus, with the remainder divided between linear algebra and differen-
tial equations. 

Presented in Appendix A are three course outlines which display 
the embodiment of these ideas. The subdivisions in these outlines 
are in terms of topics and not in terms of days or weeks. The major 
differences between the outlines are explained at the outset in 
Appendix A. 

HIGHER UNDERGRADUATE MATHEMATICS 

This part of the program builds upon the foundation laid by 
the Introductory Undergraduate Mathematics curriculum. Assuming the 
ability to appreciate and handle rigor and abstraction, it is in-
tended to broaden the areas of the student�s mathematical knowledge 
with sufficient depth to provide a firm basis for later research and 
to allow for the formation of individual mathematical taste. 

Courses appropriate for this part of the program should be con-
sidered as at the "undergraduate-graduate level," for the same type 
of course will be needed at the beginning of graduate study. Indeed, 
it is an historical "accident," certainly not related to intrinsic 
mathematical considerations, that the undergraduate degree is granted 
after four years of post-high school study. For this reason institu-
tions with limited facilities should strive to provide courses with 
a full degree of depth and challenge even if this entails offering a 
narrower range of subjects. The student who comes to graduate school 
with one solid course behind him is ready to take a second in another 
field; but the one who comes with the equivalent of two half-courses 
is often forced either to repeat material or to proceed to more ad-
vanced work with a deficient background. 

The advanced part of the program will reflect the interest of 
the faculty, as well as the needs of the student. Small institutions 
will concentrate on courses in the mathematical areas of primary in-
terest to their professors. And the selection of materials and modes 
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of presentation within each course will reflect the way in which the 
individual instructor looks at the subject. 

Every college department undertaking this program should pro-
vide courses relevant to the central areas of mathematics: 

Real analysis 

Complex analysis 

Abstract algebra 

Geometry-topology 

Probability or mathematical physics 

Not every student will take courses in all of these areas; choices 
will depend on the student�s intent. (See Appendix � for sample 
course outlines.) 

In addition, to achieve a richer and more comprehensive pro-
gram, a department should offer, as far as its resources will permit, 
a balanced selection of courses in: 

Algebra 

Analysis 

Applied mathematics (in both the natural and social sciences) 

Foundations and logic 

Geometry (algebraic, differential, projective) 

Mathematical statistics 

Number theory 

Topology 

(See Appendix C for sample outlines of some of these courses.) 

For the student, we recommend the following principles: 

(a) For the upperclass years, at least three of the following 
four categories should be represented in the course pro-
gram: (1) algebra, (2) analysis, (3) applied mathematics, 
(4) geometry-topology. 

(b) Included in the program there should be, in order to 
achieve depth, at least two full-year courses—that is, 
courses in which the first semester is an essential pre-
requisite to the second. 

(c) A major in mathematics should have at least seven semester-
courses beyond our suggested Introductory Undergraduate 
Mathematics. 
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INITIATIVE AND INDEPENDENCE 

So far in presenting the program, the greatest attention has 
been paid to describing the mathematical content of an idealized 
undergraduate curriculum in contemporary mathematics. In view of 
our assumptions, students participating in the program will not be 
satisfied to participate in a passive fashion, and so methods to en-
gage the student as an active partner in scholarship should be de-
vised. Indeed, independent intellectual activity of the student 
must be nurtured in preparation.for the time when he will be inde-
pendent of his professors and join them as a colleague. Thus, the 
student must increasingly take the initiative, not only to construct 
proofs by himself, but to develop his imaginative powers so that he 
can make conjectures for proof or disproof, perhaps even going on to 
contribute by creating new concepts or theories. 

This process has its beginning in a small way when the student 
solves textbook problems. Another component is added when the stu-
dent learns to read the textual material by himself, later making the 
passage to the reading of papers in the journals, which are more com-
pactly written and therefore more difficult to read. There are other 
ways in which the undergraduate student can develop his initiative. 
Without attempting an exhaustive list, we mention a few common pat-
terns. 

There are seminars and colloquia wherein the student makes re-
ports. There is the undergraduate thesis in which a student makes a 
contribution, original for him but not usually original in the larger 
sense. There is the developmental course, a version of the Socratic 
method, in which the student is led to develop a body of mathematical 
material under the guidance of the professor. The number of teachers 
who employ the developmental method completely is not large, but they 
are an enthusiastic band of people in their devotion to the procedure; 
a modified use of the developmental method is employed widely. Other 
devices have been developed to take advantage of special local condi-
tions, or in line with experimental ideas reflecting special interests. 

It would be desirable for all schools to give attention to the 
problem of enrolling the student actively in the study of mathematics, 
and so we urge that every pregraduate curriculum be designed to in-
clude some appropriate scheme. 
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Appendix A 

INTRODUCTORY UNDERGRADUATE MATHEMATICS 

Contained in this Appendix are three outlines for the proposed 
Introductory Undergraduate Mathematics program, each displaying an 
initial two-year sequence of idealized college mathematics. The 
three course outlines which follow have different points of view, 
and so they differ in emphasis and arrangement of material. The 
major mathematical differences are these: 

(1) Outline I includes a self-contained section on linear alge-
bra in the calculus but a separate course in differential equations. 
Outline II has a separate course in linear algebra but includes 
topics in differential equations in the main body. Outline III has 
no separate courses. It has a section on differential equations and 
develops linear algebra topics as they are needed to solve various 
problems in analysis. 

(2) Outlines I and II introduce integration before differentia-
tion while Outline III does the opposite. 

(3) Outlines I and II treat integration via step functions 
while Outline III approaches the integral as a linear functional on 
the space of continuous functions. 

(4) Outline II is more ambitious than Outline I. It includes, 
for example, a good deal of elementary point set topology in the 
second year. 

Aside from such explicit differences, there are some subtler 
distinctions in attitude between Outline III and the other outlines. 
A prime motivation of Outlines I and II is concern for the internal 
structure of calculus and of linear algebra; applications are made 
when appropriate. In these outlines the generalized Stokes theorem 
is a fitting climax because of the merging of concepts in algebra, 
topology, and analysis needed in reaching it and because of its im-
portant applications in mathematics and physics. The approach in 
Outline III is to develop mathematical concepts directly as needed 
for the solution of important problems that arise in mathematics and 
physics. In particular, linear algebra is so treated. In addition, 
Outline III is oriented more in the direction of classical analysis: 
more emphasis on inequalities; Stokes� theorem is thought of as but 
one of a number of important theorems beyond the traditional calcu-
lus. Outlines I and II are more rigid than Outline III, the atti-
tude being that these are the things juniors should know, and here 
is a reasonable order of doing it. Outline III is more flexible, 
the attitude being: it is more important to learn how mathematics 
is developed to solve problems than to insist that the students know 
a given amount of mathematics. 
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INTRODUCTORY UNDERGRADUATE MATHEMATICS 

Outline I , First Year 

Functions of One Variable and Linear Algebra 

1. Review of function concept, the algebra of real numbers, 

order. Algebra of functions. 

2. The historical background of the calculus: the problem of 

areas, the problem of tangents, the problem of instantaneous veloc-

ity. Heuristic discussion of area as an additive set function whose 

value is determined on rectangles. Transition to the integral of a 

function via negative areas. Definition of the integral of a step 

function. Uniqueness. The integral as a positive linear functional 

on the family of step functions on an interval. 

3. Extension of the integral to other functions via upper and 

lower approximation by step functions. The family of integrable 

functions on a bounded closed interval. Show this family closed 

under addition and multiplication by scalars. The integral as a fi-

nitely additive interval function. Integrability of polynomials 

and the sine function (using summation formulae and trigonometric 

identities--the trigonometric functions are used here as learned in 

secondary school; precise definitions will come during the second 

semester). What other functions are integrable? 

4. Definition of continuity in terms of neighborhoods (open 

intervals). Statement that a continuous function on a bounded 

closed interval is integrable (proof postponed). The continuous 

functions are closed under addition and multiplication by real num-

bers. Statement of uniform continuity of a continuous function on 

a bounded closed interval. Derivation of this from axiom that such 

intervals are compact (defined in terms of coverings by open inter-

vals). 

5. Proof that continuous functions are integrable (using 

uniform continuity). Some applications of the integral: moments, 

energy, work, etc. 

6. Approximate integration (piecewise constant, linear, and 

quadratic approximation). Examples. The problem of a better method 
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of calculation awaits solution. Ways in which functions depart from 

continuity; kinds of discontinuity. This leads to definition of 

limit in terms of deleted neighborhoods. 

7. Continuity phrased in terms of limit. Continuity of com-

posites of continuous functions. Algebra of limits. Continuity of 

products and quotients of continuous functions. 

8. Problem of tangents. Heuristic geometric definition of a 

tangent line to a curve. Calculation of the slope of a nonvertical 

tangent leads to the derivative of a function. Problem of instanta-

neous velocity does the same. Examples. 

9. Rules for differentiation of sums, products, quotients, 

composites. Derivatives of identity function and of constant func-

tions give derivatives of rational functions. Derivative of sine 

function gives derivatives of trigonometric functions. 

10. Equations for derivatives from equations for functions 

give derivatives of algebraic functions (exact definition of frac-

tional exponents next semester). Calculation of tangents to various 

second-degree curves. Implicit definition of functions. 

11. Examples of maxima and minima problems. Attainment of 

maxima and minima by continuous functions on compact sets. Vanish-

ing derivative test. Rolle�s theorem and the Mean Value Theorem. 

Geometric interpretation. 

12. Application of Mean Value Theorem to determine where a 

differentiable function is increasing, decreasing, constant. Higher 

derivatives and the second derivative test for maxima (minima). In-

termediate Value Theorem on intervals. Applications to graphing. 

The Mean Value Theorem for integrals. 

13. The indefinite integral. Continuity of the indefinite in-

tegral of integrable functions. Derivability of same at points of 

continuity of the integrand, and evaluation of the derivative. 

Geometric interpretation of this theorem. 

14. Reduction of the problem of integration of piecewise con-

tinuous functions to that of finding primitives. Applications of 

this theorem: the practical solution of the problem of integration. 

15. New functions. Log defined by indefinite integral. Prop-

erties of log. Its derivative. Inverse functions in general. Case 
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in point: exp function. Its derivative and integral. 

16. The number e = exp(l). Arbitrary real powers of e in 

terms of exp. Arbitrary real powers of positive real numbers. 

Derivative and integral of � , a real. Definition of inverse 

trigonometric functions: the difficulty that trigonometric func-

tions are not on a solid foundation. This leads to problem of arc 

length. 

17. Analysis of arc length in terms of the integral. Defini-

tion of arcsine in terms of an indefinite integral. Other inverse 

trigonometric functions. Reprise of trigonometric functions, their 

derivatives and integrals, now solidly grounded. 

18. Difficulty of integrating log and arcsine leads to inte-

gration by parts. Substitution. Certain trigonometric substitu-

tions. Completion of square. 

19. Integration of rational functions. Functions not inte-

grable by elementary means leads to idea of uniform approximation. 

|J"f - Jg| s J*|f - g | . Sequences of numbers and their limits. Maxi-

mum norm of a continuous function. Uniform convergence of sequences 

of functions. Pointwise convergence. 

20. Taylor�s theorem with integral remainder. Same with deriv-

ative remainder. Notion of a power series. 

21. Series in general. Convergence of geometric series. 

Archimedean axiom introduced to prove L. U. B. theorem. Corollary: 

the Monotone Convergence Theorem. Comparison test. 

22. Existence of radius of convergence of a power series. 

Uniform convergence on bounded closed intervals within the interval 

of convergence. Invariance of the radius of convergence under for-

mal differentiation and integration. Justification of term-by-term 

differentiation and integration. 
2 3 

23. Parametrized curves in R and R . Reprise of function 
2 3 

idea. Linearly parametrized lines in R , lines and planes in R are 
2 3 

functions. Addition of points in R and R and multiplication by 

real numbers introduced as a notational convenience. Definition of 

Rn, curves in Rn, vector operations in R n. Linear and affine func-

tions from R n to R�. Linear equations in terms of a single linear 

function equation. 
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24. Properties satisfied by the vector operations in R . 

Abstract notion of a vector space over R; linear and affine func-

tions between vector spaces. Examples: function spaces, differen-

tiation, definite and indefinite integral. Vector and affine sub-

spaces: reprise of examples from Section 23, polynomial subspaces, 

solution space of a system of linear equations, direct and inverse 

images of affine subspaces under affine functions. 

25. Dimension and linear independence, linear span. Basis. 

The standard basis of R n. Representation of an �-dimensional vec-

tor space as R n. 

26. Representation of linear transformations with respect to 

bases. Matrix notation. The standard matrix of a linear transfor-

mation from R n to R�. The algebra of linear transformations and 

matrices. 

27. Change of basis and similarity of matrices. Reprise of 

systems of linear equations as a single linear transformation equa-

tion. Rank and nullity theorem; Matrix notation for linear equa-

tions. (Column) rank and nullity of a matrix. General theorems on 

the dimension of the solution space of a linear system. 

28. Elementary column operations and column equivalence of 

matrices. Echelon form of matrices. The use of this form to solve 

linear systems explicitly; comments on the numerical problem in-

volved. 

Outline I, Second Year 

Functions of Several Variables and Linear Algebra 

1. Review of cartesian products of sets. Cartesian products 

of � vector spaces. Multilinear functions with values in a vector 

space. Sums and real multiples of these. 

2. Explicit solution of 2 X 2 and 3 x 3 systems of equations 

motivates notion of determinant. The determinant as a function of 

the columns of a matrix: multilinear, alternating, and unimodular 

on the standard ordered basis of R n. The permutations of {1, n}. 

Theorem: Let X , , . . . . X be an ordered basis of V and let 
1� � � 

Y 6 W; then there is a unique alternating multilinear function F 
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such that F(X^, ..., X^) = Y. Corollary: existence and uniqueness 

of the determinant, and an explicit formula for it. Corollary: the 

basis-free definition of the determinant of a linear transformation. 

3. Multiplication of determinants; the group of nonsingular 

linear transformations. Theorem: An alternating m-linear function 

on an �-dimensional vector space, m > n, is necessarily zero. The 

solution of the equation F(X) = A where F is a linear transforma-

tion from V into itself. Cramer�s rule. 

4. Invariant subspace of linear transformations; internal 

direct sums of subspaces. Consequences for matrix representation. 

One-dimensional invariant subspaces. The characteristic equation 

and eigenvalues. Cayley-Hamilton theorem. 

5. Discussion of length and angle leads to notion of inner 

product. Length and norm. Schwarz inequality and definition of 

angle. Example of the integral inner product on the continuous 

functions on [a, b ] . Trigonometric polynomials of order £ m. 

Orthonormal basis and the Gram-Schmidt process. The standard form 

of the inner product. 

6. Symmetric and orthogonal linear transformations and mat-

rices. Polar decomposition. Diagonalization theorem. 

7. Application to conies and quadrics. Volume of a parallele-

piped in terms of determinant. Orientation: defined by alternating 

function. Cross product in dimension 3, given an inner product and 

an orientation (use representation theorem for real-valued linear 

functions). 

8 . Neighborhoods of points as open spheres. Continuous func-

tions between vector spaces with inner product, or more generally 

with a norm. Examples, including the continuity of the integral in 

the uniform norm. A linear transformation between two finite-dimen-

sional inner product spaces is continuous. 

9. Open and closed sets. Continuity in terms of open sets. 

Unions and intersections of open and closed sets. Interior, closure, 

and boundary of a set. Sequential limits. Characterization of pre-

vious notions using sequential limits. 

10. Limit points in general. Theorem: An infinite subset of 

a compact (Heine-Borel) set S always has a limit point in S. 
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Corollary: compact sets are closed. Closed subsets of compact sets 

are compact. Continuous images of compact sets are compact; real 

continuous functions on a compact set attain their maxima. 

11. Closed bounded sets in a finite-dimensional normed vector 

space are compact. Corollary: any two norms on a finite-dimensional 

normed vector space are equivalent. Cauchy criterion and complete-

ness for a finite-dimensional normed vector space. 

12. Uniform continuity of continuous functions on compact sets. 

Sequences of functions and uniform convergence of same. Complete-

ness of space of continuous functions. Ascoli�s theorem. 

13. Connectedness; the Intermediate Value Theorem for real-

valued functions. 

14. Problem of volume in R n. Heuristic discussion of volume 

as an additive set function whose value is determined on boxes. 

Problem of bad boundaries. 

15. Volume of a domain with nice boundary. The integral de-

fined in terms of step functions and its connection with signed vol-

ume under a hypersurface. The integral as a uniformly continuous 

positive linear function. 

16. The integrability of continuous functions. The integral 

as a finitely additive set function. Differentiability of set func-

tions. 

17. Characterization of uniformly differentiable set functions. 

Reduction of multiple integration to iterated integration, calcula-

tion. Setting up iterated integrals. 

18. Functions on open domains. The derivative 

F ( X ) Y ) . L L M F ( X + tY) - F(X) ^ 

t-0 t 

Class C^ and the linearity of F�( x,*)• Geometric interpretation. 

Interpret F(XQ ) + F � ( X

0 » X " X Q ) a s "best" affine approximation 

to F at XQ. Matrix representation of F � ( X , - ) and partial de-

rivatives . 

19. Mean Value Theorem. Higher derivatives defined recur-

sively : 
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F C n V , � ..., � ) 1 � 

F ( n - 1 } ( X + tYn, T l f - , � ^ ) - F ^ g , Y l t ..., � ) 
= lim 7 

t->0 t 

The differentiability classes C n . Symmetry and linearity of 

F ( n \ x , � , •) with F g C n . Taylor�s formula. 

20. Derivatives of composites and the ordinary chain rule 

(a matrix equation). Jacobians. Local one-one theorem for 

J ^ 0. Differentiability of invertible F with J ^ 0. 

J(F _ 1 ) = J(F)" 1. 

21. Implicit Function Theorem. Critical points. Lagrange 

multipliers. 

22. Formula for volume change under Ĉ " function. 

J*f = J*(f oF) I J(F) I . This leads to notion of a dif f erentiable n-form 

on Rn: w(X, Y^, Y

n ) > alternating multilinear in the Y�s. 

23. Heuristic arguments concerning work and total flux in-

tegrals lead to notions of a differential p-form on an n-dimensional 

vector space and the definition of the integral of same over a para-

metrized p-cell. Singular simplices. Differential p-forms as func-

tions from differential simplices to the reals. 

24. Representation of 0-forms by real functions and (given a 

scalar product) of 1-forms by vector fields. Representation of 

(n - l)-forms by vector fields and �-forms by real functions, given 

a scalar product and an orientation. The integral of a differential 

p-form over a totally nondegenerate singular p-simplex is independ-

ent of the parametrization. 

25. d: 0-form -� 1-form, by taking the derivative. The 

gradient. The extension of the notion to p-forms by differentia-2 

tion and skew-symmetrization. d = 0 . Divergence and (dim V = 3) 

curl of a vector field. Curl � grad = 0; div 0 curl = 0. 

26. Multiplication of forms as ordinary multiplication of 

functions skew-symmetrized. Representation of forms with respect 

to coordinate functions; d in terms of a coordinate system. 

27. Stokes� theorem over standard �-cell in R n. General case 

of Stokes� theorem, classical Stokes� theorem, Gauss� theorem, 
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Green�s theorem, and the Fundamental Theorem of the Calculus. The 

meaning of curl and div in fluid dynamics. 

Outline I, Differential Equations 

An adequate preparation for the course outlined here is the 
successful completion of the first one-and-a-half years� work of 
Outline I. 

The course is designed for a semester 

(i) to give the student the basic existence and uniqueness 
results for ordinary differential equations and systems 
of equations; 

(ii) to develop in detail the properties of solutions of some 
important types of linear systems—constant coefficients, 
analytic coefficients, and systems with regular singular 
points--by exploiting the student�s earlier preparation 
in linear algebra; and 

(iii) to introduce the student to some topics of current re-
search interest: stability of nonlinear systems, eigen-
value problems, elementary partial differential equa-
tions. 

1. Complex numbers. Complex-valued functions. Polynomials. 

Complex series and the exponential function. Complex n-dimensional 

space and functions defined on it. 

2 . Examples of problems involving differential equations: 

Newton�s laws of motion, heat flow, vibration problems. Initial 

value problems and boundary value problems. 

3. Local existence of solutions to initial value problems 

for y� = f(x,y), where x, y real and f real-valued. The 

method of successive approximations (fixed point theorem), using a 

Lipschitz condition. The polygon method, using the Ascoli lemma. 

Nonlocal existence, using a Lipschitz condition on f in a strip 

|x - X Q | S a, |y| < co. Approximations to, and uniqueness of, solu-

tions. Extension of results to case where � real, y complex, 

f complex-valued. 

4 . Existence and uniqueness for systems using vector, and 

vector-valued, functions. Extension of material in Section 2 to 

this case. Example: central forces and planetary motion. 
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Applications to equations of � order. 

5. General results on homogeneous linear systems y� = A(x,y) 

where A is linear in y � C n . The space of solutions as a vector 

space of dimension n. Nonlocal existence in this case. The solu-

tion of the nonhomogeneous system y� = A(x,y) + b ( x ) . Application 

to linear equations of nt b" order. 

6. Linear systems with constant coefficients y� = A(y). 

Explicit structure of space of solutions using exp A, and assuming 

Jordan canonical form for A. Explicit form that variation of con-

stants takes in this case. Application to n t b - order equations. The 

case � = 2 in detail. 

7. Linear systems with analytic coefficients (convergent 

power series as coefficients). Solutions as convergent power series. 

Application to n t n - order equations. Example: the Legendre equa-

tion. 

8. Linear systems with regular singular points: y� = � ^A(x)y, 

with A having convergent power series expansion. Structure of 

solution space using � = exp(A log x ) . Application to second-

order equations with regular singular points. Examples: the Euler 

equation and the Bessel equation. 

9. Introduction to nonlinear theory. Perturbations of two-

dimensional real autonomous systems. Classification of simple 

critical points. Phase portraits. Stability. Asymptotic stability. 

Relation of nonlinear case to linear approximation. 

10. Poincare-Bendixson theory (optional). 

11. Self-adjoint eigenvalue problems for second-order linear 

equations—the regular case. The space of continuous functions C-2 

as a linear manifold in L . The existence of eigenvalues using 

complete continuity of the Green�s operator in C-. Bessel�s in-

equality and the Parseval equality. Expansion theorem. 

12. Second-order linear partial differential equations. Class-

ification: hyperbolic, elliptic, parabolic. Equations with con-

stant coefficients. Typical initial and boundary value problems in 

each case. Application of results in Section 11. 
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Outline II, First Year 

Functions of One Variable 

1. Functions and the real numbers. Review of the general con-

cept of function. Characterization of the real numbers, the Archi-

medean axiom, and suprema. The algebra of real functions defined on 

a set, polynomial functions from the reals to the reals. 

2. The problems of area. Historical background, including the 

work of Archimedes. Heuristic discussion of the problem of defining 

area as an additive set function whose value is determined on rec-

tangles. Transition to the integral of a fuction via negative areas. 

Definition of the integral of a step function, uniqueness. The in-

tegral as a positive linear functional on the family of step func-

tions on an interval. 

3. Extension of the integral to more general functions. Upper 

and lower approximations. The family of integrable functions on a 

bounded closed interval. The observation that this family is closed 

under addition and scalar multiplication. Discussion of some func-

tions which are integrable, monotone functions, sums of monotone 

functions. Integration of some explicit functions such as polynomial 

functions and some of the trigonometric functions, assuming that at 

least an intuitive definition of these functions together with their 

principal algebraic and geometric properties has been learned in an 

earlier study of mathematics. Approximations to the integral and 

estimates of error. 

4. Continuous functions. Definition of continuity in terms of 

open intervals. Observation that the continuous functions are closed 

under both addition and multiplication. Continuity of the polynomial 

functions. Derivation of uniform continuity of a continuous function 

on a closed bounded interval, assuming such intervals are compact 

(defined in terms of coverings by open intervals). 

5. Integrability of continuous functions. Applications of 

integrals to problems such as calculating areas, moments, work, and 

energy. 

6. Approximations to the integral. Piecewise constant, linear, 

and quadratic approximations. Estimates of error. Ways in which 
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functions depart from continuity; discontinuities. Definition of 

approximations. 

7. The algebra of continuous functions. Continuity in terms 

of limits. Continuity of composites, products, and (under appropri-

ate circumstances) quotients. The algebra of limits. 

8. Historical backgound of the problem of tangents. Heuristic 

geometric definitions of the tangent to a curve at a point. The 

problem of velocity. Definition of the derivative of a function. 

Derived function and its geometric interpretation as the function 

which to every point assigns the slope of the tangent of the original 

function. 

9. Formal differentiation. Derivation of rules for calculat-

ing derivatives of sums, products, quotients, and composites. Numer-

ous calculations to develop techniques. Algebraic functions. Cal-

culation of tangents to various second-degree curves. Implicitly de-

fined functions. 

10. Maxima and minima. Proof that a continuous function on a 

closed bounded interval attains its maximum. Criteria for determi-

nation of maxima. Vanishing derivative test. Introduction of the 

second derivative. Sufficient conditions for local maxima. Graphs, 

geometric ideas of convexity, and maxima. Interpretation of the 

second derivative as acceleration. Rolle�s theorem and the Mean 

Value Theorem. Intermediate Value Theorem on intervals. Applica-

tion of the preceding to problems involving graphing, velocity, and 

acceleration. The Mean Value Theorem for integrals. 

11. Relation between integration and differentiation. The in-

definite integral, and continuity of functions defined by integra-

tion of integrable functions. Differentiability of such functions at 

points of continuity of the integral. Geometric interpretation of 

the preceding. Piecewise continuous functions and reduction of the 

problem of integrating such functions to the problem of finding 

primitives. Various calculations via this last result. 

12. Functions defined by integrals. The logarithm function and 

its properties. Inverse functions in general. The exponential func-

tion and its properties. The number e = exp(l). Arbitrary real 

power of e and hence of any positive real number. 
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13. Methods of integration. The difficulty of integrating 

the logarithm function. Integration by parts. Substitutions, in-

cluding certain trigonometric substitutions. Completion of the 

square. Integration of rational functions. 

14. Uniform approximation. Functions not integrable by ele-

mentary methods. Approximations of the integral of such functions 

by approximating the function itself uniformly by functions with 

elementary integrals. Sequences of numbers and their limits. The 

sup norm of a continuous function. Uniform limits of continuous 

functions. Space of continuous functions closed under uniform 

limits. Pointwise limits. 

15. Taylor�s theorem with remainder. Various forms of the 

remainder. Use of Taylor�s theorem to approximate functions by 

polynomials; estimates of the error of approximation in concrete 

examples. The idea of a power series. 

16. Series in general. Infinite series of real numbers. Var-

ious tests for convergence, including the comparison test, n t b root 

test, and the ratio test. Power series. Radii of convergence of 

power series and their determinations. Uniform convergence of the 

partial sums on bounded closed intervals within the interval of con-

vergence. Proof of the invariance of the radius of convergence under 

formal differentiation and integration. Justification of term-by-

term integration and differentiation. 

17. Further properties of power series. The algebra of power 

series converging in a fixed radius. Analytic functions, Taylor�s 

theorem, and power series. The possibility of defining functions by 

means of power series. The power series for certain classical func-

tions, particularly the exponential. Possibility of defining sine 

and cosine functions by power series and observation that this would 

eliminate the difficulty that they have not been well-defined until 

this time. 

18. Definition of R n as �-tuples of real numbers. Distances 

and limits in R n, the norm, and perpendicularity. R^ and R"* dis-

cussed explicitly, together with the physical intuition concerning 

them. Addition and scalar multiplication in R n. Linear functions 

mapping intervals in R^ into R n, with particular attention to lines 
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2 3 
in R and R . 

19. Integration of functions from intervals to R n. Observa-

tion that in the definition of the integral of real functions, it 

was important that the domain be a subset of the line, but that only 

certain properties of the range entered. Introduction of some ex-

amples. Differentiation of functions from intervals to R n . The 

derivatives of such functions are defined directly, and then it is 

observed that they could have been obtained from the coordinate func 

tions. 

20. Curves in R n and their tangents. Newton�s laws of motion 

Two curves f, g meet at a point t if f(t) = g(t). Their order 

of contact at such a point is the largest integer � such that 

|f(s) - g(s)| 
lim = 0, 
s-t | s . t | n 

or �= if no such integer � exists. Tangent lines and the order � 

contact of a tangent line with a curve. 

21. Taylor�s theorem for functions from an interval to R n. 

Geometric relation of Taylor�s theorem with the order of contact of 

a curve and a "polynomial" curve. Approximation of a curve by "poly 

nomial" curves. Arc length in R n studied carefully. Inverse trigo-
2 

nometric functions and arc length in R . Principal normal to a 2 3 

curve. Curves in R and R and their curvature. The osculating 

circle as an approximation to such a curve. 

22. Velocity, acceleration, Newton�s laws of motion. Other 

physical problems involving differential equations (e.g., vibrating 

string). Families of curves and differential equations. Solutions 

of certain simple differential equations. Initial and boundary 

value problems. 

23. First-order differential equations. Approximation to 

solutions. Lipschitz condition and the existence and uniqueness of 

solution, both local and nonlocal, by the Picard method. Cauchy�s 

proof of existence. Examples of differential equations with dis-

tinct solutions passing through a point. Application to central 

forces and planetary motion. 

24. Power series and linear differential equations with 
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analytic coefficients. Existence of solutions. The possibility of 

defining functions as the solution of certain differential equations, 

illustrated by examples such as sine and cosine. Derivation of 

properties of the sine and cosine from their defining differential 

equations. 

Outline II, Second Year 

Topology and Functions of Several Variables 

1. Definition of topological space; continuous mappings in 

terms of open sets. Definition of metric space, the associated 

topological space of a metric space, continuity at a point for func-

tions mapping one metric space into another, and the equivalence of 

continuity with continuity at all points. The examples of Euclidean 

spaces, spheres, and real projective spaces (defined as quotients of 

spheres). 

2. Subspaces, quotient spaces, and product spaces of topo-

logical spaces; restriction of continuous mappings. Subspaces and 

product spaces for metric spaces, and relation with the same opera-

tions on topological spaces. The examples furnished by Euclidean 

spaces and tori. 

3. The notion of Hausdorff space, and proof of its stability 

under the operations of taking subspaces or products. Observation 

that metric spaces are Hausdorff. Examples to show that quotient 

spaces of Hausdorff spaces are not necessarily Hausdorff. 

4. The notion of compactness defined for a Hausdorff space by 

the finite covering property. Closed bounded subsets of Euclidean 

spaces are compact. Proof that a metric space is compact if and only 

if it is complete and totally bounded. 

5. Tychonoff�s theorem for finite products. The notion of 

local compactness, and proof that finite products of locally compact 

spaces are locally compact. Euclidean spaces and tori. 

6. Introduction of complex numbers. Real and complex topo-

logical vector spaces. Uniqueness of the topology on finite-dimen-

sional vector spaces. 

7. Real and complex projective spaces as the lines in real or 
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complex �-space. Equivalence of this definition of real projective 

space with the earlier definition. Complex projective spaces as 

quotient spaces of spheres. Properties of quotient spaces when the 

set of points equivalent to any point is compact. Conditions in-

suring that the quotient of a metric space is metric. 

8. Inner products and norms on topological vector spaces. 

Equivalence of norms of finite-dimensional vector spaces. Isometry 

of Inner product spaces having the same dimension. Cauchy criterion 

and completeness. 

9. Uniform continuity of continuous functions on compact sets. 

Sequences of functions; the proof that the set of continuous func-

tions is complete. Ascoli�s theorem. 

10. Connected spaces and components. Continuous images of 

connected spaces are connected. The Intermediate Value Theorem for 

real-valued functions on connected topological spaces. 

11. Contraction maps in metric spaces and the fixed point 

theorem for contractions in complete metric spaces. Relation of this 

theorem to Picard�s method for the existence of solutions of ordinary 

differential equations in open domains in Euclidean space. 

12. General results on homogeneous linear systems of differen-

tial equations. The solution space. Nonhomogeneous systems. Appli-th 

cations to linear equations of the � order. 

13. Linear system with constant coefficients. Explicit struc-

ture of the solution space using Jordan canonical form and exponen-

tial. Application to nt b-order equations. 

14. Integration and volume in Euclidean spaces. Volume of 

boxes. Domain with smooth boundaries; difficulties involved with 

bad boundaries. Integral defined using step function and shown to 

be a uniformly continuous positive linear function. Integrability 

of continuous functions. The integral as a finitely additive set 

function. Reduction of multiple integration to iterated integration. 

Examples and calculations using iterated integrals. 

15. The idea of two functions, defined on a domain in Euclidean 

space with values in a Euclidean space, touching at a point. Ex-

plicitly, two continuous functions f and g have order of contact 

� at � if 
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|f(y) - g(y)| 
lim = 0, 
^ � |� - y| n 

and touching means order of contact 1. Proof that if an affine 

function touches f at x, then it is unique; f is defined to 

be differentiable at � if such an affine function exists. Contin-

uously differentiable functions. 

16. Geometric implications of order of contact with particular 

emphasis on touching. Connection of differentiability with differ-

entiability along lines and with affine approximations. Examples, 

formulae, and matrix representation using the standard coordinates 

in Euclidean space. 

17. Mean Value Theorem. Recursive definition of higher deriva-

tives. The class of �-times continuously differentiable functions. 

Taylor�s formula, and proof that an �-times differentiable function 

f has order of contact � at � with the standard approximation 

to f obtained using the first � derivatives of f at x. 

18. Derivatives of composite functions, the chain rule using 

linear transformations. The Jacobian matrix; examples involving the 

Jacobian matrix. 

19. The Inverse and Implicit Function Theorems in geometric 

form. Their formulation using coordinates. Invariance of domain 

under diffeomorphism. 

20. Changes of volume induced by a continuously differentiable 

function. Calculations for a range of examples. The notion of an 

�-form on a domain in �-space; connection with volume and volume 

change. 

21. Intuitive discussion of differential forms on Euclidean n-

space, their use in Newtonian mechanics. Intuitive description of 

the integral of a q-form over a differentiable singular q-simplex. 

22. Exterior algebras for finite-dimensional vector spaces. 

Morphisms of same induced by linear transformations. Orientations 

of real vector spaces via the exterior algebra. Duality between q-

fonns and (n-q)-vectors in an oriented vector space. 

23. Introduction of differential forms and vector fields on 

domains in Euclidean space. Duality between q-forms and fields of 
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(n-q)-vectors. Integration of differentials over differentiable 

singular chains. 

24. The star isomorphism in the exterior algebra of a Euclid-

ean vector space and its extension to forms and vector fields on a 

domain in Euclidean space. Morphisms of forms and vector fields in-

duced by differentiable functions. 

25. The connection of integration of �-forms over singular 

�-chains in domains in �-space with the integration of functions 

defined earlier. Subdivision of domains with smooth boundary and 

singular chains. Volume, exterior algebras, determinants, and the 

idea of a Riemannian metric. 

26. The exterior derivative and its properties. Connection 

with gradients; further geometric ideas. Poincare lemma for convex 

regions. Interpretation of Poincare lemma in terms of existence of 

solutions of differential equations. Exact equations, integrating 

factors, and calculations in low dimensions. Special properties of 

3-space. Curl, divergence, and the exterior derivative. 

27. The general Stokes theorem integrating q-forms over singu-

lar q-chains. Classical form of Stokes� theorem, including Gauss� 

theorem, Green�s theorem, and the Fundamental Theorem of Calculus. 

Physical interpretations: study of flows, charges, etc. 

28. Further applications of the calculus of differential forms 

to physical problems, including Maxwell�s equations in both Newtonian 

and relativistic form. Hamilton�s equations in dynamics. 

Outline II, Linear Algebra 

This one-semester course, as part of Outline II, presents sepa-
rately the fundamental notions of linear algebra which are recommended 
as suitable for Introductory Undergraduate Mathematics. The course 
can be presented during any part of the first two years that is 
deemed appropriate for the students involved. 

It is noted here that Chapters 1 through 13 of this course are 
designated as prerequisite to the algebra courses outlined in Appen-
dix B. This is consistent with the amount of linear algebra in Out-
lines I and II of Introductory Undergraduate Mathematics. 
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1. The complex numbers and subfields of the complex numbers. 

The integers modulo p. 

2. Vector spaces and linear transformations. Examples of vec-

tor spaces, particularly spaces of �-tuples and spaces of functions. 

Subspaces, quotient vector spaces. Linear independence, generating 

sets, and the notion of basis. 

3. Dimension for finite-dimensional vector spaces, invariance 

of dimension, finite-dimensional subspaces of general vector spaces. 

Behavior of dimension with respect to subspaces and quotient vector 

spaces. 

4. Inner products for real vector spaces; length and volume. 

Euclidean vector spaces defined as finite-dimensional vector spaces 

with inner product. Orthogonal bases. Gram-Schmidt process and its 

relation to volumes. Subspaces, complementary subspaces, and their 

relation with quotient vector spaces. Lines, planes, hyperplanes, 

and distances. 

5. Hermitian vector spaces defined as complex vector spaces 

with a complex (Hermitian) inner product. Length of vector, volume 

of boxes, the associated Euclidean vector space of a Hermitian vec-

tor space. Orthogonal bases. Gram-Schmidt process and its relation 

to volumes. Subspaces, complementary subspaces; lines, planes, 

hyperplanes, distances. 

6. Recollection of definition of linear transformations. 

Definition of matrix; representation of linear transformations by 

matrices. Composition of linear transformations. Change of basis. 

7. Orthogonal, symmetric, and skew-symmetric transformations 

of Euclidean vector spaces; their relation with matrices and bases. 

8. Unitary, Hermitian symmetric, and skew-Hermitian transfor-

mations of Hermitian vector spaces; their relation with matrices and 

bases. 

9. Inductive definition of the determinant of a matrix. 

Relation of determinants to volumes of boxes. 

10. Permutations. New definition of determinant and equiva-

lence with the old. Multiplicative properties of the determinant. 

The determinant of orthogonal and unitary matrices, and of the trans-

posed matrix. 
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11. Inverses, adjoints, elementary matrices, and reduction to 

diagonal form. Applications to systems of linear equations. 

12. Proof that in a Euclidean space any nonsingular linear 

transformation is the product of a positive-definite symmetric trans-

formation and an orthogonal transformation. The idea of Euclidean 

geometry. Invariance under rotations and translations. 

13. Proof that in a Hermitian space any nonsingular linear 

transformation is the product of a positive-definite symmetric trans-

formation and a unitary transformation. Hermitian geometry. 

14. Decompositions of a vector space into irreducible cyclic 

subspaces relative to a linear transformation. Jordan canonical 

form. 

15. Definition of minimal polynomial. The characteristic poly-

nomial as a product of certain minimal polynomials of irreducible 

subspaces of a cyclic decomposition. 

16. Characteristic vectors, characteristic values, relations 

with the characteristic polynomial. Special cases involving orthogo-

nal, symmetric, unitary, and Hermitian symmetric transformations. 

Outline III, First Year 

Functions of One Variable 

The questions of what to teach in calculus and how are notori-
ously difficult to answer, and the answer has to be reargued by each 
generation. The main difficulty is that calculus has to be both 
problem-oriented and theory-oriented. The former means that the 
student must be made aware of how theories arise to deal with con-
crete problems, that these concrete problems often originate in the 
external world, and that the external world is an important source of 
our intuition (and of our aesthetic criteria). The latter means that 
the basic concepts should be introduced in the same spirit in which 
they are used by working mathematicians, and that proofs ought to 
have the same clarity and elegance which distinguishes all first-rate 
mathematics. 

Fortunately, the two views do not conflict but complement each 
other: to demonstrate how an abstract theory is developed to deal 
with a concrete problem and unify what is common in various problems 
is one of the most valuable lessons for budding young mathematicians, 
far more valuable than merely presenting the postulates for real 
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numbers or the axioms of linear algebra. 

The choice of subjects and their arrangement is not entirely 
rigid, e.g., the construction of the real numbers, which is put at 
the beginning, can just as reasonably be done later. The same goes 
for the uniform continuity of continuous functions over compact in-
tervals . 

1. Real numbers. The intuitive notion of the continuum of 

real numbers. The gaps in the rational numbers (Pythagorean theorem); 

construction of the real number system, either by nested intervals, 

Dedekind cuts, or infinite decimals. The topology of real numbers; 

the algebra of limits. 

Three basic theorems: the real numbers are complete; closed 

bounded intervals are compact; a bounded set of real numbers has a 

supremum. 

Nondenumerability of real numbers, denumerability of rational 

and algebraic numbers. 

Mathematical induction. 

2. Analytic geometry. Points of 2-, 3-, and n-dimensional 

space as ordered �-tuples of real numbers. Addition, multiplication 

by scalars. Straight lines, convex sets, hyperplanes, linear sub-

spaces. Dimension of linear subspaces. 

Euclidean distance, scalar product, Schwarz inequality. Orthog-

onality. Gram-Schmidt process. 

Complex numbers. 

3. Differentiation. The concept of a function; illustration, 

graphical representation. Intuitive notion and rigorous definition 

of a continuous function. The algebra of continuous functions. 

Intuitive notion and rigorous definition of the derivative as 

slope and instantaneous velocity. Derivatives of polynomials. Alge-

braic rules for differentiating sums, differences, constant multiples, 

products, and quotients of functions. 

Differentiation of trigonometric functions, based on geometric 

definition. 

Linear approximation to functions; derivation of the chain rule. 

Local existence and differentiability of the inverse of a func-

tion with nonzero derivative. Newton�s method. 
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4. Integration. The intuitive notion of integral as signed 

area, work; examples of integrals which can be calculated by a direct 

passage to the limit. 

Existence of the integral of a uniformly continuous function 

over a finite interval. 

Basic properties of the integral: linearity, positivity. The 

Mean Value Theorem. 

The integral as function of its upper limit. Differentiation 

as the inverse of integration. The log function and its inverse. 

Statement of the theorem that a function with zero derivative is con-

stant. Integration as antidifferentiation. The inverse trigonomet-

ric functions. Techniques of integration, partial fractions, inte-

gration by parts, change of variables. 

Estimation of integrals, Stirling�s formula. 

Arc length, surface area, and volume of bodies of revolution. 

5 . More about continuous and differentiable functions. Three 

theorems about continuous functions: existence of maximum and mini-

mum over a finite closed interval, existence of intermediate values, 

and uniform continuity of continuous function in compact intervals. 

Proof of the Mean Value Theorem. Proof that if f1 = 0, then 

f is constant. 

Calculation of maxima and minima. 

Higher derivatives; their geometric and physical significance. 

Taylor�s theorem with remainder (both derivative and integral 

form). Taylor series for the exponential and trigonometric functions, 

the logarithm, the binomial series. Examples of functions [e.g., 
2 

exp(-l/x )] which are not represented by Taylor series. 

The notion of the maximum norm; uniform convergence. The com-

pleteness of the continuous functions under the maximum norm. Con-

tinuity of the integral with respect to the maximum norm. 

Termwise differentiation of series. 

The interval of convergence of a power series; calculus of con-

vergent power series. 

Improper integrals. 
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Outline III, Second Year 

Linear Algebra and Functions of Several Variables 

Again, the choice of subjects and their arrangement is not en-
tirely rigid. Sections 6 and 7 contain more advanced topics; some 
fraction of these may be covered if there is time. 

1. Vector- and matrix-valued functions and their applications 

in geometry and mechanics. Linear transformations of the plane and 

3-space into themselves; their description with the aid of matrices. 

Definition of a matrix as a linear transformation of R n into R m. The 

multiplication of matrices via the composition of transformations. 

Definition of symmetric, antisymmetric, and orthogonal matrices. 

Orthogonal matrices form a noncommutative group. Description of or-

thogonal matrices in two and three dimensions in terms of rotation 

and reflection. 

Curves in �-dimensional space as vector-valued functions. The 

notion of continuity and differentiability of vector-valued and 

matrix-valued functions. Algebraic rules for differentiating scalar 

and matrix products of functions. 

Arc length and curvature in 2- and 3-dimensional space. 

Orthogonal transformations depending on a parameter; their 

derivative expressed in terms of antisymmetric transformations. Geo-

metric interpretation as infinitesimal rotation. Introduction of 

vector product in 3-dimensional space. 

Mechanics: Newton�s laws for particles. Systems of particles 

acting on each other by central forces. Center of mass, the moment 

of forces. Rate of change of momentum, angular momentum, and energy. 

Motion of rigid systems of particles. Moment of inertia. 

2. Ordinary differential equations; application of some notions 

from linear algebra. Examples of differential equations from physics, 

chemistry, and geometry, and their explicit solution in terms of ele-

mentary functions. 

Radioactive decay, vibrating spring, law of mass action, two-

body problem, oscillation of electric circuits, trajectories of sim-

ple vector fields, etc. Examples where physical intuition suggests 

the qualitative behavior of solution: under- and over-damp, etc. 
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Examples of differential equations which cannot be solved ex-

plicitly: the three-body problem, etc. The need for a theory, i.e., 

existence and uniqueness theorems, qualitative estimates, and methods 

for finding approximate solutions. 

Statement and motivation of the existence and uniqueness theo-

rem for the initial value problem. Proof of uniqueness by conserva-

tion of energy in special situations (e.g., vibrating spring). Solu-

tion of analytic initial value problems by power series; recovery of 

the exponential and trigonometric functions. 

Difference methods for solving the initial value problem. 

Comparison of exact and approximate solutions in simple cases which 

can be handled explicitly. 

The fixed point theorem for contracting transformations of a 

complete metric space. Proof of the existence and uniqueness theorem 

(do it in the special but typical case of a single first-order equa-

tion) . 

The abstract notion of a linear space over the complex numbers. 

Dimension, coordinates. Linear transformations. 

The notion of an operator mapping a certain class of functions 

into another. Linear operators, linear differential operators. 

The set of solutions of a homogeneous linear differential equa-

tion forms a linear space. Calculation of the dimension of this 

space by the existence and uniqueness theorem. 

First-order matrix equations y� = A(t)y. The solution opera-

tor U(t) defined by y(t) = U(t)y. Solution of the inhomogeneous 

�� -1 
equation y� = A(t)y + f given by y(t) = U(t) ! U (s)f(s) ds. 

The algebra of scalar differential operators with constant 

coefficients: factorization, commutation. Main theorem: if 

L^, L^ are pairwise relatively prime, then the nullspace of 

their product is the direct sum of their nullspaces. Proof based 

on main lemma about relatively prime polynomials. Solution of 

(D - X)nu = 0 in terms of exponentials and polynomials. 

Existence of a complete set of generalized eigenvectors of a 

linear transformation of a linear space into itself, based on main 

lemma about polynomials. Triangular form of a matrix. 
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Differentiation transforms any solution of a linear differen-

tial equation with constant coefficients into another solution. The 

eigenvectors of this transformation are exponentials times poly-

nomials. 

The signature of a quadratic form. 

The spectral theory of symmetric matrices. Extremal property 

of eigenvalues. Positive-definiteness. Spectral theory of unitary 

matrices. 

Small vibrations of mechanical systems. Monotonic dependence 

of characteristic frequencies on the potential energy. 

Sturm separation theorem. Simple two-point boundary value 

problems. Characteristic frequencies, resonance. 

3. Differentiation of functions of several variables. Deter-

minants as alternating multilinear functionals. 

Open and closed subsets of �-dimensional space. Compactness 

of bounded, closed subsets. 

Functions defined on subsets of �-space. Continuity. Exist-

ence of maxima and minima on compact sets. Uniform continuity on 

compact sets. 

Differentiability at interior points in terms of approximation 

by linear functions. Chain rule. Partial derivatives of first order. 

Maxima and minima, stationary points. Geometric interpretation of 

grad f in Euclidean space as normal to surface f = const. Ex-

amples . 

Functions k times differentiable; approximation by polynomials 

of k4"*1 order. Higher partial derivatives; commutation of partial dif-

ferentiation. Classification of stationary points. Examples. 

Extreme values under side conditions; Lagrange multiplier. 

Vector fields; fields of force, gradient fields, conservation 

of energy, Newtonian potential. 

Mapping of �-space into m-space; Jacobian. Composition of 

mappings. Implicit and Inverse Function Theorem. 

Conformal mapping. 

The degree of a mapping, following the method of E. Heinz. 

Journal of Mathematics and Mechanics. 8 (1959), pp. 231-247. 
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4. Integration of functions of several variables. The intui-

tive notion of the integral in Euclidean space: volume, mass, momen-

tum, moment of inertia, potential of mass, etc. 

Rigorous definition, starting with the integral of continuous 

functions with compact support defined by using rectangles in a 

fixed orthogonal frame. Properties of the integral: linearity, 

positivity, translation invariance. 

Theorem. These properties characterize the integral up to a 

positive multiple. Proof: Let 1(f) be a linear, translation-

invariant, positive functional defined for all continuous functions 

with compact support. Denote by r(s) the "roof" function graphed 

below: 

Denote r(ms) by r (s). Every piecewise linear function whose 
m 

derivatives are discontinuous only at the points i/m, i an integer, 

can be expressed as a linear combination of r (s) and its trans-
m 

lates. In particular, 

m . 

r(s) =Y 1 - - r fs +-Y 
Li m m\ m/ 

Define now 

h(x) = � r(x ) 

j=l J 

h (x) = h (mx) . 
m 

Putting s = and multiplying we get 

h(x) = Y a. h fx + - ) , 
u> k,m m\ m/ 

k a multi-index, 
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> a. = m . 
/_, k,m 
k 

So, using the first two properties of I, we get 

1(h) = mnI(h ). 
m 

Every piecewise linear function £(�) in R n whose derivatives are 

discontinuous only on the hyperplanes � = i/m, i an integer, can 

be expressed as a linear combination of h and its translates. m 

This shows that 1(1) can be expressed in terms of 1(h). Since 

every continuous function f with compact support can be approxi-

mated by such piecewise linear functions, it follows that 1(f) can 

be expressed in terms of 1(h). 

Corollary 1. Volume integral = repeated integral. 

Corollary 2. Integral is independent of orthogonal frame 

chosen (consider functions which depend only on |�|)� 

Corollary 3. Under a linear change of variables, the integral 

is multiplied by a factor, which is a multiplicative functional of 

the matrix of the transformation. 

Corollary 4. This factor is the absolute value of the determi-

nant of the matrix of the transformation. (Proof by writing the 

matrix as a product of orthogonal and diagonal transformations and 

using the first three corollaries.) 

The formula for integration by parts: 

J" � � g dx = -f fg x dx 

j " j 

follows from Corollary 1. 

Integration over open sets. Intuitive notion of volume of an 

open set in terms of filling it up with cubes of unequal size. 

Rigorous definition: 

. i f s 1 in D 
V(D) = Sup f dx 

[ f s O outside D 

Corollary. Volume is unchanged under rotation and translation. 

Interpretation of determinant as volume. 

Intuitive notion of the integral of a function over an open 

set in terms of approximating sums over cubes of unequal size. 
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Rigorous definition: 
r � I g s f in D 
I f dx = Sup g dx 
J Q J g = 0 outside D 

Corollary. 

f £ dx 5 V(D)|fI 
J D - v �� �max 

Evaluation of integral over D by repeated integration when f is 

continuous up to the boundary of D and the boundary of D is nice, 

i.e., each line cuts it only in a finite number of places (convex 

domains and unions of convex domains). Examples. 

Change of variables in one-to-one multiple integrals: Let 

� -» y be a mapping of an open set D in x-space onto a set G 

in y-space with continuous first derivatives and nonzero Jacobian. 

Let f(y) be a continuous function with support in G. Then 

(*) �  f(y(x)) j£ dx = �  f(�) dy. 

Proof: Let �  p^(y) �  1 be a smooth partition of unity in y-space, 

gAy) = Pj(ny) a refinement of it. Write the left side of (*) as 

J �  g (y(x))f(y(x)) 

� " 
dx 

For j fixed, replace the Jacobian by its value at x., y(x) by 

a linear approximation to it. By Corollary 4 the resulting integral 

equals J g.(y)f(y) dy; the total error committed is easily esti-

mated and tends to zero with increasing n. 

Examples: Change to polar coordinates. Evaluation of various 

integrals, such as the error integral. 

Area-preserving maps. Canonical transformations. 

Domain with smooth boundary defined by possibility of smooth 

local parametrization. Proof that f(x) < 0 has a smooth boundary 

if grad f �  0. Intuitive notion of surface area. Definition by 

integral; independence of parametrization. Surface integrals. 

Integration by parts over domains with smooth boundaries. 

Continuous functions form a Euclidean space under scalar prod-

uct (f,g) = J* fg dx. Notion of a linear operator. Symmetry and 

positivity of the Laplace operator under boundary condition u = 0 
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or du/dn = 0. Analogy to symmetric positive matrices. Uniqueness 

of boundary value problem for the Laplace equation and the mixed 

initial and boundary value problem for the wave equation. 

5. Exterior forms. The Gauss and Stokes theorems in special 

cases. Their interpretation for flows and in the theory of electric-

ity and magnetism. 

Definition of exterior form, Grassmann algebra, differential 

of a function. 

Integration of forms over singular chains. 

The exterior derivative; gradient, curl, and divergence as 

special cases. The Poincare lemma. 

The general Stokes theorem. Applications to Cauchy�s integral 

theorem. 

6. Introduction to the calculus of variations. Examples of 

problems in the calculus of variations for functions of one variable. 

The general problem of finding extrema for 

The Euler equation; examples where Euler equation can be 

solved explicitly. 

Quadratic variational problems. Proof that the integral is 

definite if the underlying interval is short enough. 

The second variation; examples where the second variation is 

not positive (catenoid); conjugate points. Geodesies; example of 

the Poincare half-plane. 

Variational problems for functions of several variables. The 

Dirichlet integral. Plateau�s problem. 

7. Harmonic analysis. Fourier transform, Parseval�s formula. 

Convolution. 
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Appendix � 

HIGHER UNDERGRADUATE MATHEMATICS 

In this section we have placed one or more outlines for each 
of the courses which the Panel suggests should be provided by every 
college department undertaking the program and which are relevant to 
the central areas of mathematics: 

Real analysis 

Complex analysis 

Abstract algebra 

Geometry-topology 

Probability or mathematical physics 

It is not intended that these outlines shall be construed as 
completely determining the content of these courses; alternatives 
will be welcomed by the Panel. 

Real Analysis (One Year) 

This outline deals with the following three major topics in 
real analysis: 

(1) Various classes of generalized functions such as L^, L^, 
L , distributions, etc. 
GO 

(2) Measure theory 

(3) Nondiscrete decomposition 

These topics are basic in a wide variety of fields in analysis, such 
as the theory of differential equations, the calculus of variations, 
harmonic analysis, complex variables, probability theory, topological 
dynamics, spectral theory, and many others. 

We advocate presenting this material, notably that listed under 
(1), within the framework of general topology and functional anal-
ysis. The necessary background is developed in Sections 3, 4, and 5; 
to a certain extent this constitutes a review of material already 
covered in the Introductory Undergraduate Mathematics. As the out-
line shows, we believe strongly, as did the founding fathers, in 
dealing first with special cases and in presenting applications a-
long with the general theory. 

Perhaps our most radical departure from tradition is advocat-
ing the presentation of the notions of strong derivatives in the 
sense of Friedrichs and Sobolev, and distributions in the sense of 
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Schwartz, rather than the Lebesgue theory of differentiation. We 
feel that this is justified by the simplicity and general usefulness 
of the newer theories. 

There is more material presented here than would fit into a 
year�s course. Sections 8-12 are offered as a variety to choose 
from. The subjects in the first seven Sections are basic, but the 
material outlined is a little more than what is strictly necessary 
for a self-contained treatment. 

Fortunately, most of the subjects discussed in the outline are 
available in textbooks, although not all within the covers of one 
text. 

1. Set theory. Review of the terminology of set theory. One-

to-one correspondence, countable and uncountable sets; the uncount-

ability of the real numbers and of other interesting sets. Equiva-

lence relations, order. The Schroeder-Bernstein theorem. The axiom 

of choice and Zorn�s lemma. 

2. Real numbers. The construction of real numbers by comple-

tion (equivalence classes of Cauchy sequences). The compactness of 

closed, finite intervals. Hamel basis. 

3. Metric spaces. Definition, examples: the continuous func-

tions, L^, L^, L^; the Schwarz and Holder inequalities. Open and 

closed sets, dense and nowhere dense sets, separability. Bernstein 

polynomials and the Weierstrass approximation theorem; Chebyshev�s 

theorem on best approximation. 

Completeness and the process of completion. Fixed point theo-

rem and its application. Baire category theorem and its applications. 

Continuous functions; Tietze�s extension theorem. 

Compactness and local compactness, Arzela-Ascoli and Relllch 

compactness theorems and applications. 

4. Topological spaces. Definition, examples. Open and 

closed sets. Hausdorff spaces. Separability. Compactness; Stone-

Weierstrass theorem, Tychonoff�s theorem. Topological groups. 

5. Normed linear spaces. Hubert space: definition, ortho-

normal base, projection theorem, representation of linear functionals. 

Bounded operators, adjoints, symmetric and unitary operators. 

Banach spaces: definition, linear functionals, dual space, 

bounded linear operators. 
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Banach-Steinhaus theorem, applications. Hahn-Banach theorem, 

applications (moment problems). 

6. Integrals and measures. There are two competing approaches, 

neither of which should be slighted. (A) is functional analysis-

oriented with applications in classical analysis generally (e.g., 

orthogonal series, differential and integral equations, classical 

probability theory). (B) is measure-theoretical, with applications 

in stochastic processes, ergodic theory, and statistics. 

(A) The space C Q of continuous functions on a complete, 

locally compact metric space. Signed and complex measures. Rela-

tion of measures: absolute continuity, Radon-Nikodym theorem. Con-

vergence theorems. Fubini�s theorem. Riesz representation theorem. 

(B) Classical general measure-theoretic methods: outer meas-

ure, extension of a measure through outer measure, Kolmogorov con-

sistency criterion, conditional measures. Product measure. Mention 

of finitely additive measures. 

7. Differentiation. Functions in �-dimensional Cartesian 

space. Strong derivatives in the sense of Friedrichs and Sobolev. 

Sobolev�s theorem. Applications to differential equations. Schwartz 

theory of distributions; applications. 

Vitali covering theorem and differentiation almost everywhere. 

8. Applications to classical analysis. Orthonormal series, 

Fourier and other transforms, Riesz-Fischer theorem, Fourier trans-

forms of 1*2 and of tempered distributions. Convolution. Clas-

sical inequalities based on convexity. Theory of approximation. 

Applications. 

9. Integration on groups. Construction of the Haar measure. 

Examples. 

10. Measure spaces. Definition of an abstract measure space. 

Measure on the Cartesian product of a countable number of circles. 

Application: the convergence of random series. 

11. Banach algebras. Definition, the Gelfand theorem on the 

existence of multiplicative linear functionals. Applications to 

Fourier series and function theory. 

12. Spectral resolution of self-adjoint operators. The spec-

tral resolution of bounded, symmetric operators. The discrete, 
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singular, and absolutely continuous parts of the spectrum. 

Complex Analysis, Outline I (One Year) 

The first semester of this course, covering Sections 1-8, in-
cludes the standard elementary (but basic) topics from the theory of 
functions of one complex variable. The content of the second semes-
ter centers about the conformal mapping theorems for regions of fi-
nite connectivity, including the necessary tools for their proof. 
Other suitable topics for the second semester may be found in 
Selected Topics in the Classical Theory of Functions of a Complex 
Variable by Maurice Heins (New York, Holt, Rinehart and Winston, 
Inc., 1962) and in Banach Spaces of Analytic Functions by Kenneth 
Hoffman (Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1962). 

1. Complex numbers as ordered pairs of reals, field proper-

ties. Conjugate and absolute value, geometric properties. Polar 

representation. Stereographic projection and the extended plane. 

2. Elementary functions. The derivative. Analytic functions 

on open connected sets. Detailed treatment of examples: polynomials, 

rational functions, the group of linear fractional functions, expo-

nential and trigonometric functions. 

3. Conformal mapping by elementary functions. Proof that an 

analytic function is conformal at points where its derivative does 

not vanish. Specific conformal mappings. 

4. Integration along piecewise continuously differentiable 

curves. Cauchy�s theorem for rectangle and circular disk. Integral 

representation of the derivative. Morera�s theorem, Liouville�s 

theorem, and the Fundamental Theorem of Algebra. 

5. Taylor series development. Proof that the uniform limit of 

analytic functions is analytic. Classification of isolated singu-

larities—removable, poles, essential singularities. Zeros of non-

trivial analytic functions are isolated. Laurent series. 

6. Nonconstant analytic functions are open. The Maximum Mod-

ulus Theorem. Schwarz� lemma. The one-to-one analytic maps of the 

unit disk onto itself. 

7. Cauchy�s theorem and homology. Simply and multiply con-

nected regions. The Residue Theorem. Argument principle. Rouche�s 

theorem. Evaluation of definite integrals using the Residue Theorem. 
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Implicit Function Theorem. 

8. Analytic continuation. 

9. Meromorphic functions. Infinite products; the Weierstrass 

factorization theorem. Mittag-Leffler theorem. 

10. Compact families of analytic functions. Montel�s theo-

rem. Conformal equivalence of simply-connected regions. The Riemann 

mapping theorem. 

11. Harmonic functions. Elementary properties: Mean Value 

Theorem, maximum principle, isolated singularities. 

12. The Dirichlet problem for the disk, with continuous bound-

ary values. The Poisson integral. 

13. Applications of the Poisson integral: a continuous func-

tion having the mean-value property is harmonic, uniform limit of 

harmonic functions is harmonic. Harnack inequalities and conver-

gence theorem. 

14. Subharmonic functions. Elementary properties. Perron�s 

theorem. 

15. The Dirichlet problem for a region. Sufficient conditions 

for existence of a solution. Barriers. 

16. Green�s function for a region. Relation with conformal 

mapping of the region. Regions of finite convexity. Harmonic 

measures. 

17. Conformal mappings of regions of finite connectivity onto 

standard regions. 

18. The Hardy H^-spaces of analytic functions on the unit disk. 

(This Section assumes some knowledge of Lebesgue integration.) 

Fatou�s theorem; Herglotz�s theorem. 

Complex Analysis. Outline II (One Year) 

Complex analysis offers a unique opportunity to convince the 
young student who has only a minimal knowledge of algebra and topol-
ogy that these subjects can interact with analysis in a useful way. 
The aim in this outline is to present the few key concepts which are 
remembered by mathematicians of all fields. Simplicity and a hope to 
excite the student with continuing ideas are emphasized at the ex-
pense of an occasional time-honored result or point of view. It is 
assumed that the student will be familiar with topological concepts 
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appropriate to the plane, including properties of continuous mappings 
and of arcwise connectivity. 

1. The complex field. Characterization of the real field, 

complex numbers as pairs of real numbers, the complex field C as a 

field with valuation and conjugation as its automorphism, geometric 

interpretations, intuitive and rigorous adjunction of a point at in-

finity as a compactification of the plane. 

2. Power series. The ring of formal power series K[[x]J 

over a field K, operations with series (formal derivative, recip-

rocal, inverse), convergent series (K = R or C), uniform convergence 

of a series of functions, radius of convergence of a formal series, 

operations with convergent power series (differentiation, reciprocal, 

inverse), exponential function and logarithm functions. 

3. Analytic functions. Real and complex analytic functions 

defined as functions, on open sets, which are locally power series, 

and the algebra of functions analytic on a region D; principle of 

analytic continuation (uniqueness of continuation), zeros of an 

analytic function (discreteness), rational function, poles, the field 

of meromorphic functions on D. 

4. Integration. Differential forms � dx + Q dy = u), dif-

complex forms, homotopy, winding number of closed chain, generalized 

principle of argument, and Rouche theorem for mappings. 

5. Holomorphic functions, f is holomorphic at if 

f � ( Z p ) exists. Cauchy-Riemann equations, Cauchy theorem (if f is 

holomorphic in D, then f(z) dz is a closed form); existence of 

local primitives that are holomorphic, Cauchy integral representa-

tion, holomorphic functions are analytic, Morera�s theorem. 

6. Applications of integration. Liouville�s theorem, alge-

braic closure of C, Maximum Modulus Theorem, Open Mapping Theorem, 

Schwarz� lemma, Laurent representation, isolated singular points, 

residues, calculation of contour integrals, counting of zeros and 

poles of a meromorphic function, Schwarz reflection, doubly-

periodic functions. 

7. Functions of several variables. Formal power series in 

several variables, domain of convergence, operation with series, 

ferential chains �, integration exact chains, closed .forms, 
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analytic functions in several variables, principle of analytic con-

tinuation; harmonic functions, holomorphic functions are (complex 

variable) harmonic functions, every real harmonic function is 

(locally) the real part of a holomorphic function, harmonic functions 

are analytic. 

8. Global problems. The Riemann sphere, functions holomorphic 

in regions on the sphere, the fundamental group rr(D) of a region 

D , integration as a homomorphism of rr(D) into the additive group 

of C, generators of n ( D ) , the covering space of D and general 

solution of the problem Re(f) = u, where u is harmonic in D , 

subcovering spaces and normal subgroups of TT(D). 

9. Holomorphic function of several variables. Cauchy�s theo-

rem, Taylor�s theorem, composition of functions and the Implicit 

Function Theorem, statement of Hartogs� theorem. 

10. Spaces of holomorphic functions. The spaces C ( D ) and 

H ( D ) of functions continuous in D and holomorphic in D , funda-

mental theorems on convergence in compact sets in D , continuity of 

differentiation in H ( D ) , the univalent functions as a subset of 

H ( D ) , series of meromorphic functions, the Weierstrass periodic 

function; infinite products of holomorphic functions, representation 

of sin(rrz) and 1/�(�); closed bounded sets in H ( D ) are compact. 

11. Holomorphic mappings. Local properties of a mapping 

u) = f(z), special mappings, the conformal automorphisms of a disc, 

of the plane, and of the Riemann sphere; the Riemann mapping theorem. 

12. Analytic spaces. The general notion of an analytic space, 

holomorphic mappings of analytic spaces, meromorphic functions on an 

analytic space, fundamental theorem on conformal equivalence of sim-

ply connected analytic spaces, differential forms on an analytic 

space; Riemann surfaces, analytic continuation. 

13. Application to differential equations. Existence theorem 

and uniqueness theorem, dependence upon initial conditions, higher-

order equations. 
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Abstract Algebra (One Year) 

The purpose of this course is to introduce the student to basic 
structures of abstract algebra and to provide an introduction to ap-
plications to various branches of mathematics. The prerequisite for 
this course consists of the material in Chapters 1-13 of the semester 
course in linear algebra appearing in Outline II of Appendix A. 

The main body of the course is divided into nine Sections out-
lined below. This initial segment should cover approximately 5/3 
semesters; for the remaining 1/3 semester, five options are presented, 
each starting with Section 10 and each representing an introduction 
to further specialized study. 

1. Groups. Definition of groups and morphisms of groups. 

Notion of subgroup; quotient group. The permutation groups, repre-

sentation of any group as a group of permutations; groups of some 

regular solids. Groups of linear transformations. Orthogonal groups, 

unitary groups, etc. Abelian groups; abelianization of an arbitrary 

group. 

2. Commutative rings. The definition of commutative ring and 

discussion of examples including the integers, Gaussian integers, 

and the integers modulo n. Definition of ideal and quotient ring; 

further examples. The definition of field, integral domains, Euclid-

ean domains, and principal ideal domains. The Euclidean algorithm. 

Maximal ideals. The problem of unique factorization; proof that 

principal ideal domains are unique factorization domains. Examples 

showing that not all integral domains are unique factorization 

domains. 

3. Commutative rings. Definition of a commutative algebra. 

Polynomial algebras in a finite number of indeterminates, including 

both existence and universal properties. The polynomial algebra in 

one indeterminate over a field as a Euclidean ring. Proof that poly-

nomial algebras in a finite number of indeterminates over a unique 

factorization domain are again unique factorization domains. 

4. Modules over commutative rings. Definition of module, 

morphism, epimorphism, monomorphism, and isomorphism; examples in-

cluding vector spaces and abelian groups. Sums and products of mod-

ules including explicit constructions and universal properties. Ob-

servations that finite sums and products coincide. Exact sequences 
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of modules, submodule, quotient module, modules of morphisms. The 

fundamental decomposition theorem for modules over principal ideal 

domains; application such as a review of cyclic decompositions of 

•vector spaces and Jordan canonical form. 

5. Graded and exterior algebra. Representation of morphisms 

of finitely generated free modules by matrices; dual modules, dual 

bases, duals of morphisms; relation with matrices, transposes, etc. 

Graded algebras, commutative graded algebras; examples including free 

associative algebras, polynomial algebras. Exterior algebras, rank, 

invariance of dimension of free modules, traces, determinants via the 

exterior algebra. 

6. Polynomial algebras and finite-dimensional vector spaces. 

Given a vector space over a field and a linear transformation, the 

vector space becomes a module over the polynomial ring in one in-

determinate over a field. Cyclic decompositions. Minimal poly-

nomial and characteristic polynomials of linear transformations; the 

Cayley-Hamilton theorem. The Jordan and other canonical forms of 

matrices. Trace and determinant via the characteristic polynomial. 

Eigenvectors and eigenvalues. 

7. Field theory. Splitting field of a polynomial, prime 

factors, finite fields, and fields of fractions. Algebraic exten-

sions, separability, inseparability, norms and traces. Roots of 

unity, algebraic number field, the theorem of the primitive element. 

Algebraically closed fields; existence and uniqueness of the alge-

braic closure. 

8. Group theory. Isomorphism theorems for group theory. 

Composition series; Jordan-HSlder-Schreier theorem. Product of 

groups. The Remak decomposition for finite groups. Solvable groups, 

the Sylow theorems; examples. Further study of the permutation 

groups. Simplicity of the alternating group for � > 4 . 

9. Galois theory. Automorphism of fields, fixed fields of 

groups of automorphisms of the splitting field of a polynomial as a 

permutation group. Galois extensions defined using finite auto-

morphism groups; criteria for an extension to be Galois. Fundamental 

Theorem of Galois Theory from the Artin point of view; discussion of 

other proofs. Fields of fractions of polynomial rings. Galois 
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extensions with a symmetric group or Galois group, solvable exten-

sions and relations with solvability of equations by radicals. 

Option I: Algebraic Number Theory 

10. Rings of integers. Finite extensions of the rational 

number field; calculation of sample Galois groups. Definitions of 

rings of integers, calculations of the primes and prime ideal in 

various examples; examples of rings of integers in number fields 

which are not principal ideal domains, and examples which are prin-

cipal ideal domains but not Euclidean rings. Definition of Dedekind 

ring; proof that the rings of integers in finite separable extensions 

of the field of fractions of a Dedekind ring are again Dedekind. 

Various characterizations of Dedekind rings. Study of the rings of 

integers in quadratic extensions of the rationals. 

11. Dedekind rings and modules. Fractional ideals, classical 

ideal theory for Dedekind rings; examples. Modules over Dedekind 

rings; fundamental theorem for finitely generated modules. The ideal 

class group. Finiteness via Minkowski�s lemma. Class numbers. Fi-

nitely generated torsion-free modules are characterized up to iso-

morphism by their rank and ideal class, using the exterior algebra 

to determine the ideal class of the module. Calculations of ideal 

class groups for a few simple examples. 

12. Introductory algebraic number theory. Integral bases, 

examples, and proof of existence in general. Units, the cyclotomic 

fields, units in quadratic extensions. The Dirichlet-Minkowski 

theorem on units. Calculation of various examples. 

13. Further introductory number theory. Ramified and unrami-

fied primes; examples. Decomposition groups, ramification groups, 

etc.; examples. Abelian extensions. Cyclotomic and quadratic fields; 

quadratic reciprocity law. 
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Option II: Noetherian Rings and Modules 

10. Rings with minimum condition. Definition and fundamental 

properties, equivalence with descending chain condition. Correspond-

ence to rings with no nonzero nilpotent (left) ideals. Reduction to 

semisimple rings, matrix characterization of simple rings. Modules 

and their structure as sums of a minimal ideal, fields; quadratic 

specialization to vector spaces. 

11. Noetherian rings. Definition and fundamental properties, 

equivalence with ascending chain condition. Hilbert basis theorem. 

Normal decompositions. Correspondence with local rings, decomposi-

tions again. 

12. Dedekind domains. Definition and some equivalent notions. 

Characterization of ideals. Finitely generated modules, torsion-free 

characterization. Torsion modules, connections with matrices. Hil-

bert zero theorem. Special case: ideal theory for quadratic number 

fields. 

13. Representation theory of groups. Representation of degree 

� (over an algebraically closed field F whose character does not 

divide order of the group G), equivalent representations, connec-

tions with finitely generated left F(G)-module. Characters, equiva-

lence, direct sum decomposition, irreducible characters. Computation 

for the symmetric group. 

Option III: Geometry of Classical Groups 

10. Affine and projective geometry. Affine geometry; synthet-

ic approach and construction of a field. Desargues� theorem, Pappus� 

theorem and commutativity. Projective geometry, introduction and 

fundamental theorems. Examples of projective geometries; the pro-

jective plane. 

11. Quadratic forms. Definition of quadratic forms and their 

elementary geometry. Orthogonal quadratic forms, orthogonal sum of 

subspaces. Orthogonal geometry (especially over finite fields). 

Symplectic forms, symplectic geometry (especially over finite fields). 
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12. Orthogonal and symplectic groups. Euclidean orthogonal 

groups. General orthogonal groups, Clifford algebras, spinor norms. 

Structure of the orthogonal group; structure of the symplectic group. 

Option IV: Equations of Fifth Degree 

10. Representations of finite groups. Definitions and general 

properties of representations. Characters; complete reducibility 

(under the appropriate assumption concerning the characteristic of 

the field). Schur�s lemma; relations on characters (over the com-

plex numbers). Some computations for the symmetric group. Invari-

ants of finite groups. 

11. Equations of fifth degree. Ltiroth�s theorem; group of 

automorphisms of a rational function field of one variable. Deter-

mination of all finite subgroups (and their invariants for character 

zero); peculiarities of the modular case. The icosahedral equation. 

Bring�s equation. The icosahedral equation as resolvent of the gen-

eral equation of the fifth degree. Kronecker�s theorem on the non-

existence of rational resolvents for general equations of degree 

greater than or equal to five. 

Option V: Elliptic Function Fields 

10. Algebraic function fields of one variable. Places and 

valuations; completion of a field with respect to a valuation. Exist-

ence of places; order functions. Divisors and divisor classes. Dif-

ferentials. Special cases: partial fractions for rational function 

fields; Riemann-Roch theorem for elliptic function fields. Riemann-

Roch theorem for hyperelliptic function fields. Analogies with 

quadratic number fields. 

11. Algebra of elliptic functions. Algebraic group structure 

of a nonsingular plane cubic curve; the absolute invariant. Addition 

theorem for elliptic functions, multiplication and division of ellip-

tic functions. Divisor classes of finite order in an elliptic func-

tion field. Modular equations (e.g., their Galois groups). Euler�s 

theory of elliptic functions. Gauss� theory of the lemniscate. 
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Function-theoretic viewpoint. 

Geometry-Topology 

Aspects of point set topology are prerequisite to most begin-
ning graduate programs—e.g., metric spaces, compactness, connected-
ness, effects of continuous mappings on such properties, uniformly 
continuous mappings, Tychonoff�s theorem. A substantial part of 
this material is discussed in the Introductory Undergraduate Mathe-
matics, and it is not regarded as necessary that a separate course 
in point set topology be in the undergraduate curriculum. 

It is, however, highly desirable that every undergraduate take 
part in some sustained, deep geometric development. Such a variety 
of significant geometric developments is possible, differing in 
method and aim from the very start, that the Panel is reluctant to 
suggest any one or two of them as belonging to every undergraduate�s 
program. Instead, we propose a larger number of courses and recom-
mend that each student take one or two of them. The specific ones 
of these courses that may be offered in a given college depend on the 
interests and training of its staff. Hopefully, this will lead to a 
wide divergence in the types of geometers eventually produced. 

We have also felt that the hybrid title "Geometry-Topology" is 
more descriptive of this area than either title alone. 

Outline I. Set-Theoretic Topology (One Year) 

The set-theoretic topology included in the calculus course is 
limited to that needed for the multidimensional calculus. In this 
course it is developed in a more abstract setting. These techniques 
and results are then applied to study topological groups, covering 
spaces, the fundamental group, and 2-dimensional manifolds. 

The course outlined is a one-year course. However, Sections 10 
through 17 and 18 through 26 are independent. This permits various 
choices as determined by the interests of the group concerned. 

1. Hausdorff spaces. Compactness, local compactness, one-

point compactification, sequential compactness. Continuous, open, 

closed mappings. Uniform continuity. 

2. Connectedness, local connectedness, components. Preserva-

tion under mappings. Nonlocal connectedness. 

3. Product spaces, quotient spaces. The Hilbert cube. 

Hausdorff maximality principle or the axiom of choice. Product of 

compact spaces is compact. 
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4. Separability, 2nd countability. Countability arguments 

(Brouwer reduction theorem; i.e., irreducibility). Baire category 

theorem and general method of argument. 

5. Metric spaces, equivalent metrics, completeness, topologi-

cal completeness. Gg-sets. Baire category theorem in complete 

metric spaces. 

6. Urysohn�s lemma, Tietze�s extension theorem, metrizability 

for locally compact 2nd-countable Hausdorff spaces. Paracompactness 

and Smirnov metrization theorem. 

7. Upper semi-continuous and continuous decompositions of 

compact metric spaces. Hausdorff metric. Relationship of decom-

positions to mappings. 

8. Hahn-Mazurkiewicz theorem, arcwise connectivity. 

9. Characterizations of arcs and 1-manifolds. 

10. Topological groups, nuclei, quotient spaces. 

11. Projection mapping G -» G/H is closed mapping if � is 

compact. G is compact (locally compact) if � is compact and G/H 

is compact (locally compact). Examples: orthogonal and unitary 

groups, Stiefel manifolds. 

12. Local isomorphism of topological groups; G -» G/N is a 

local isomorphism if � is a discrete normal subgroup. If G and 

G� are locally isomorphic, there exists � with discrete normal 

subgroups � and N 1 so that G is isomorphic to H/N and G1 

is isomorphic to H/N�. 

13. Paths, homotopies of paths, fundamental group. Pathspace 

PX of a topological space X with base point e; continuity of 

projection map �: PX -* X� 

14. Pathspace of topological group is topological group and 

� is a homomorphism; �� is open, onto if X is a pathwise con-

nected, locally pathwise connected topological group. 

15. �� = TT - 1(e), e the unit of X, and fiQX, the identity 

component of X, are closed normal subgroups of PX; >E = ��/�^� 

is the universal covering group of X and �: �X -� X induced by 

�� is the covering map. The kernel of � is ��/��� and � is 

open, onto, continuous homomorphism if X is pathwise connected and 

locally pathwise connected. 
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16. If X is a pathwise connected, locally pathwise connected, 

semi-locally simply connected topological group, then �: X -> X 

is a local isomorphism with kernel � = ��/�^� = fundamental group of 

�; X is simply connected. 

17. In the class of all pathwise connected, locally pathwise 

connected, semi-locally simply connected topological groups which 

are locally isomorphic to one such group, there is uniquely, up to 

isomorphism, a simply connected group C* in the class, and for any 

C in the class, C*/N s C, where � is the fundamental group of 

C and is in the center of C*. 

18. Fundamental group of the unit circle (as topological 

group). Winding number of closed path in the plane relative to a 

point (as element of fundamental group of punctured plane). Funda-

mental Theorem of Algebra. Simple arc does not disconnect the plane. 

19. Jordan curve theorem. 

20. Arcwise accessibility of points of arcs and simple closed 

curves in the plane from their complements. Schoenflies theorem. 

21. Simplicial complex, abstract complex, geometric realiza-

tions and polyhedra. Imbedding theorem for �-dimensional complexes. 

Simplicial approximation theorem. Fixed point theorem for n-cells 

(Hirsch�s proof). 

22. Manifolds. Triangulability of compact 2-manifolds. 

Haupt-vermutung for compact 2-manifolds. 

23. Cuts and handles. Orientability. 

24. Invariance of Euler characteristic. Connectivity of 2-

manifolds. 

25. Classification of 2-manifolds. 

26. Bicollaring, Brown-Mazur theorem. 

Outline II. Algebraic Topology (One Year) 

This course introduces the student to the tools and techniques 
of homology theory through a continuation of the study of differen-
tial forms as in Outline II of the Introductory Undergraduate Mathe-
matics. For those with a background from Outlines I or III, several 
topics in Outline II must be studied first. 

421 



1. Differentiable manifolds of various classes, charts, 

atlases. Differentiable mappings. Orientation. 

2. Differential forms in coordinate neighborhoods, mor-

phisms, coordinate transformations. Differential forms on manifolds. 

3. Exterior derivative, effect on products and transformations 

and of iteration. The differential forms F*(M) on a differential 

manifold � and exterior derivative viewed as a cochain complex, 

with product. Contravariant homomorphism induced by differentiable 

mappings of manifolds; compositions. 

4. The standard and affine simplices in Euclidean space, face 

operation. Singular and differential chain group. Boundary of af-

fine and singular chains. Induced mappings and commutation with 

boundary, 39 = 0. Stokes� theorem on compact manifolds. 

5. Closed and exact differential forms; cycles and boundaries; 

cohomology of forms and homology of singular (differentiable) chains. 

Stokes� theorem establishing dualities between the various classes of 

forms and chains. Closed forms as linear functionals on homology 

classes. 

6. Definition of singular homology groups and the de Rham 

groups (i.e., graded quotients of closed by exact forms). Statement 

of de Rham�s theorem in form that the de Rham groups are dual vector 

spaces to the singular homology groups. 

7. Local triviality of the singular and de Rham groups for 

contractible (or differentially contractible) spaces; in the case of 

de Rham groups, by integration by parts; introduction of chain and 

cochain homotopies. Cone construction for singular groups. 

8. Singular cohomology groups. Singular cochains with coeffi-

cients in an abelian group G as the group of homomorphisms of the 

group of singular chains into G. Coboundary operator as Horn O ) . 

Cocycles, coboundaries, cohomology. Properties under mappings. Iso-

morphism H^(X; G) ^ Horn (H^(X); G) for divisible groups. Restate-

ment of de Rham�s theorem as saying the de Rham groups Rp(M) a;H^(M;R), 

where R is the real numbers. 

9. Sub-cochain complexes, quotients; homomorphisms of cochain 

complexes; Bockstein exact sequence for cohomology for a short exact 

sequence of coefficient groups. 
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10. System of local coefficients for the singular chain com-

plex; cochains with local coefficients; cohomology. Homomorphisms 

of local coefficient systems; short exact sequences and the Bock-

stein sequence. 

11. Simplicial complexes, abstract simplicial complexes, 

polyhedra, geometric realization; simplicial mappings. Oriented 

simplicial chain complex; alternating simplicial cochain groups. 

Natural mapping of simplicial homology of an abstract simplicial 

complex into the singular homology of its geometric realization; 

same for cohomology; proof later of its isomorphism. Local coeffi-

cients for simplicial complexes. 

12. Nerve � of a covering; presheaves; cohomology of the 

nerve with coefficients in the local system of the presheaf. Ex-

amples; significance of H^(N;G). 

13. Proof that for a contractible (differentially) covering 

{U} of the connected manifold M, if CP(3P) is the presheaf of 

singular p-cochains (differential p-forms), as a system of local 

coefficients on the nerve of [U], we have 

0d-1 d-1 � �d �0 
0 - C? - C? * C? - 0 is exact, � > 0, cT = G, 

constant 
Op-1 p-1 d 0 Oo 

0 -» W - 3 -* 3p -» 0 is exact, � > 0, 3 = R, 

On-i 

where C- is the local system of (p-l)-cocycles, etc. (local 

triviality). Proof that for a finite open covering of � with 

nerve N, Hp(N;(3q) **HV Qll.rf1) = 0 for � > 0, q 5 0. (Use par-

tition [differentiable ] of unity subordinate to the covering.) 

14. Existence of a differentiably contractible finite open 

covering on a compact differentiable contractible finite open cover-

ing on a compact differentiable manifold (assume some elementary 

Riemannian geometry). For such a covering, observe by use of Bock-

stein sequence that 

R P(M) - H 1 ( N ; 3 P " 1 ) . - H 2 ( N ; 3 P " 2 ) s: ... =~HP(N ;3 � ) -H P ( N ;R) 

HP(M;G) - H^NjCP" 1 ) a: H 2 (N;t3P_2) ^ � � � �=��(�;0.�) == HP(N;G) 

and conclude de Rham�s theorem. Similarly, obtain isomorphism of 

simplicial and singular cohomology. 
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15. Eilenberg-Steenrod axioms for singular homology and co-

homology. 

16. Cell-complexes; cellular-homology; isomorphism with singu-

lar theory; isomorphism with simplicial theory, when defined. 

17. Computations; suspensions; complex projective space, real 

projective space, homology homomorphism induced by the double cover-

ing of real projective �-space by the n-sphere. 

18. Tensor products of modules; right exactness; homology with 

coefficients. Bockstein sequence for homology. 

19. The functor Tor; universal coefficient theorem for homo-

logy. 

20. The Eilenberg-Zilber theorem; Kunneth sequence for the 

singular homology of a direct product. 

21. Exterior cross-product in cohomology; cup product, proper-

ties. Chain approximation to diagonal map for regular cell-complexes, 

uniqueness. 

22. Computation of chain approximation to diagonal for n-

sphere; for mod 2 chains on real projective space; for integral 

chains on complex projective space. Ring structure of H*(P^(R);Z2) 

and H*(P (C);Z). 
� 

23. Borsuk-Ulam theorem; Flores nonembedding examples, in-

var iance of domain. 

24. Euler-Poincare formula; Lefschetz fixed point theorem; 

application to existence of vector fields on manifolds. 

Outline III. Surface Theory (One Year) 

This course consists of a year�s study of surfaces, their 
topological, differential geometric, conformal, and algebraic struc-
ture. Much modern mathematics consists of partial generalizations of 
what happens on surfaces. The student should find this material a 
good source of concrete examples in depth of subjects he will meet as 
a graduate student. It should develop his geometric insight and show 
him how analysis and algebra implement geometric intuition. It should 
solidify his previous mathematical training because it draws heavily 
on his knowledge of advanced calculus, complex variables, and alge-
bra. Finally, it will display the interplay and overlap of various 
fields: the genus occurring topologically, geometrically via Gauss-
Bonnet, and analytically via holomorphic differentials; or the sur-
faces of constant curvature, the simply connected complex 1-manifolds, 
and the non-Euclidean and Euclidean geometries. 
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1. Combinatorial topology. Homotopy of curves, the funda-

mental group, covering spaces, deck transformations. 

Simplicial complexes, barycentric subdivisions, simplicial 

approximation theorem. 

Simplicial homology. Betti numbers, Euler characteristic, 

genus. 

Classification of triangulable compact 2-manifolds; the only 2 2 

simply connected triangulated 2-manifolds are S and R . 

The de Rham theorem for triangulated 2-manifolds. 

2. Differential geometry. Definition of Riemannian 2-mani-

fold. Bundle of frames. Riemannian connection. Parallel transla-
3 

tion--motivation via surface in R . 

Geodesies, minimizing property of geodesies. Structural equa-

tions. Curvature. Exponential map. Gauss� lemma; Gauss-Bonnet 

theorem for simply connected region bounded by broken curve (as an 

application of Stokes� theorem); global Gauss-Bonnet theorem for 

triangulated compact 2-manifold. 

Surfaces of constant curvature; Poincare model for negative 

curvature; uniqueness theorem for simply connected complete 2-mani-

folds of constant curvature, constant curvature manifolds as models 
of hyperbolic and elliptic non-Euclidean geometries. 

3 

Surfaces in R . 2nd fundamental form and the spherical map. 

Curvature again. Gauss-Codazzi equation. Uniqueness of the imbed-

ding, given the 2nd fundamental form. 

The spherical map for compact surfaces with positive curvature. 

Rigidity theorem. 
3 

Flat surfaces in R . The tangent developable. Geometric in-

terpretation of parallel translation via the tangent developable. 
3 The only complete flat surface in R is a cylinder. 

Minimal surfaces; spherical map for minimal surfaces. 

3. Complex manifolds. Definition of a complex 1-manifold. 

Complex tangent space. Conformal mapping. Reinterpretation of 

Cauchy-Riemann equations. Review of analytic continuation and ex-

amples of complex 1-manifolds as Riemann surfaces of an analytic 

function element. 

Existence of isothermal coordinates in a Riemann 2-manifold; 
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every Riemannian 2-manifold carries a complex structure. 

Riemann mapping theorem; the three different simply connected 

complex 1-manifolds. Relation with 2-manifolds of constant curva-

ture. 

The spherical map of a minimal surface is conjugate conformal. 3 

Complete minimal surfaces in R . 

Potential theory. Hodge�s theorem. The dimension of the 

space of holomorphic differentials is the topological genus. 

4. Algebraic geometry. Algebraic function fields of one vari-

able over the complex numbers. Places. The Riemann surface of a 

function field, the meromorphic functions of this Riemann surface, 

the meromorphic functions on the Riemann surface of an analytic func-

tion element as an algebraic function field. 

Algebraic curves in the complex projective plane. Pictures 

of singularities. The Riemann surface of a nonsingular curve. Bi-

rational equivalence of nonsingular curves is the same as conformal 

equivalence of their Riemann surfaces and the same as algebraic iso-

morphism of their function fields. 

Application of the Hodge theorem to show that any compact com-

plex 1-manifold is the Riemann surface of an algebraic function 

field. 

Divisors as 0-chains. The divisor of meromorphic functions. 

Bilinear relations. The Riemann-Roch theorem via potential theory. 

Abel�s theorem, and other applications of Riemann-Roch. 

Genus zero and the rational functions in the plane. Genus one 

and the study of the complex structures on the torus. Elliptic 

functions. 

Probability (One Semester) 

The development of classical mathematics was principally in-
spired by problems of physics and engineering. In the usual classi-
cal engineering problem the variables of the system are assumed to 
satisfy a set of well-defined and deterministic relations. These 
are analyzed, by and large, by the methods of ordinary and partial 
differential equations and related mathematical techniques. Such 
deterministic concepts and methods are no longer entirely suitable 
for treating mathematical problems in the biological and social 
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sciences; furthermore, even in the physical sciences there arise 
problems which involve uncertainties and variability. Probability 
theory and stochastic processes provide language and tools by which 
to analyze such problems. 

The course outlined here is designed to develop facility in 
the language, concepts, motivation, and techniques of probability 
theory. Stress is put on those stochastic models which are of mathe-
matical importance as well as of interest in other disciplines. The 
course should aim at rigor in its treatment of both theory and appli-
cations. 

The subject of probability and stochastic processes combines 
intuitive and analytical aspects. It draws upon and interacts with 
much of real analysis, functional analysis, linear algebra, complex 
variables, etc. It is also a basic subject for many applications. 
Many of these areas of application signal new directions for pure 
mathematical research. 

1. This Section introduces the basic concepts and terminology, 

suggesting both an axiomatic and intuitive formulation of the mathe-

matical model underlying probability structure. 

Sample space and probability distributions, empirical back-

ground, frequency concept, relations amongst events, axiomatic 

foundations (Kolmogorov formulation). 

2. Occupancy problems, random walks, realization of m among 

� events, coin tossing, run theory. 

3. Random variables, conditional probabilities. Stochastic 

independence, Bayes1 theorem, repeated trials, joint and marginal 

probabilities. 

4. This Section seeks to develop certain analytical methods 

and classical distribution examples. 

Expectations, variance, moments of distributions, characteris-

tic functions, generating functions, convolutions, compounding, 

Chebyshev�s inequality, Kolmogorov inequality, three-series theorem, 

correlation coefficients, classical examples: binomial, Poisson, 

normal, gamma, t, and F distributions, multivariate distribu-

tions, etc. 

5. The classical limit theorems of probability theory are the 

content of the material. 

Borel-Cantelli theorem, Law of Large Numbers, Central Limit 

Theorem, Law of Iterated Logarithm. 
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6. Introduction to stochastic processes. The structure of 

stochastic processes is delimited and its classification is outlined. 

Time parameter, state space, dependence relations, introduc-

tion to Markov processes, independent increments processes, station-

ary processes, martingales, diffusion. 

7. This Section introduces the principal concepts of stochas-

tic processes. 

Recurrence and absorption, renewal theorems, first passage 

probabilities, transient states, arcsine laws, occupation time of a 

given state. 

8. Important categories of stochastic processes. 

Random walk, Poisson process, birth and death, Brownian motion, 

branching processes. 

Formulation and analysis of some simple stochastic processes 

occurring in physics, engineering, biology, and the social sciences 

(e.g., Ornstein-Uhlenbeck process, gene frequency and population 

growth models of Wright and Feller, learning models, etc.). 

Mathematical Physics (One Semester)* 

A large part of analysis originates in problems of the physical 
sciences; our intuition and our sense of what is important is partly 
based on experience in dealing with problems of the physical world. 
This has been so in the past and is likely to remain so in the 
future, although mathematicians will increasingly look for inspira-
tion to the biological and social sciences and to computing. 

It is of greatest importance for the continued vigor of mathe-
matics to keep open the channels of communication with other sci-
ences; colleges should offer courses on a high intellectual plane to 
accomplish this. The courses must then deal with fundamental ideas 
as well as techniques, modern analytical concepts and methods should 
be employed, and subjects of current research interest need to be 
introduced. Unfortunately, in most American colleges there is no 
tradition for teaching such courses, there is not a wide enough 
variety of suitable texts, nor are there enough people inclined or 
able to teach them. The Panel presents the present outline as a 
step toward filling the gap. 

* Though we are recommending a one-semester course, we include 
enough material for two or more semesters, to allow for individual 
variations. 
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1. Equilibrium problems. Derivation of the Laplace and 

Poisson equations for: the equilibrium position of a stretch mem-

brane, electrostatic and gravitational potential, steady state in-

compressible, irrotational flow. 

Statement and physical motivation of boundary value problems. 

Uniqueness theorems (a) via the maximum principle (proved by 

Mean Value Theorem) and (b) via the Dirichlet integral. 

Invariance of harmonic functions under various groups of trans-

formations: translation, rotation, contraction. Special solutions 

which are eigenfunctions under these transformations (generalization 

of the principle that the matrices in a finite set of commuting ma-

trices have common eigenfunctions). Application to the representa-

tion of the orthogonal group. 

The fundamental solution of Laplace�s equation and its physical 

significance. Green�s function. Explicit construction of Green�s 

function for the half-plane, circle, and sphere by the principle of 

reflection. 

Construction of the Poisson kernel for a half-plane by sim-

ilarity. 

Invariance of harmonic functions under conformal map. Con-

jugate harmonic functions; relation of harmonic and analytic func-

tions. Role of conjugate harmonic functions for flows. The rela-

tion of Green�s function of a domain to the conformal mapping func-

tion. 

Dirichlet�s principle and the basic principles of the calculus 

of variations. The Euler equation. The equations of elasticity and 

of minimal surfaces. 

The Laplace difference equation; its relation to random walk. 

Free boundary value problems of hydrodynamics. 

2. Conservative time-dependent problems (wave propagation). 

Newton�s laws of motion. Derivation from physical principles of the 

equations governing the motion of a vibrating string and membrane, 

and the equations of acoustics. The wave equation. 

Statement and physical motivation of initial and of mixed 

initial boundary value problems. 

Uniqueness theorems based on the Haar Maximum Principle and on 
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the energy method. The notion of domain of dependence and speed of 

propagation signals. 

Invariance of the wave equation under translation; exponential 

solutions. Plane waves and the D�Alembert solution. Hamilton�s 

principle. The equations of time-dependent compressible flow; shock 

waves. The equations governing the flow of traffic. Finite differ-

ence approximations to the wave equation. 

3. Dissipative time-dependent equations. Derivation of the 

equations governing heat conduction, diffusion, and viscous flow. 

Statement and physical motivation of initial and mixed prob-

lems for the heat equation. 

Uniqueness theorems based on the maximum principle and on the 

energy method. 

Translation and rotation invariance, exponential solutions, 

radial separation. The fundamental solution derived by similarity. 

Uniqueness and existence of solutions to the initial value problem 

in the entire space. 

Relation of the heat equation to probability theory. Finite 

difference approximation to the heat equation. 

4. Introduction to Hilbert space and operator theory. A brief 

review of linear algebra; Hilbert space. Orthonormal sets, complete-

ness. Bessel inequality, Parseval relation. Projection theorem. 

Examples of orthogonal systems: Fourier series and classical 

orthogonal polynomials. Weierstrass approximation theorem. Gram-

Schmidt procedure. 

Notion of symmetric operator. Orthogonality of eigenvectors. 

Completeness of eigenvectors of compact operators. Compactness of 

integral operators; discussion of the inverse of a differential 

operator. 

Positive-definite operators. 

Operational calculus for symmetric operators. Definition of 

exp A through 1) operational calculus, 2) contour integral, 3) 

eigenvector expansion, 4) Yosida formula (semigroups). 

Theory of Fourier transform; the classes and Appli-

cation of Fourier series and integral to solve anew the boundary 

value problem for the Laplace equation in the circle and half-plane, 
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and the initial value problem for the wave and heat equations on the 

real axis, with and without periodicity. 

Determination of eigenfunctions and eigenvalues of the Laplace 

operator in simple geometries. 

5. Existence theorems. Solution of various boundary value 

problems for the Laplace equation by the method of orthogonal pro-

jection, the Hahn-Banach theorem, or one of the many other methods. 

Using the existence theory for the Laplace operator and the 

operational calculus developed in Section 4 to treat the initial 

value problem for the wave equation u = Au and the heat equation 

6. Quantum theory and statistical mechanics. 

1) The harmonic oscillator in classical and quantum mechanics: 

Let � be the normalized eigenfunction of the system 
� 

with energy E^. Then the probability that its position is between 

a and b is 

This tends in the classical limit (h -• 0, E^ -» E) to the propor-

tion of time which the classical harmonic oscillator spends between 

a and b (proof based on asymptotic properties of Hermite poly-

nomials) . 

2) The motion of electrons in crystals: 

with a periodic potential V. Show that there exist solutions 

bounded for all � only when � lies in certain intervals, and 

identify these with conduction bands. 

3) The classical and quantum-mechanical partition functions; 

limiting behavior as h tends to zero. For an ideal gas, we are 

led to the problem of asymptotic distribution of the eigenvalues of 

the Laplacian under the boundary condition u = 0 on the boundary 

of the container. Since the thermodynamical properties do not de-

pend on the shape of the container, this suggests that the asymp-

totic distribution of the eigenvalues depends only on the volume 

a 

Consider the Schrodinger equation 

�" - V(x)\|r = -�� 
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(Weyl�s theorem). Explicit determination for a cube. 

Further suggested subjects: the time-dependent Schrodinger 

equation, the application of group representations in quantum theory. 

Appendix C 

HIGHER UNDERGRADUATE MATHEMATICS 

This Appendix contains some sample outlines of courses in 
Higher Undergraduate Mathematics which might be considered for .inclu-
sion in a program already containing basic courses which cover the 
fields of Appendix B. Future reports of the Panel will contain addi-
tional outlines for this section. 

Mathematical Methods in the Social Sciences: Game Theory, Program-
ming, and Mathematical Economics (One Semester) 

The desire to formulate quantitative methods for analyzing 
phenomena in the social, management, and behavioral sciences has led 
to new types of mathematical problems. The tools needed in dealing 
with such problems combine principally probabilistic, statistical, 
and decision-theoretic concepts and techniques. Three specific 
developments of this kind, inter alia, are exemplified by the areas 
of mathematical research known as game theory, programming, and mathe-
matical economics. The structure of game theory seems suitable for 
describing some monopolistic practices in addition to providing a 
norm for certain patterns of rational behavior. The methods of 
mathematical programming are particularly appropriate for determining 
optimal policies in a variety of management problems. The formula-
tion of mathematical economics is useful in explaining the workings 
of some economic systems. 

These disciplines appeal to devices from topology (e.g., fixed 
point theorems), the stability theory of nonlinear differential equa-
tions, methods of the calculus of variations, inequalities, linear 
algebra, convexity, and similar subjects. The intuitive content of 
the underlying economic interpretation frequently suggests new mathe-
matical theorems. The influence of these disciplines on developments 
in statistics and probability has also been substantial. 

1. Game theory. Classification of games (number of players, 

zero-sum versus nonzero-sum, personal and chance moves, information 

structure, utility concepts). 

Zero-sum matrix games, minimax theorem, dominance concepts, 
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Snow-Shapley characterization of extremal solution, completely mixed 

games, dimension relations of solutions, examples. 

Infinite zero-sum games (optional material). Separable games 

(polynomial kernels), convex games, games of timing, bell-shaped 

games, games over function space, recursive games, games of survival. 

�-person games, cooperative and noncooperative games, coali-

tions, von Neumann solution, simple games, Shapley value, Nash 

equilibrium point, examples. 

2. Linear programming. Formulation of linear and dual linear 

programming problems. Examples, optimal assignment problem, trans-

portation model, network flow models, etc. 

Two principal theorems of linear programming: (i) Existence 

theorem of solution, (ii) Duality theorem. 

Interpretation of dual problem in terms of shadow prices. 

Computing algorithms for solutions. Simplex method, primal and 

dual algorithm, special methods for the transportation problem, ap-

plication to minimal-cut and maximal-flow theorem. 

Equivalence of linear programming and game theory. 

3. Nonlinear programming. Equivalence to saddle point theorem. 

Kuhn-Tucker theorem, Arrow-Hurwitz gradient method. Fenchel formula-

tion of nonlinear programming problem. 

4. Methods of mathematical economics and management science. 

Production, consumption, and competitive equilibrium models. 

Frobenius theory of positive matrices. Application to linear 

production model (Leontief model), Samuelson substitution theorem, 

formulation of theories of consumer preference. Axiomatic approach. 

Principle of revealed preference. Derivation of consumer preference 

relation as a utility maximization. Relation of production theory 

and nonlinear programming problem. Existence of competitive equi-

librium. Formulations of Arrow-Debreu, Wald, McKenzie, and others. 

5. Welfare economics, stability theory, and balanced growth. 

Relation of welfare economics and the vector nonlinear programming 

problems. Characterization of Pareto optimum solutions. Local and 

global stability properties of competitive equilibrium. Gross sub-

stitutibility, models of balanced growth, von Neumann model of ex-

panding economy, turnpike theorem. 
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6. Control problems in management sciences and economics. 

Hohn-Modigliani model of smoothed production, models of optimal 

inventory analysis, application of Pontryagin maximal principle to 

two sector growth models, introduction to replacement programs, 

repairmen problems, queueing theory, reliability models. 

Mathematical Logic (One Year) 

Many mathematicians think of logic as having for its principal 
purpose the laying of a firm "foundation" on which the rest of mathe-
matics can be built securely. This can be understood historically, 
because it was the discovery of paradoxes in set theory which first 
led a broad segment of mathematicians to take up the study of logic 
in a quest for consistency proofs. 

To make headway toward the twin aims of developing a founda-
tional logic and providing guarantees of consistency, it was neces-
sary to restrict sharply the mathematical methods employed. In par-
ticular, early workers laid great stress on the "constructive" char-
acter of their work. 

As with other branches of mathematics, so with logic: the 
original aims were partly realized, partly found unrealizable, and 
partly altered to conform to the broadened perspective arising out 
of new discoveries. Some logicians began to notice the mathematical 
structures arising in the earlier work and became interested in these 
for their own sake. Through the study of these structures, contact 
has been made with other parts of mathematics at points far removed 
from the "foundational level" which was the starting point. 

As a result of this development, it seems fair to say that the 
idea ascribed above to "many mathematicians," that the principal 
purpose of logic is to lay "foundations," does not accurately reflect 
the spectrum of current activities in the field. Roughly, logicians 
are now concerned with two large areas of work. One, based on the 
notion of recursive function, deals with such things as abstract com-
puting machines, nonexistence of decision methods, hierarchical 
classification of sets of numbers and functions on numbers, and re-
cursive analogues of portions of set theory and analysis. The other, 
combining Boole�s original impulse to algebraize with Tarski�s 
mathematical analysis of semantical notions, includes portions of 
the field which have come to be known as "algebraic logic" and 
"theory of models." In both of these principal areas the bulk of 
the work is carried on without restriction to "elementary" or "con-
structive" methods. The basic attitude is that any method may be 
used if it answers a question—and any question may be raised which 
is interesting! Particularly in model theory, there is generally a 
heavy use of set theory. 
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Despite this turn of events, almost all textbook treatments of 
logic lay great emphasis on the restriction to constructive methods 
and seem to concern themselves principally with demonstrating how 
logic can be developed so as to provide a foundation—i.e., to be a 
beginning--of mathematics. It seems time to attempt a presentation 
of the subject more closely related to current events. The founda-
tional role of logic is explained as one aspect of the subject, but 
this is not allowed to restrict and distort the methodology. 

In formulating a first course, one might either attempt to give 
introductions to the concepts in both of the principal areas men-
tioned above or to go more deeply in one of these directions. Very 
likely both schemes have merit, but we have preferred to follow the 
latter. Our judgment has been that for students proceeding toward a 
Ph.D. in mathematics, serious acquaintance with the ideas of alge-
braic logic and theory of models is of greatest value. 

What do we presuppose of the student entering our course? Com-
petent books on logic are now available for use in the 6th grade; in-
deed, grade school seems the proper place to compute with truth-
functions and thereby learn the mathematical meaning of sentential 
connectives. High school seems to be the proper place to learn how 
to formalize sentences employing quantifiers and to learn (in an in-
formal way) some of the elementary rules for handling quantifiers. 
The early college years will begin to develop the student�s ability 
to apply effectively the basic apparatus of set theory. The proposed 
course carries on from there. 

It is customary to approach mathematical logic by considering 
first sentential logic and then (first-order) quantifier logic. The 
course outline given below follows this pattern, except that we in-
terpolate between these parts of the course a substantial section on 
quantifier-free predicate logic. If we were concerned solely with 
formal deductive systems for logically valid formulas, this would be 
ridiculous, since the axiom schemes and rules of inference of (q.f) 
predicate logic are indistinguishable from those of sentential logic. 
However, when we deal with model-theoretic aspects of the subject, 
the situation is quite otherwise. And the section on predicate 
logic forms a valuable bridge, both from the mathematical and the 
pedagogical viewpoints, between sentential logic and quantifier 
logic. 

To understand properly the role of logic in mathematics, it is 
necessary to deal with (i) systems of symbols, (ii) the use of these 
systems in languages interpreted as referring to mathematical struc-
tures, and (iii) the manipulation of symbolic expressions according 
to formal deductive rules and the relation of such rules to the 
semantical concepts of (ii). Each section of logical material— 
sentential, predicate, and quantifier—is subdivided according to 
the classifications (i), (ii), (iii). 

It is possible to treat the high points of sentential and 
quantifier logic in a single semester. However, to explore the 
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subject in the depth desirable for achieving both a full understand-
ing of the relation of logic to other parts of mathematics and a 
firm basis for future graduate work, two semesters is not excessive. 
During 1962-63 an experimental course patterned after the following 
outline is actually being given, and, despite the encouragement of 
excellent students, there is difficulty in fitting all of the mate-
rial into two semesters. But it is felt that after accumulating ex-
perience in teaching material so organized, and if a suitable text 
becomes available, it should be possible to incorporate substantially 
all of the material in the indicated time. 

1. Historical background. Intuitive account of principle con-

cepts such as consequence, deduction; role of sentential connectives 

in natural languages. 

2. Systems of formulas (absolutely free algebraic systems). 

Axiomatic treatment; various examples and their interrelations; 

fundamental existence theorem (justifying definition by recursion 

over formulas); definition of substitution, part, occurrence, and 

derivation of their fundamental properties from axioms. 

3. Truth functions. Relation to connectives; projections, 

composition of functions; closed sets (examples); generating bases 

(mention of Post�s theorem); proofs of definability and nondefina-

bility (of a given function in terms of a given set of functions); 

lattice of closed sets; Boolean algebra B^ of �-placed truth-

functions, � = 1, 2, . .., u u ; isomporphisms B^ -� ^ a n d the 

direct limit of B^, B2, ... , as subalgebra of B^; infinite 

sums and products in � ; topological aspects of � ; compactness. 

4. Semantical concepts of sentential logic. (Classical) 

models (truth-value assignments), associated homomorphism of system 

of formulas into algebra of truth values, validity, consequence, 

satisfiability, equivalence, independence; their interrelations; 

fundamental laws for consequence-relation; connection with substitu-

tion; equivalence as congruence relation (replacement law); positive 

and negative parts of formulas (partial replacement); natural map-

ping of formulas into B^; definability by formulas; significance 

of the consequence relation in B^; finitary character of conse-

quence from compactness; Boolean algebras as models; the consequence 

relation determined by a Boolean ideal; normal forms; interpolation 

theorem; nonclassical interpretations (�-valued, intuitionistic, 

modal). 
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5. Deductive aspects of sentential logic. Axioms for deriva-

tions;* consequence satisfies these; basic laws obtained from 

axioms; effective proof of weak completeness (every valid formula 

derivable from empty set, for any derivation); proof by Zorn�s lemma 

of strong completeness (semantical consequence is the minimal de-

rivation); connection with compactness; characterization of finitary 

derivations; derivations defined by formal axioms and rules of in-

ference; discussion of deductive logic as foundation for mathematics. 

Fragments of sentential logic; their deductive interconnections. 

6. Systems of open predicate formulas (individual symbols, 

relation symbols, operation symbols). Terms and formulas; funda-

mental existence theorem; substitution, part. 

7. Semantical concepts of predicate logic. Relational sys-

tems; models and variable-assignments; values of terms and formulas; 

validity, satisfiability, implication, definability, equivalence— 

with respect to a model and to a class of models; examples; proper-

ties of the class of definable relations, characterization of such 

classes; concept of a Boolean substitution algebra; predicate impli-

cation = propositional implication; compactness; decision procedure; 

Skolem-LSwenheim; implication relative to class of equality-models 

and its relation to predicate implication; compactness, decision-

procedure, and S-L for predicate-equality logic; simple applications 

of compactness (e.g., condition for abelian semigroup to be imbed-

dable in group); subsystems, homomorphisms, direct products, direct 

limits, etc., for relational systems; invariance of validity for 

sets of equations, and of more general formulas, under these opera-

tions; characterization of equational classes and universal classes. 

8. Deductive aspects of predicate logic. Formal axioms and 

rules of inference for predicate logic reduce to those for sentential 

logic (strong completeness); treatment of predicate-equality logic; 

complications of formalization for these systems if variables in some 

of the hypotheses of an implication are treated as universalized; 

* The word "derivation" is not in common use. It is employed to in-
dicate any relation (between sets of formulas and formulas) which 
satisfies certain laws for the consequence relation. 
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detailed consideration of a mathematical example, such as natural 

numbers under addition, obtaining complete axiomatization, detailed 

description of definable relations, decision procedure, strong in-

completeness, analysis of nonstandard models. 

9. Systems of quantifier-formulas (first order). Free and 

bound occurrences of variables, complications with substitution; 

sentences and formulas. Semantical concepts of quantifier-logic: 

same notion of model as in predicate logic; modified notions of 

variable-assignment and value-of-formula; same definitions of valid-

ity, satisfiability, implication, definability, and equivalence; 

class of definable relations, characterization of such classes; con-

cept of polyadic algebra; prenex normal forms; reduction of validity 

and implication for quantifier logic to that of predicate logic via 

added individual constants or operation symbols; semantical versions 

of Herbrand�s theorem and Skolem normal forms; Skolem-Lowenheim 

theorem, compactness, applications to algebra; treatment of quanti-

fier-equality logic; equivalence of any formula with one having 

variables in standard order; simplified description of definable 

relations; concept of cylindric algebra; reduced products and ultra-

products of relational systems; invariance of validity for quanti-

fier-formulas under latter; characterization of elementary classes; 

use of ultraproducts to replace compactness arguments in algebraic 

constructions. 

10. Deductive aspects of quantifier logic. Formal axioms and 

rules of inference (with and without equality); notions of formal 

proof and formal theorem, formal deduction and formal implication, 

consistency for sets of sentences; derivation of basic laws of logic 

(i.e., properties of formal implication); strong completeness 

(alternative proof of compactness); Craig�s interpolation theorem, 

Beth�s theorem on definability, version of A. Robinson; Lyndon�s 

characterization of sentences invariant under homomorphisms; de-

tailed consideration of quantifier theory of natural numbers under 

addition, axiomatization, method of elimination of quantifiers 

applied to obtain complete description of definable relations, 

decision procedure, strong incompleteness, analysis of nonstandard 

models. 
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Differential Geometry (One Semester) 

This outline of a one-semester course in differential geometry 
differs from the classical course in these respects: elementary 
theory of manifolds is presented; some of the classical matrix 
groups are studied; the Frenet formulas are given in � dimensions; 
intrinsic Riemannian geometry is studied before imbedded hypersur-
faces; and some global theorems are included. 

1. Basic facts about smooth manifolds and mappings between 

them. 

2. The rotation group R(n), Euclidean group, and affine 

group as examples of manifolds. Invariant 1-forms on these groups. 

The Lie algebras as matrix Lie algebras. Fundamental uniqueness 

theorem: two maps of a manifold into G differ by a left transla-

tion if and only if the left invariant 1-forms of G pulled back 

by the two maps are equal. 

3. Parameterized curves in R n. Canonical parameterization 

via arc length. Adapted frames and mapping of curve into Euclidean 

group. Curvature and higher torsions. Frenet formulas. Applica-

tion of uniqueness theorem to give determination of curve up to 

Euclidean motion. 

4. Introduction of Riemannian metric. Bundle of frames. Rie-

mannian connection. Parallel translation. Structure equations. 

Curvature. Geodesies and minimizing property. Exponential mapping. 

Gauss� lemma. Specialization to 2-manifolds. Gauss-Bonnet theorem 

for 2-manifolds. 

5. Manifolds of constant curvature. Uniqueness for simply 

connected ones. 

6. Hypersurfaces in R n + ^ . Induced Riemannian metric. 2nd 

fundamental form and spherical map. Mapping of bundle of frames 

into Euclidean group. Curvature in terms of 2nd fundamental form. 

Gauss-Codazzi equation. Application of fundamental uniqueness 

theorem to give determination of surface up to a Euclidean motion. 

Principal curvatures, mean curvature, umbilical and parabolic points, 3 

curvature, and asymptotic lines, for 2-manifolds in R . 

7. Rigidity theorem for compact hypersurfaces of positive 

curvature. 

8. Flat hypersurfaces. Tangent developable. Geometric 
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interpretation of parallel translation using tangent developable. 

A complete flat 2-surface in 3-space is a cylinder. 

9. Isothermal coordinates. A Riemannian 2-manifold as a 

complex 1-manifold. Minimal surfaces and their spherical maps. 

Statistics (One Semester) 

Probability theory and stochastic processes provide mathemati-
cal tools for a descriptive analysis of certain mathematical models. 
Statistics gives a means of testing the adequacy of the model. The 
statistics course outlined below is designed to cover the methodol-
ogy and basic theory of statistical analysis. The approach is a com-
bination of the classical and the modern, emphasizing at the start 
the standard procedures of statistics, while the latter part contains 
the general theory of statistical decisions. 

Statistical techniques lean heavily on probability theory, 
real analysis, and linear algebra. Its content motivates and in-
spires problems in convexity, inequalities, real analysis, and 
probability theory. The outline presumes a course in probability 
theory as prerequisite. 

1. Review of probability. Emphasis on theoretical distribu-

tions including the important examples of chi-square, t, F dis-

tributions of order statistics and functions of order statistics. 

Multivariate distributions and similarity. 

2. Sampling. Description of sample data-means, standard de-

viation, frequency histogram, etc. Distribution theory of various 

statistics arising in sampling from normal populations, asymptotic 

distribution theory of various statistics. 

3. Estimation. Formulation of the problem. Discussion of 

criteria for estimators (unbiasedness, consistency, efficiency, 

minimizing mean square error, absolute error, etc.). 

The concept of sufficiency. Fisher-Neyman characterization, 

applications to the exponential family of distributions, extremal 

range distributions, principle of completeness, Rao-Blackwell in-

equality for improving estimates using sufficient statistics, 

Cramer-Rao inequality. 

Confidence interval estimation. Maximum likelihood estimator 

and its properties. 

4. Testing hypotheses. Formulation of the general problem. 
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Analysis of the case of a simple hypothesis versus simple alternate 

hypothesis including the celebrated Neyman-Pearson theorem. 

Discussion of the composite hypothesis problem, concept of 

uniformly most powerful test. Tests derived from likelihood ratio 

criteria. 

5. Statistical decision theory. The preceding approach was 

classical. Formulation of the Wald statistical decision theory. 

The concepts of utility, loss, and risk should be discussed. The 

derivation of the simplest complete class and "admissibility" theo-

rems should be given. 

Principles to be explored: Bayes1 criteria, minimax, invari-

ance, etc. Comparisons to classical statistical procedures. 

Introduction to sequential analysis. 

6. Regression theory and design of experiments. The formula-

tion of the general linear hypothesis, linear regression. The 

Markov principle and the method of least squares. Analysis of vari-

ance . 

7. Nonparametric statistics. Order statistics and deriva-

tion of confidence intervals for percentiles. Tolerance limits, 

goodness of fit, two sample problem. Kolmogorov-Smirnov statistics, 

rank procedures. 

Number Theory (One Semester) 

The theory of numbers has some attractive features which make 
it a very appropriate topic in the undergraduate curriculum. Having 
flourished over a very extensive period of time, number theory can 
be classified among those mathematical topics having a steady ap-
peal. Perhaps this is due in part to its close relationship to 
algebra and analysis, an aspect of number theory that has been given 
greater emphasis in recent textbooks on the subject. 

Number theory is not related to analysis in quite the same way 
as it is related to algebra, however. Analysis is used in number 
theory primarily as a matter of powerful analytic techniques of 
proof; for example, in the prime number theorem and in various proofs 
of transcendency of numbers. On the other hand, algebra has found 
in number theory a rich source of examples for the study of alge-
braic structures. It is not surprising to find in many books on 
algebra, therefore, an introductory chapter on the theory of numbers. 
Indeed, there are mathematical topics that are not easily classified 
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as algebra proper or as number theory; the theory of algebraic num-
bers is an example of this. 

The theory of numbers is an excellent vehicle for clarifying 
in the mind of the student the nature of proof. It may be that by 
the junior year in college a student should have no doubt about 
what is and what is not a proof. Nevertheless, since even some 
graduate students have occasional difficulty with this, the wide 
variety of proof techniques used in number theory can serve as ex-
cellent models for the student�s attention. Furthermore, there is 
in the theory of numbers much for the student to do over and above 
examining the basic results. There is an almost unparalleled 
wealth of problems, including not only applications and examples of 
the theory, but also extensions and alternative foundations of the 
theory. Thus, the student has an opportunity both to develop his 
ingenuity and to discover results for himself through a program of 
exploration, conjecture, and attempts at proof. This aspect of num-
ber theory, often a source of frustration for the average student 
of mathematics, provides the superior student with much satisfaction 
and pleasure. 

The following topics are presumed to be known by the student 
at the start of the course: unique factorization of integers, 
greatest common divisor, least common multiple, simple observations 
on the distribution of prime and composite numbers. 

1. Congruences and residue classes. Congruences as equiva-

lence relations, basic properties of congruences, changes of moduli; 

residue classes as groups, rings, and fields; theorems of Fermat 

and Euler on powers of residue; the language of algebra (order of an 

element of a group, generator, etc.) and the language of number 

theory (belonging to an exponent, primitive root, etc.); general 

theorems on solutions of congruences of degree n. 

2 . Quadratic residues. The Legendre and Jacobi symbols and 

their properties; the Gaussian reciprocity law. 

3. Diophantine equations. The linear case and its relation-

ship to linear congruences and greatest common divisor; 
4 

2 2 2 2 2 V1 2 
� + y = z , � + y = n , /, X i = n * impossibility of 

i=l 
4 - i 4 4 2 , . 2 , 2 �  � + y = z ; ax + b y + c z = 0 . 

4 . Number-theoretic functions. Euler ^-function, divisor 

function, sum-of-divisors function; multiplicative and totally 

multiplicative functions; the Mb�bius function and the inversion 

formula; estimates of the order of magnitude of various number-
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theoretic functions, including lattice points in various configura-

tions; recurrence functions, Fibonacci sequences; the partition 

function. 

5. The approximation of irrationals by rationals. Farey 

sequences, continued fractions; the best possible theorem (Hurwitz) 

on approximations; the uniform distribution of the fractional parts 

of the multiples of an irrational number. 

6. Quadratic forms. Definite and indefinite forms; equiva-

lence classes and the class number; questions of representation. 

7. Prime numbers. Bertrand�s theorem (a prime between � 

and 2n); the Prime Number Theorem (either by an analytic proof or 

the "elementary" proof, or, if there is not the time for either of 

these, the weaker form of the theorem due to Chebychev). 

8. Algebraic and transcendental numbers. Algebraic numbers 

form a field, algebraic integers and integral domains, quadratic 

fields, the Euclidean algorithm, unique factorization; the irration-

ality of � and e, the transcendence of e. 

9. Optional topics. Infinitude of primes in an arithmetic 

progression; arithmetic properties of roots of unity, cyclotomic 

polynomials. 

Geometry: Convex Sets (One Semester) 

The study of convex figures is one of the oldest branches of 
mathematics; indeed, most figures studied by the classical geometers 
were either convex or stars. On the other hand, many branches of 
modern mathematics, e.g., functional analysis, game theory, numerical 
analysis, etc., have found that many problems in their scope are re-
lated to problems of convexity. Neither of these points of view of 
convexity, either as a branch of classical geometry or as a tool for 
other subjects, catches the essence of the theory. The geometry of 
convexity is very much alive today. A course in convexity should 
try to preserve the geometry as much as possible, even though in 
higher dimensions rigor often demands analytical technique. With 
this in mind, the course outlined below attempts to develop the sub-
ject starting from the simple intuitive notions and ending on the 
borders of the unknown in such a fashion that the geometric relation-
ships are always in sight. 

The course outlined below is intended for one semester. The 
material listed is more than enough for that length of time. Sec-
tions 8, 9, and 10 are all independent of one another and may be 
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considerably shortened and used in any order without serious harm to 
the course. 

1. Elementary properties of E^. Coordinate systems and 

vectors. Scalar products, norm, and distance. Limits. Topological 

notions. Equivalence of topological definition of limit, n-dimen-

sional analogs of the Bolzano-Weierstrass theorem, Heine-Borel theo-

rem, and the theorem that a filter of closed bounded sets with 

finite intersection property has nonempty intersection, k-flats in 

parametric form and as solution space of inhomogeneous linear equa-

tions. Incidence properties and affine invariance. 

2. Properties of individual convex sets. Dimension of a con-

vex set. Interior and boundary, relative interior and boundary. 

Intersection properties of k-flats with boundary and interior. Pres-

ervation of convexity under affine transformations, interior and 

closure operations, projections, intersection, and lim inf opera-

tions. The existence of a support plane at every boundary point and 

in every direction. Regular points. Separation properties. Hull 

operator. Equivalence of intersection definition with constructive 

definition. The existence of exposed points for a closed bounded 

convex set (CBCS). Every exposed point is extreme. Every point of 

a CBCS is in the hull of 2n extreme points; every interior point 

of a CBCS is in the interior of the hull of n + 1 extreme points. 

A CBCS is characterized by its extreme points. The hull of a closed 

bounded set S is a CBCS, namely the intersection of all closed 

half-spaces containing S. 

3. Convex cones and polyhedra; polarity. Support planes, 

extreme points and rays, and hull formation. Projecting cones and 

asymptotic cones. Polarity or duality theory for cones and poly-

hedra, and equivalence of various definitions of polyhedra. Appli-

cations to dual systems of linear inequalities, and to game theory 

and linear programming. 

4. The algebra of convex sets. The sum of convex sets is a 

convex set. Addition is associative, commutative, and satisfies the 

usual rules for positive scalar multiplication. The sum of closed 

(open) sets is closed (open). Essential invariance under choice of 

origin. The same for cartesian products. Relations between sums, 
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products, and scalar multiplication. Faces, support planes, and 

diameters of sum in terms of those of summands. 

5. Symmetrization operation. Steiner symmetrization in E^; 

its relation to area and perimeter, diameter, and width. The sym-

metral of the sum of two sets. Similar results for Steiner sym-

metrization about a hyperplane in E^. Steiner symmetrization about 

a k-flat in � . Central symmetrization 
� 

Its relation with volume, area, diameter, etc. 

6. Helly�s theorem for a finite family of convex sets. Ex-

tension to infinite families of CBCS. Further generalizations and 

relatives of Helly�s theorem. Applications: Chebychev�s approxi-

mation theorem, Jung�s theorem, Krasnoselskii�s theorem, solutions of 

convex inequalities. 

7. The space of CBCSs, K^. The inner and outer parallel 

sets of a CBCS. The distance � (K,,K ) between two CBCSs. � is 1 2 � 

a complete metric space. The polyhedra are a countable dense sub-

set. Bolzano-Weierstrass, Heine-Borel, and filter theorems for � . � 

Continuity of volume, area, diameter, sum, symmetrization, etc. Ap-

plications: surface area problems, isoperimetric problem, etc. 

8. Brunn-Minkowski theorem. Linear arrays. 

9. Convex functions. Distance and support functions of CBCS, 

and polar reciprocals. Continuity of convex functions. f(Z) is 

convex with convex domain in � if and only if 

� J 

{(2
1

, Z
2

, Z
n

, r)|r £ �(�
�

, Z
2 >

 Z
n

)} 

is convex in E

n + ^ � Preservation of convexity under transformation 

of domain, sup, composition with monotone increasing convex func-

tions, etc. Differential conditions which imply convexity. The 

a.e. differentiability of a convex function, i.e., almost all points 

of the boundary of a convex set are regular (possibly only the case 

� = 2). Extrema of convex functions with convex domain. Helly�s 

theorem for convex functions. The convexity of certain special func-

tions; e.g., Hadamard�s 3-circle theorem. 

10. Constant width sets. A set has constant width if and only 
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if it is equivalent in breadth to a sphere. Projection properties. 

Properties involving area, perimeter, etc. (n = 2). 

11. Further refinements and generalizations. Some comments � 

separation theorems (infinite-dimensional spaces, for open and clos 

sets). Introduction to convex topologies. Hahn-Banach theorem--

applications. Applications to constructive function theory (sum-

mability of series, etc.). Derivation of classical inequalities 

(e.g., Holder, Minkowski, etc.). Non-Euclidean spaces. 
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