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INTRODUCTION 

During a conversation at the mathematics meetings in January, 
1964, the late S. S. Wilks of Princeton University pointed out the 
absence of any special large-scale efforts to provide technical per-
sonnel for the nation�s space program. As he saw it, there was a 
continuing need for persons really well-trained in the mathematical 
sciences and able to apply their fields to the complicated engineer-
ing problems of the space effort. His aim was to provide technical 
manpower specifically prepared for a strong combination of mathemat-
ics and engineering�in addition to the more customary converts 
from a great variety of backgrounds. He felt that CUPM, with its 
tradition of pervasive concern for all aspects of collegiate mathe-
matical education, might undertake a study of this problem. The 
present report is, in part, a response to his ideas. 

A pair of meetings with representatives of NASA and the space 
industry confirmed the eminent need for the projected product. At 
the same time it became clear that many other industries, such as 
electronics and communication, would have an equal interest in a 
mathematical engineer with the same basic background but possibly 
somewhat different specialization. All these industries face in-
numerable engineering problems with a common need for extensive and 
sophisticated mathematical analysis. For the solution of such prob-
lems it is no longer true that the prime requirement is a good 
physical intuition; rather, one also needs a well-developed mathe-
matical intuition. Thus the mathematical engineering program must 
involve a heavy concentration in mathematics, but with a choice of 
topics that will give a useful basis for applications as well as 
solid grounding in theory. As the Panel came to grips with this 
multiplicity of purposes, it developed the notion of a common core, 
for all mathematical engineers, of material in the basic physical 
sciences and, more extensively, in the mathematical sciences. The 
core, in turn, is complemented by a number of options, which are more 
specialized developments in depth and which assure that the student 
will be fairly well acquainted with at least one branch of engineer-
ing. Orbit mechanics, operations research, and control theory are 
three options which are developed in detail in the present report. 

It turns out that a minimum of five years, rather than four, 
is needed to carry out the desired sequences in depth. It is not 
immediately obvious what the student�s area of concentration should 
be called. The dual emphasis on mathematics and engineering makes 
either field conceivable; in fact, the program comes close to being 
recognizable as a master�s program in applied mathematics. However, 
the heavy emphasis on the physical sciences, the concern in each 
option with the building of mathematical models, and the rather 
heavily prescriptive nature of the program make a realization within 
the engineering school more suitable. Wherever the program may ap-
pear within an institution�s offerings, it should involve close 
cooperation between the mathematicians and the engineers. 
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A natural question also arises as to the possible fields of 
further graduate study which a student could enter on completion of 
the present program. It is our opinion that relatively little, if 
any, "remedial" work will be necessary to qualify the student for a 
doctoral program in applied mathematics or, depending on the particu-
lar option, in engineering science, or in industrial or electrical 
engineering. Whether or not a master�s degree should be given for 
the completion of this program is a matter for the offering institu-
tion to decide. As remarked above, the content of the program is of 
the right order of magnitude for this degree. Other considerations 
(e.g., requirement of a thesis) may be deciding factors. 

A number of additional remarks about the program are in order. 
A most important aspect is the flexibility which would automatically 
be built into the mathematical engineer. With such a background and 
with a considerable facility in making connections between the real 
world and mathematical models thereof, such a man could easily re-
train himself, say, from space science to oceanography, if a sudden 
shift of present national interest should make this desirable. 
Secondly, the similarity in spirit of this program to the recently 
introduced engineering physics and engineering science programs is 
worth noting. The idea of these programs is to give the student a 
solid background of the kind of physics that would be useful in a 
wide variety of engineering applications, along with enough engineer-
ing subjects to impart some feeling for the kinds of problems he 
would encounter. There is now no question of the value of such 
training. In just the same way, mathematical engineering combines 
a solid foundation in major areas of applicable mathematics with 
real strength in some particular area of engineering, and experience 
in connecting the two. Incidentally, it should be remarked that 
mathematical engineering has existed for some years, much in the 
spirit of the present report, at several universities in the Nether-
lands. It seems to be a successful program from the point of view 
of both employment opportunity and preparation for further graduate 
work. 

DESCRIPTION OF PROGRAM 

As remarked above, the program is constructed around a core 
consisting of a heavy concentration of mathematics and the physical 
sciences. Attached to the core there may be many options, each 
providing motivation, application, and extension of the core mate-
rial to some phase of engineering. The core is fairly well defined 
and will probably not vary greatly from one institution to another. 
The options, on the other hand, will necessarily have much local 
flavor both in their general subject matter and in the particular 
courses that compose them. The three options that we present here 
are thus to be regarded as samples of what can be done. 
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The Core 

Modern engineering is built upon a three-part foundation con-
sisting of mathematics, the physical sciences, and automatic com-
puting. The last of these is a newcomer whose precise role and 
manner of development are still matters of speculation, but there is 
no question as to its basic importance. These three topics, then, 
compose the core. 

The mathematical portion, which is, for this program, the most 
extensive, is based on Recommendations on the Undergraduate Mathe-
matics Program for Engineers and Physicists, page 628. The courses 
recommended there as preparation for graduate work have been modi-
fied somewhat and about nine semester hours have been added, much of 
it as additional work in topics already begun. This gives us the 
following list (the initial number refers to the course outlines 
given in the Appendix [or elsewhere in this COMPENDIUM], and "hours" 
means "semester hours"): 

Calculus and Linear Algebra (12-15 hours) 
1. Functions of Several Variables (3 hours) 
2. Intermediate Ordinary Differential Equations (3 hours) 
4. Numerical Analysis (3 hours) 
5. Probability and Statistics (6 hours) 
6. Complex Variables (3 hours) 
7. Functional Analysis (3 hours) 

10. Partial Differential Equations (6 hours) 
11. Optimization (3 hours) 

Discussion of the individual courses is deferred until the 
whole core has been described. 

The resulting 42-45 hours of mathematics in the core is about 
the magnitude of a good undergraduate major in mathematics, but the 
emphasis is quite different. This program stresses analysis heavily. 
Indeed, the minimal treatment of algebra and geometry is perhaps the 
most vulnerable point of this curriculum. However, for the foresee-
able future the topics included are certainly of first importance. 
Other mathematical topics needed in certain courses can be developed 
when needed to the extent required. 

We recognize full well that the value of these courses depends 
on the spirit in which they are taught. One must keep in mind that 
their ultimate purpose is application, either directly or as prepara-
tion for more obviously applicable topics. Such courses as Partial 
Differential Equations and Optimization should lean heavily on applied 
problems. Computational methods should be stressed throughout. Fur-
ther, as much interconnection as possible should be built into the 
whole program. It is planned that both the mathematics and the en-
gineering courses should reinforce one another to an unprecedented 
degree. 
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A corollary of this requirement is that the courses should be 
taught by whoever is capable of doing the best job, regardless of 
the department he happens to be in. For the more standard and the 
more theoretical courses the mathematics department would be the 
natural place to look for teachers, but where applications are 
heavily stressed the best teacher may well be found in some other 
field. 

Beyond a fairly standard 15- to 18-hour introduction to physics 
and chemistry, the program calls for 12 more hours in the basic 
sciences. Six of these are accounted for by a mechanics course, in-
tended to be a coordinated combination of physics, mathematics, and 
computing. Considerable time is spent on variational methods and 
continuum mechanics, as well as on the standard mechanics of parti-
cles and rigid bodies. 

The remaining six hours is divided between electromagnetics and 
thermodynamics (including statistical mechanics). Of the many pos-
sible continuations of the basic material it was felt that these two, 
because of their fundamental nature, their wide applicability, and 
their susceptibility to interesting mathematical analysis, are par-
ticularly appropriate to this program. 

Modern computing facilities and the techniques for using them 
are still developing with bewildering rapidity, and no program fixed 
now will give adequate coverage for very long. We are painfully 
aware of these rapid developments and claim no special powers of 
prophecy. The proposal delineated here provides two realistic ap-
proaches to current problems of computing. A direct approach is the 
inclusion of two courses devoted to computation, the Numerical Analy-
sis mentioned above and an Introduction to Computer Science [such as 
the course CI in Recommendations for an Undergraduate Program in Com-
putational Mathematics!� These give the principles of modern compu-
tation, including the use of a programming language, and their basic 
applications to mathematical problems. 

Less direct, but perhaps of more ultimate importance, is the 
inclusion of computational methods in connection with each appropri-
ate topic in other courses. Such topics occur in almost all the 
core courses, but particularly in Differential Equations (both 
Ordinary and Partial), Mechanics, and Optimization. It is expected 
that significant problems to program and run on a computer will be 
part of the work in these courses. Only in this way can a real 
understanding of the power and (especially) of the limitations of 
modern computing techniques be communicated. 

The overall structure of the core can be seen in the table. 
Here each entry represents a 3-hour course. 
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Year Core Courses Electives* 

I Calculus Physics 
Chemistry 

6 

Calculus Physics 
Chemistry 6 

II Linear Algebra Physics 
Computer Science 6 

Calculus Physics 9 

III 1. Functions of 
Several Variables 

3. 
4. 

5. 

Mechanics 
Numerical 

Analysis 
Probability 

3 

2. Ordinary Differential 
Equations 

3. 
5. 

Mechanics 
Statistics 6 

IV 6. Complex Variables 8. Electromagne tics 9 

7. Functional Analysis 9. Thermodynamics 9 

V 10. Partial Differential 
Equations 

11. Optimization 9 

10. Partial Differential 
Equations 12 

* semester hours 

Of an assumed total of 150 semester hours for the five years, 
45 hours are devoted to mathematics and computing and 30 to basic 
sciences. This leaves the remaining 75 hours for humanities elec-
tives and for additional courses in engineering, mathematics, and 
science. With a roughly even split this should satisfy normal re-
quirements. The most demanding of our sample options, Control 
Theory, specifies only 24 hours, leaving, say, 15 hours for basic 
engineering and technical electives and 36 hours for the humanities. 

The first two years of the program are fairly standard. For 
the mathematics portion we recommend the sequence of courses de-
scribed in Commentary on A General Curriculum in Mathematics for 
Colleges, page 33 . In addition to linear algebra and the usual 
elementary calculus of one or more variables this includes an intro-
duction to differential equations. 
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Introductory physics and chemistry courses are at present under 
intensive review by professional groups; some radically new physics 
courses have recently appeared and other experimental programs are 
underway. We therefore refrain from specifying these courses in any 
detail but urge the reader to consult the publications of the Commis-
sion on College Physics and the Advisory Council on College Chemistry. 
Widespread adoption of new elementary courses could require great 
changes in the content, or even in the selection, of the later 
science courses in the core. 

The introductory computer science course should include a dis-
cussion of the nature of an automatic computer and the manner in 
which it solves problems, an introduction to a specific computer 
language and its role in this process, and some practice in the 
actual solution of various types of problems. Either by means of 
this course or from supplementary instruction, students should be 
able to program and run simple problems early in their sophomore 
year. 

The third year has the heaviest concentration of core courses, 
foundation for the more advanced material in the core and for the 
technical applications in the options. These courses are of fairly 
standard type except for Mechanics, which has been described, and 
Intermediate Ordinary Differential Equations. The occurrence of 
considerable material on differential equations in the calculus 
course justifies the initial adjective in the latter title and per-
mits the course to concentrate on linear equations with variable 
coefficients, boundary value problems, and special functions. There 
is also a brief introduction to nonlinear equations. 

The report Commentary on A General Curriculum in Mathematics 
for Colleges outlines three courses in Functions of Several Variables 
(Mathematics 5. Multivariable Calculus II.). The first of these 
has a classical vector analysis approach, while the second uses dif-
ferential forms; the third is particularly suited for students in 
statistics. We recommend the second course, outlined on page 77, 
partly because the vector technique is covered in the physics courses 
but also because the more general approach is a valuable background 
for fourth-year Functional Analysis. 

With the exception of the Probability and Statistics all the 
third-year work is closely interconnected, and considerable thought 
should be given to the sequence of topics so as to get the most co-
ordination. In particular, linear algebra, numerical techniques, 
and the use of a computer to solve problems are ever-recurring themes 
in the year�s work. 

The fourth and fifth years of the core are fairly light, since 
here will come most of the work in the options. In the mathematics 
courses, in addition to the obvious requirements of Complex Variables 
and Partial Differential Equations�six hours of the latter is neces-
sary for any sort of coverage, we have included courses in Functional 
Analysis and Optimization. The first of these provides an introduc-
tion to some hitherto abstract topics that are proving useful in a 
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variety of applications, such as numerical analysis, communication 
theory, quantum physics, and many branches of mathematics. General 
metric and linear spaces, operators and functionals, with an intro-
duction to measure theory, are the central topics. 

Optimization is another introductory course, but one tied very 
closely to applications. Based on the notions of compactness, con-
vexity, and Lagrange multipliers, it treats briefly the various 
types of mathematical programming, some combinatorial problems, and 
the calculus of variations. 

The two science courses in the fourth year, Electromagnetics 
and Thermodynamics, could vary considerably in content. In any case, 
however, they should take advantage of the students� exceptional 
background in analysis, probability, mechanics, and computing to 
give a considerably more sophisticated treatment than could commonly 
be contemplated. 

The selection and arrangement of the courses comprising the 
core represent the Panel�s best judgment of the curriculum currently 
needed to develop the kind of highly trained but still flexible 
engineer described in the Introduction. Local conditions and opin-
ions will undoubtedly suggest some changes, and future developments--
for example, an upsurge of biological engineering--may call for a 
reappraisal of the whole program. But the basic framework of mathe-
matics, science, and computing should still be appropriate for many 
years to come. 

The Options 

The role of the option is to provide the student with a 
solid acquaintance with some branch of engineering, at the same time 
giving background and applications of many of the subjects treated 
in the core. In general, serious work in the option will begin in 
the fourth year, following the heavy load of third-year core courses 
and some appropriate technical introduction. With this background 
the work in the option can begin, and proceed, at a higher level of 
sophistication than is usually possible. 

As samples of what might be done we present three options, 
labeled, for want of better names, Operations Research in Systems 
Engineering, Orbit Mechanics, and Control Theory. There is nothing 
special about these; they simply happened to be topics of interest 
to some of the Panel members and consultants. Other topics of equal 
suitability might be, for example, Fluid Mechanics, Solid Mechanics, 
Electronics and Microwaves, Wave Propagation and Plasma Physics, 
Materials Engineering, and Nuclear Engineering. 

For each of the sample options we give here a brief descrip-
tion of the program and an outline of its structure. Detailed syl-
labi of the courses are given in the Appendix. 
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OPERATIONS RESEARCH IN SYSTEMS ENGINEERING 

Operations Research has been described as the application of 
mathematical methods to the solution of practical optimization prob-
lems in engineering, in business, and in government. The Operations 
Research Option builds onto the core those features of operations 
research that pertain especially to the design, development, and 
production of large-scale engineering systems. These require analy-
sis of the complicated interrelationships among component and system 
performances, development and production costs, scheduling priorities, 
available manpower and facilities, and a host of other factors. Such 
considerations have made necessary the use of various optimization 
techniques, the application of probabilistic and statistical methods, 
the development of a highly mathematical reliability theory, Monte 
Carlo simulation methods, optimal control theory, linear, nonlinear 
and dynamic programming methods, and queueing theory. These mathe-
matical topics provide the typical tools for operations research 
studies which find wide applicability in the evaluation (and compari-
son) of performance, programs, and policies in certain types of en-
gineering and industrial situations. 

The Operations Research Option, which has been fleshed out in 
some detail, represents an attempt to provide suitable training for 
engineers who have to cope with such problems. Building upon the 6-
hour course in Probability and Statistics of the core, it provides a 
6-hour course in mathematical methods of reliability engineering. 
The course includes both probabilistic models of reliability prob-
lems and statistical techniques of reliability estimation. The in-
troductory optimization course of the core is supplemented by a 
further 6-hour course in linear programming techniques, dynamic 
programming, inventory and scheduling problems, queueing theory, and 
related topics. 

The third course recommended in this option is a 3-hour course 
in System Simulation, which exploits the use of a computer in carry-
ing out the analysis of such operations research activities. 

Additional courses in economics, such as Economic Decision 
Theory, or in management science would constitute appropriate elec-
tives for certain students. 

Note that the core course in Optimization has been moved into 
the fourth year to provide the necessary background for the fifth-
year course in Operations Research. 
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Year Core Courses Option Courses Electives 

IV 6. Complex Variables 0R1. Reliab ility 9 

7. 

8. 

Functional Analysis 

Electromagnetics 

0R1. Reliab ility 

9. Thermodynamics and 
Statistical Mechanics 

11. Optimization 

V. 10. Partial Differential 
Equations 

0R2. Operations 
Research 

15 

10. Partial Differential 
Equations 

0R2. 

0R3. 

Operations 
Research 

Systems 
Simulation 

ORBIT MECHANICS 

As with each of the options, the aim is to build upon the 
foundation supplied by the core to provide greater specialization 
in an aspect of mathematics of central importance in modern engineer-
ing, here space science. 

The design of space vehicles; prediction, correction, and con-
trol of their space flight; transmission and evaluation of informa-
tion collected in space--all such tasks place unusual new require-
ments on engineering skills and training. Additional problems arise 
from the necessity for real-time computations and corrections during 
space flight. Underlying all these difficulties is the problem of 
developing a correct physical intuition for the nature of space 
travel, vehicle control, and environmental conditions in space. 

The Orbit Mechanics Option supplements the core courses in 
mechanics with substantial one-semester courses in celestial mechan-
ics and in orbit theory. The addition of an advanced programming 
course and an introduction to control theory provides solid ground-
ing for many problems of space vehicle engineering. The course in 
data smoothing and prediction provides training essential to the 
successful collection, retrieval, and interpretation of telemetered 
information. 
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Additional courses in astronomy or in space physics constitute 
natural electives for students in such a program. 

Since some of Partial Differential Equations is needed for 
Advanced Numerical Analysis and Celestial Mechanics, the core course 
10 must be put in the fourth year. This gives a rather heavy con-
centration of mathematics in the fourth year, but this could be re-
lieved, if desired, by a further shifting of some of the other 
courses. 

Year Core Courses Opt ion Courses Electives 

IV 6. 

7. 

8. 

Complex Variables 

Functional Analysis 

�lec tromagne tic s 

OM1. Advanced 
Numerical 
Analysis 

9 

9. Thermodynamics and 
Statistical Mechanics 

10. Partial Differential 
Equations 

10. Partial Differential 
Equations 

V 11. Optimization OM2. 

OM3. 

OM4. 

CT2. 

CT5. 

Advanced 
Programming 

Celestial 
Mechanics 

Orbit Theory 

Control 

Data Smoothing 
and Prediction 

12 

CONTROL THEORY 

The advances in computers and in instrumentation have brought 
an enormous increase in the sophistication of control systems. The 
instruments allow us to measure rapidly and precisely many variables 
which were previously hard to measure, and the computer allows us to 
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make use of all the data while it is still current. The space pro-
gram has given a great impetus to control theory by bringing up a 
number of new problems with very strict requirements. Another as-
pect of many control problems is that they involve control loops 
which extend over great distances, thereby creating an interface 
problem between the control and the communications specialist. 

The Control Theory Option starts in the third year with a one-
semester course in circuit theory which exposes the student to the 
modeling problem, to some specific physical devices which he will 
encounter later, and to basic system concepts in simple physical 
situations. In the fourth year the control course will furnish the 
student the basic facts about control systems and the linear systems 
course will provide the common base for further courses in control, 
communications, and circuits. The fifth year includes a course on 
the techniques of optimization, one on advanced control, one on 
advanced communications, and one on information theory. 

Year Core Courses Option Courses Electives 

IV 6. Complex Variables CT2. Control 6 

7. Functional Analysis CT3. Laboratory 

8. Electromagnetics CT4. Linear Systems 

9. Thermodynamics and 
Statistical Mechanics 

CT5. Data Smoothing 
and Prediction 

V 10. Partial Differential 
Equations 

CT6. Advanced 
Control 

12 

10. Partial Differential 
Equations 

CT7. Information 
Theory 

11. Optimization CT8. Advanced 
Communications 

APPENDIX 

Sample Outlines of the Courses 

The course outlines given in this Appendix or elsewhere in the 
COMPENDIUM are intended in part as extended expositions of the ideas 
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that we have in mind, in part as feasibility studies, and in part 
as proposals for the design of courses and textbooks. They have a 
wide variety of origins. Some are standard courses now given in 
universities and some are experiments that have never yet been tried. 
Most of them, however, are modifications or combinations, more or 
less radical, of familiar material. They have been prepared by many 
different persons, with a broad spectrum of interests in mathematics 
and related fields, and representing industrial as well as academic 
interests. However, all outlines were carefully scrutinized by the 
whole Panel and were not accepted until their value to the whole 
program was clear. For better or worse, this is a committee product. 

It will be observed that there is considerable overlapping in 
some of the content of the courses, for example in Intermediate Ordi-
nary Differential Equations and in Numerical Analysis. This is in-
evitable in the courses in any modern university, where most courses 
are taken by a variety of students in different programs and with 
different backgrounds. If a neater dovetailing of these courses is 
possible in particular cases, the contents should of course be modi-
fied accordingly. 

The Core 

I, II Physics (12) Calculus and Linear Algebra (12-15) 

Chemistry (6) Computer Science (3) 

III 1. Functions of Several Variables (3) 

2. Intermediate Ordinary Differential Equations (3) 

3. Mechanics (6) 

4. Numerical Analysis (3) 

5. Probability and Statistics (6) 

IV 6. Complex Variables (3) 

7. Functional Analysis (3) 

8. Electromagnetics (3) 

9. Thermodynamics and Statistical Mechanics (3) 

V 10. Partial Differential Equations (6) 

11. Optimization (3) 
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1. Functions of Several Variables. (3 semester hours) 

For an outline of this course, see Mathematics 5 (Multivariable 
Calculus II--alternate version) in Commentary on A General Curriculum 
in Mathematics for Colleges, page 77. 

2. Intermediate Ordinary Differential Equations. (3 semester 
hours) 

For an outline of this course, see Recommendations on the 
Undergraduate Mathematics Program for Engineers and Physicists, 
page 643. 

3. Mechanics. (6 semester hours) 

The course outlined below differs from that given in certain 
textbooks in that the discussion of mechanics is interruped at 
various stages in order to deal with topics in numerical analysis; 
e.g., after the equations of motion are formulated, various methods 
for numerically integrating initial value problems are discussed 
and analyzed. It is assumed that the student has had the linear 
algebra course as well as the computer science course. Homework 
assignments that involve use of a computer should be made. 

a. Kinematics. (8 lessons) Cartesian coordinates in Euclid-

ean 3-space, cartesian tensors, the numerical tensors �.., e..,� ij ljk 

Parametric equations of curves. Velocity and acceleration in 

cartesian coordinates, in general coordinates. Moving general co-

ordinates and the velocity and acceleration in such coordinates. 

Equations of straight lines in moving general coordinates. Char-

acterization of inertial coordinate frames. 

b. Particle mechanics. (10 lessons) Equations of motion. 

Initial value problems for a system of ordinary differential equa-

tions, existence, uniqueness, continuous dependence on parameters 

and initial values. Numerical methods for integrating initial value 

problems, their stability. 

c. Perturbation theory. (8 lessons) Physical stability. 

Numerical stability. Linearization of nonlinear problems. 

d. Central forces. (10 lessons) Planetary orbits. Energy 

integrals, angular momentum integrals. Constants of motion and 

symmetry properties. 
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e. Variational principles and rigid body motion. (13 lessons) 

Hamilton�s principle, generalized coordinates of Lagrange, canonical 

equations, contact transformations, partial differential equations 

of Hamilton and Jacobi. Rigid body motion. 

f. Multidimensional variational principles. (8 lessons) 

Variation of multiple integrals and applications to problems in 

statics and dynamics of deformable bodies. Vibrating strings and 

membranes. Rayleigh-Ritz method. Use of polynomials to derive dif-

ference equation approximation to the boundary value differential 

equations that are the Euler equations of a variational principle. 

Numerical integration of boundary value problems on the line and in 

the plane. 

g. Continuum mechanics. (21 lessons) Stress and strain ten-

sors. Conservation of mass, momentum and energy. Partial differen-

tial equations describing the motion of a perfect fluid. One-dimen-

sional isentropic motions (simple and compound waves). Numerical 

integration of 1-dimensional motions. Existence of shocks. Numeri-

cal integration in the presence of shocks. 

4. Numerical Analysis. (3 semester hours) 

For an outline of this course, see Mathematics 8 (Introduction 
to Numerical Analysis) in Commentary on A General Curriculum in Mathe-
matics for Colleges, page 83. 

5. Probability and Statistics. (6 semester hours) 

For an outline of this course, see Recommendations on the Under-
graduate Mathematics Program for Engineers and Physicists, page 642. 

6. Functions of a Complex Variable. (3 semester hours) 

For an outline of this course, see Mathematics 13 (Complex 
Analysis) in Commentary on A General Curriculum in Mathematics for 
Colleges, page 97. 
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7. Introduction to Functional Analysis. (3 semester hours) 

For an outline of this course, see Mathematics Q (Functional 
Analysis) in A Beginning Graduate Program in Mathematics for Pro-
spective Teachers of Undergraduates, page 125. 

8. Electromagnetics. (3 semester hours) 

This course combines the essentials of classical electromagne-
tic theory with the foundations of applications to plasma media. It 
should take advantage of the preparation in mechanics, especially 
continuum mechanics, as well as of the fundamentals of electricity 
and magnetism in the introductory physics course. 

a. Electrostatics. (4 lessons) Vacuum field and potential 

theorems. Dielectrics. Boundary conditions. Energy relations and 

forces. 

b. Magnetic fields. (5 lessons) Current and moving charges. 

The vector potential. Magnetic media. Energy relations and forces. 

c. Maxwell�s equations. (6 lessons) The law of induction. 

Maxwell�s equations, extended to moving media. Energy, force, and 

momentum relations in the electromagnetic field. 

d. Wave propagation. (8 lessons) The scalar wave equation. 

Plane, cylindrical, spherical waves. Homogeneous isotropic media. 

Dispersion. Nonhomogeneous isotropic media. Rays; the geometrical 

optics approximation. Wave packets, including nonhomogeneous media 

and absorption. 

e. Electromagnetic waves. (7 lessons) Free space and homo-

geneous isotropic media. Homogeneous plasmas. Inhomogeneous media. 

Anisotropic media, including plasma with magnetic field. 

f. Radiation. (9 lessons) Simple radiating systems. Radia-

tion by moving charges. Radiation in ionized gases. Synchrotron 

radiation. 

9. Thermodynamics and Statistical Mechanics. (3 semester hours) 

There is a current trend to combine the macroscopic and the 
microscopic aspects of thermal physics from the beginning, instead 
of giving a careful treatment of classical thermodynamics, with 
applications, as in Thermal Physics by Philip M. Morse (second 
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edition; Menlo Park, California, W. A. Benjamin, Inc., 1969). The 
suggested outline follows the latter plan, as probably more appro-
priate as a background for varied applications. 

Thermodynamics. 

a. State variables and equations of state. (3 lessons) 

Temperature, pressure, heat, and energy. Extensive and intensive 

variables. Pairs of mechanical variables. The perfect gas and 

other equations of state. 

b. The first law of thermodynamics. (4 lessons) Work, in-

ternal energy, heat. Heat capacities. Isothermal and adiabatic 

processes. 

c. The second law of thermodynamics. (6 lessons) Heat 

cycles. Reversible and irreversible processes. Entropy. Applica-

tions to simple thermodynamic systems. 

d. The thermodynamic potentials. (3 lessons) Internal 

energy, enthalpy, Gibbs and Helmholtz potentials. Examples and 

procedures for calculation. 

e. Phrase equilibria. (3 lessons) Melting, evaporation, 

triple point, and critical point. 

f. Chemical applications. (2 lessons) Reaction heats, 

electrochemical processes. 

Statistical Mechanics (Equilibrium). 

a. Statistical methods. (3 lessons) Random walk; probability 

distributions; mean values; binomial, Poisson, and Gaussian distribu-

tions. 

b. Statistical description of systems of particles. (3 les-

sons) Ensembles, ergodic hypothesis, postulates, limiting behavior 

for large N, fluctuations. 

c. Quantum statistics. (5 lessons) Maxwell-Boltzmann, Bose-

Einstein, and Fermi-Dirac distributions with applications (solids, 

gases, electron gas, blackbody radiation, etc.). 

Microscopic Description of Nonequilibrium. 

a. Elementary kinetic theory. (2 lessons) 

b. Transport theory. (2 lessons) Based on Boltzmann�s equa-

tion, in simplified form. 
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c. Brownian motion. (3 lessons) Possibly including the 

Fokker-Planck equation. More on random variables. Markov processes, 

fluctuations, irreversible processes. 

10. Partial Differential Equations. (6 semester hours) 

This course ordinarily occurs in the fifth year of the se-
quence, although with certain options (e.g., Orbit Mechanics) it 
should be taken in the fourth year. The material should strike a 
reasonable balance between the classical analytical theory of partial 
differential equations and modern computational aspects of the sub-
ject. For that reason, existence theorems and the like should be of 
the constructive type whenever possible. Further, application to 
problems in classical and modern physics should constantly be borne 
in mind. Physical models should be used both to predict results 
concerning the behavior of solutions to partial differential equa-
tions and to interpret phenomena revealed analytically or computa-
tionally. 

a. Introduction. (6 lessons) Derivation of some equations; 

discussion of mathematical models, continuous dependence theorems, 

and relation to physics. 

b. Classification and characteristics. (9 lessons) Cauchy 

problem for first-order equations, formulation and statement of 

Cauchy-Kowalewski theorem. 

c. Hyperbolic equations. (12 lessons) Existence and contin-

uous dependence for second-order equations. Riemann method. Three-

dimensional wave equation. Retarded potentials. Numerical methods--

finite difference schemes and stability. 

d. Elliptic equations. (21 lessons) Potential theory in 

three dimensions with smooth boundaries. Eigenvalue problems--

estimates. Numerical methods. 

e. Parabolic equations. (12 lessons) Thermal potential 

theory. Convergence to steady state and relation to potential prob-

lems. Numerical methods and connection, in steady state, to numeri-

cal methods for elliptic problems. 

f. Integral representation of solutions. (12 lessons) 

Green�s functions. Integral equations. 

g. Equations of hydrodynamics. (6 lessons) Shock phenomena, 

weak solutions. Numerical methods. 
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11. Optimization. (3 semester hours) 

For an outline of this course, see Recommendations on the 
Undergraduate Mathematics Program for Engineers and Physicists, 
page 647. A natural successor to this course is the 6-semester-
hour course Operations Research in the Operations Research Option, 
where linear programming techniques are developed in depth and addi-
tional topics in dynamic programming, inventory and scheduling prob-
lems, Monte Carlo simulation techniques, and queueing theory are 
introduced. 

OPERATIONS RESEARCH IN SYSTEMS ENGINEERING OPTION 

Year Core Courses Option Courses 

III 1. Functions of Several 
Variables 

(3) 

2. Intermediate Ordinary 
Differential Equations 

(3) 

3. Mechanics (6) 

4. Numerical Analysis (3) 

5. Probability and 
Statistics 

(6) 

IV 6. Complex Variables (3) 0R1. Reliability (6) 

7. 

8. 

Functional Analysis 

�lectromagne tics 

(3) 

(3) 

9. Thermodynamics and 
Statistical Mechanics 

(3) 

11. Optimization (3) 

10. Partial Differential (6) 0R2. Operations (6) 
Equations Research 

OR3. Systems (3) 
Simulation 
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0R1. Quantitative Methods in Reliability Engineering. (6 semester 
hours) 

The growing complexity of systems over the last two decades 
has inspired the development of a body of quantitative methods for 
developing, improving, and measuring system reliability. Since 
reliability is such a critical factor in the successful completion 
of every highly technical program, it is of value to the engineer to 
learn quantitative reliability theory, as presented in the following 
course. The mathematical and statistical methods of the course are 
not simply routine applications of well-known theory, but in many 
cases represent new developments motivated by reliability problems. 

The 6-semester-hour course in Probability and Statistics of 
the core is an essential prerequisite for this course. 

First Semester: Probabilistic Models in Reliability. 

a. Failure distributions in reliability theory. (8 lessons) 

Typical failure laws. The exponential as the failure law of complex 

equipment. Monotone failure rates. Bounds for distributions with 

monotone failure rate. General failure rates. 

b. Prediction of system reliability from a knowledge of com-

ponent reliabilities. (3 lessons) Analytical methods for computing 

reliability exactly. Bounds on system reliability based on paths or 

cuts. Monte Carlo methods. Qualitative relationships for multi-

component structures. 

c. Redundancy optimization. (5 lessons) Optimal allocation 

of redundancy subject to constraints. Optimal redundancy assuming 

two kinds of failure. 

d. Operating characteristics of maintenance policies. (6 

lessons) Renewal theory. Replacement based on age. Comparison of 

age and block replacement policies. Random replacement. Repair of 

a single unit. 

e. Optimum maintenance policies. (4 lessons) Replacement 

policies. Inspection policies. 

f. Stochastic models for complex systems. (8 lessons) Semi-

Markov processes. Repairman problems. Marginal checking. Optimal 

maintenance policies under Markovian deterioration. 

Second Semester: Statistical Reliability Theory. 

a. Estimating reliability parameters assuming form of distri-

bution known. (8 lessons) Maximum likelihood estimation in the 
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case of normal, exponential, gamma, Weibull, and binomial distribu-

tions. Confidence and tolerance limits in these cases. Minimum 

variance unbiased estimation in these cases. 

b. Estimating reliability parameters under physically plaus-

ible assumptions. (9 lessons) Errors resulting from incorrect 

assumption as to form of failure distribution. Maximum likelihood 

estimation assuming a monotone failure rate. Maximum likelihood 

estimation assuming a decreasing and then increasing failure rate. 

Conservative confidence and tolerance limits. 

c. Estimating reliability growth. (7 lessons) Form of 

growth assumed known. Only monotonicity of reliability assumed. 

Conservative confidence limits. 

d. Confidence limits on system reliability using observations 

on individual components. (6 lessons) Success or failure observa-

tions. Life length observations. Asymptotic methods. 

e. Hypothesis testing. (9 lessons) Acceptance sampling, 

fixed sample size, truncated and censored sampling, sequential 

sampling. Accelerated life testing. Testing for monotone failure 

rate. 

0R2. Operations Research. (6 semester hours) 

The accent is on the mathematical aspects of the subject, 
rather than the management or industrial engineering aspects. It is 
assumed that time and facilities are available for a computation 
laboratory in connection with both semester courses. A prerequisite 
of an introductory computer programming course is desirable. 

The first semester develops linear programming in depth, build-
ing on the preparation given in a previous one-semester course in 
Optimization. 

First Semester: Advanced Linear Programming. 

a. Review of the simplex algorithm. (4 lessons) Variations 

of the simplex algorithm. Degeneracy, perturbation. Revised sim-

plex method. 

b. Games and linear programs. (4 lessons) Matrix games. 

Equivalence of matrix games and linear programs. 

c. The transportation problems. (4 lessons) Elementary 
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transportation theory. The transshipment problem. 

d. Networks and the transshipment problem. (4 lessons) 

Graphs and trees. Interpreting the simplex method on the network. 

The shortest route problem. 

e. Variables with upper bounds. (3 lessons) The general 

case. The rounded variable transportation problem. 

f. Programs with variable coefficients. (3 lessons) Wolfe�s 

generalized program. Special cases. 

g. Decomposition principle for linear programs. (9 lessons) 

The general principle. Decomposing multistage programs. 

h. Convex programming. (4 lessons) General theory. Separ-

able convex objectives. Quadratic programming. 

i. Discrete variable problems. (4 lessons) Survey of methods. 

Gomory�s method of integer forms. 

Second Semester: Dynamic Programming and Stochastic Models. 

a. Dynamic programming. (10 lessons) Principle of optimality. 

Multistage allocation problems. Arrow-Harris-Marschak inventory 

model. 

b. Dynamic programming and Markov processes. (5 lessons) 

Discrete dynamic programming. Optimal policies with discounted 

returns. 

c. Monte Carlo techniques. (10 lessons) Production of random 

variables by computer. Simulating stochastic systems on the computer. 

d. Mathematical theory of queues. (14 lessons) Single server; 

Poisson input; exponential service. Many servers; Poisson input; ex-

ponential service. The busy period. Stochastic inventory models. 

0R3. Systems Simulation. (3 semester hours) 

This course examines those symbol manipulation applications of 
the computer that involve the numerical and logical representation of 
some existing or proposed system, for the purpose of experimenting 
with the model and of comparing methods of operating the system. The 
primary purpose of the computer is thus not a calculating adjunct to 
experimentation but is the experimental medium itself. A course in 
probability and statistics is a prerequisite. 
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a. Programming languages. (11 lessons) Special languages 

designed for use in simulation, such as SIMSCRIPT and GPSS. Addi-

tional study of the languages will arise in their use throughout the 

rest of the course. 

b. Technical problems of simulation. (14 lessons) Synchroni-

zation of events, file maintenance, random number generation, random 

deviate sampling. 

c. Statistical problems peculiar to simulation. (7 lessons) 

Sample size estimation, variance reducing techniques, problems of 

drawing inference from a continuous stochastic process. 

d. Applications. (7 lessons) Queueing models; storage, 

traffic, and feedback systems; design of facilities and operating 

disciplines. 
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ORBIT MECHANICS OPTION 

Year Core Courses Option Courses 

III 1. Functions of Several 
Variables 

(3) 

2. Intermediate Ordinary 
Differential 
Equations 

(3) 

3. Mechanics (6) 

4. Numerical Analysis (3) 

5. Probability (3) 

IV 6. 

7. 

Complex Variables 

Functional Analysis 

(3) 

(3) 

OM1. Advanced Numerical (3) 
Analysis 

8. Electromagnetics (3) 

9. Thermodynamics and 
Statistical Mechanics 

(3) 

10. Partial Differential 
Equations 

(6) 

11. Optimization (3) OM2. 

OM3. 

OM4. 

CT2. 

Advanced 
Programming 

Celestial 
Mechanics 

Orbit Theory 

Control 

CT5. Data Smoothing 
and Prediction 

(3) 

(3) 

(3) 

(3) 

(3) 
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0M1. Advanced Numerical Analysis. (3 semester hours) 

This course, with its emphasis on topics in partial differen-
tial equations and elementary functional analysis, demands a reason-
able amount of mathematical maturity. It should be taken after the 
first semester of Partial Differential Equations. 

a. Matrix inversion and matrix eigenvalues. (10 lessons) 

Review and extension of iterative methods. Jacobi, Householder, 

and other methods of finding eigenvalues. Ill-conditioning and 

error analysis. 

b. Ordinary differential equations, boundary value problems. 

eigenvalue problems. (11 lessons) Finite difference methods, ex-

tremal principles. 

c. Partial differential equations of second order. (18 les-

sons) Topics selected from the following: Classification, analyti-

cal solutions of well-posed problems for single equations; maximum 

principles for elliptic and parabolic equations, � o r energy--

estimates as well as pointwise estimates of solutions; hyperbolic 

equations, domain of dependence; Fourier analysis and stability for 

constant coefficient equations, eigenvalues for elliptic equations, 

iterative methods for difference equations arising from partial dif-

ferential equations. 

0M2. Advanced Programming. (3 semester hours) 

This course deals with various types of computer programming 
and serves to introduce students to the concepts involved in current 
work in this area. An introductory course in computer science is a 
prerequisite, and it is assumed that the students have considerable 
facility in programming with FORTRAN or ALGOL. 

a. Survey. (9 lessons) Assembly systems, methods of storage 

allocation when using these, pseudo-orders, macros, modify and load 

techniques, monitor and executive systems. 

b. Structure of languages. (15 lessons) Study of a particu-

lar language such as ALGOL, its ambiguities, its method of dealing 

with recursions and procedures. List-processing languages, compiler-

writing languages. 

c. Theory of compilers. (15 lessons) Nature of syntax-
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directed compilers, compilers for dealing with problem-oriented 

languages, compilers for dealing with compiler syntax languages. 

Discussion of the evolution of a translator from a simple language 

whose translator is given in machine language. 

0M3. Celestial Mechanics. (3 semester hours) 

This course in celestial mechanics concerns itself with the 
mathematical structures underlying the physical theory, and with 
deriving from them methods which are commonly used to attack the 
fundamental problems of interest to space research and technology. 

a. Introduction. (6 lessons) Description of dynamical sys-

tems by means of Lagrangian functions. Lagrangian equations of 

motion. Ignorable coordinates, energy equation, and other elementary 

instances of first integrals. Liouville systems in general. Classi-

cal examples: harmonic oscillator, simple pendulum, spherical pendu-

lum, central forces, a charged particle in an electromagnetic field, 

solid body. The principle of dynamical analogy. 

b. Phase space. (6 lessons) Legendre duality (with a sug-

gestion about how it is applied to derive state functions in classi-

cal thermodynamics). Transition from Lagrangian functions and 

Lagrangian equations to Hamiltonian functions and canonical equa-

tions. Canonical mapping: its definition, its multiplier, and its 

residual functions. Completely canonical mappings; canonical ex-

tensions of coordinate transformations. Generation of canonical 

mappings by numerical functions. Invariance with respect to the 

group of canonical mappings: canonical equations, Poisson brackets, 

Lagrange parentheses. 

c. Canonical constants of a dynamical system. (6 lessons) 

Definition of a set of canonical constants of integration. Variation 

of canonical constants. The Hamilton-Jacobi equation as an algorithm 

for constructing sets of canonical constants. The action and angle 

variables. Separable Hamiltonians; Staeckel systems and Liouville 

systems. Applications: the problem of two bodies, the problem of 

two fixed centers. Normal modes of vibrations and vibrations of 

molecules. 

675 



d. Integrals of a dynamical system. (9 lessons) Poisson�s 

theorem about the bracket of two integrals and its dual application 

to Lagrange parentheses. Integrals in involution; Liouville�s 

theorem. Jacobi-last multiplier. Application to the motion of a 

solid body. Whittaker�s adelphic integral. Application to the in-

vestigation of a dynamical system around the equilibrium. Isoener-

getic reduction. Application to the regularization and the binary 

collisions in the problem of two bodies and in the restricted prob-

lem of three bodies. 

e. Perturbation theory. (12 lessons) Poincare�s method of 

the small parameter. Birkhoff�s method of iterative canonical map-

pings. Application to the motion of a satellite of an oblate 

planet. 

0M4. Orbit Theory. (3 semester hours) 

The purpose of this course is to offer illustrations of mathe-
matical principles and to compel the student to master them securely 
by careful numerical examples. The material should be arranged to 
provide a nearly continuous flow of computational work for the labo-
ratory sessions no matter at what level the course is set. 

The instructor and his students should be directed to develop 
the topics all the way down to an efficient and reliable program in 
the FORTRAN or ALGOL language on an electronic computer. As most of 
the textbooks on the subject matter cater to computers who use 
logarithms or hand-operated desk-model calculating machines, special 
care should be taken to rearrange classical algorithms and formulas 
for use on an electronic computer. 

Topical problems should be selected from at least these four 
main research areas: 

a. Orbit determination. (10 lessons) The obvious reference 

here is P. Herget�s The Computation of Orbits, published privately 

by the author at Cincinnati Observatory, 1948. This booklet has 

been updated by the author in his lectures on "Practical Astronomy" 

and on "Orbit Determination" given at the summer course in Space 

Mathematics, Cornell University, 1963. 

b. Orbit analysis. (12 lessons) The question here is to 

gain physical information from the comparison between the orbit as 
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it has been observed and the orbit as it has been computed from a 

particular mathematical model. 

c. Orbit design. (7 lessons) How to produce orbits that 

satisfy a priori conditions (e.g., given initial conditions, mission 

requirements, optimum characteristics, etc.). 

The course should limit itself to well-tried problems and 

should aim at producing examples where good-quality results can be 

reached without too much effort. This can be achieved in the re-

stricted problem of three bodies. 

After an introduction to that problem, the instructor should 

review two or three methods for integrating numerically the equations 

of motion, either in cartesian coordinates or in regularized coordi-

nates. Then should come a development on variational equations. 

Thereafter the theory of characteristic exponents should be applied 

to the analysis of a family of periodic orbits. 

d. Analytical theories. (10 lessons) How to expand on 

literal theory by enabling an electronic computer to handle symbol 

manipulations in a given algebra. 

This new field promises to provide mathematicians with power-

ful tools to develop literal theories in an extensive set of physi-

cal problems. 
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CONTROL THEORY OPTION 

Year Core Courses Option Courses 

III 1. Functions of Several (3) CT1. Electric Circuits (3) 
Variables 

2. Intermediate Ordinary (3) 
Differential Equations 

3. Mechanics (6) 

4. Numerical Analysis (3) 

5. Probability and 
Statistics (6) 

IV 6. Complex Variables (3) CT2. Control (3) 

7. Functional Analysis (3) CT3. Laboratory (3) 

8. Electromagnetics (3) CT4. Linear Systems (3) 

9. Thermodynamics and (3) CT5. Data Smoothing (3) 
Statistical Mechanics and Prediction 

V 10. Partial Differential (6) CT6. Advanced Control (3) 
Equations 

CT7. Information (3) 
11. Optimization (3) Theory 

CT8. Advanced (3) 
Communications 

678 



CT1. Electric Circuits. (3 semester hours) 

This is a basic course in circuit theory. The purpose is to 
teach in a precise language the fundamental facts of circuit theory 
while developing skills in writing and solving the circuit equations 
and keeping close contact with physical circuits (filters, ampli-
fiers, digital circuits). 

a. Lumped circuits. (3 lessons) Lumped circuit approxima-

tion. Kirchhoff laws, relation to Maxwell�s equations. Circuit 

elements; including nonlinear and time-varying elements. 

b. Simple circuits. (13 lessons) First- and second-order 

circuits: zero-input response and zero-state response; response to 

step, impulse, and sinusoid. Linearity and time-invariance: con-

volution. Impedance, phasors, frequency response, and resonance. 

c. Coupling elements. (2 lessons) Coupled inductors, trans-

formers, and dependent sources. Dependent sources as parts of models 

for electronic devices. 

d. Power and energy. (2 lessons) Energy stored and power 

dissipated in elements; relation with real and imaginary part of 

impedance. 

e. General methods of analysis. (6 lessons) Graph theory: 

trees, links, cut-sets, loops. Loop and cut-set analysis, mixed 

method. Duality. Computer programs for analysis of circuits. 

f. Linear time-invariant circuits. (6 lessons) Reduction of 

systems of equations. Network functions: poles, zeros, gain and 

phase. 

g. Network theorems. (3 lessons) Superposition, The�venin, 

Norton, reciprocity. Careful discussion of range of applicability: 

comments on nonlinear and time-varying circuits. 

h. Two-port description. (4 lessons) Two-port description 

of electronic devices: relation to their graphical characteristics. 

Linear time-invariant networks as two-ports. Interconnection of 

two-ports. 
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CT2. Control. (3 semester hours) 

In this course the student learns some basic facts about con-
trol systems, their analytical description, and techniques of de-
sign. This course is mostly concerned with single-variable control. 

a. Description of feedback systems and components. (5 les-

sons) Advantages and disadvantages of feedback, importance of meas-

uring device, noise problems. Basic components, electrical, hydrau-

lic, pneumatic. Requirements and specifications of control systems. 

Examples. 

b. Linear time-invariant control systems. (20 lessons) 

Analysis, illustrated by several extensive examples, based on dif-

ferential equations and integral equations (convolution). Stability, 

root locus, Nyquist criterion. Design of compensating networks to 

obtain stability and meet the specifications. 

c. Sampled systems. (6 lessons) Examples of systems where 

the feedback data are naturally sampled periodically. Analysis of 

sampled systems. Stability, root locus, Jury�s criterion. Design 

of compensating networks. 

d. Nonlinear systems. (8 lessons) Local stability near 

equilibrium. Example of limit cycles. Stability: approximate 

methods describing functions. Lyapunov�s second method. Applica-

tion to design. 

CT3. Laboratory. (3 semester hours) 

The purpose of the laboratory is to insure that students con-
nect the classroom concepts and results to physical reality and 
appreciate the power and limitations of experimental work. Typic-
ally, one part of the laboratory could be devoted to circuits work: 
behavior of linear circuits (including resonance), effects of non-
linear elements on waveform and power spectrum, some pulse circuits. 
The second part of the laboratory would cover control: study of a 
typical control system, experiments with various compensations; 
stability; experiments with and simulation of a nonlinear control 
system. 

680 



CT4. Linear Systems. (3 semester hours) 

Purpose: to provide a solid foundation of concepts, facts, 
and techniques to be used in later courses in control, communication, 
and circuits. 

a. Systems. (6 lessons) State as a parametrization of input-

output pairs and as part of the system description. Operator point 

of view. State equivalence. Linear systems. Linear systems ob-

tained by linearization of ordinary differential equation about a 

nominal trajectory. Examples throughout. 

� = Ax + By 
b. Linear systems of the form and their dis-

y = Cx + Dy 

crete time analogs. (6 lessons) Time-invariant case: explicit 

solution by function of a matrix and Laplace and z-transforms. For 

simple linear operators, diagonalization, mode interpretation (in-

cluding numerical techniques). Jordan form, analog computer inter-

pretation. Time-varying case: properties of the state transition 

matrix. Periodic systems: Floquet theory, kinematic equivalence. 

c. Impulse response and transfer functions. (12 lessons) 

Free use of Fourier and Laplace transforms. Superposition integral. 

Asymptotics of impulse response and transfer function. Minimum 

phase. Uncertainty principle. Group delay. Signal flow graphs. 

d. Stability. (9 lessons) Characterization of stability for 

linear time-invariant, periodic and time-varying systems (zero-

input stability: Lienard Chipart, Nyquist; bounded input implies 

bounded output; implications of an impulse response which is in L��), 

Lyapunov method. 

e. Input-output description and state equations. (6 lessons) 

Controllability, observability, and normality. Characterization in 

time-invariant and time-varying cases. Output controllability. Con-

trollability and observability of an interconnection of systems. 
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CT5. Data Smoothing and Prediction. (3 semester hours) 

a. Representation of functions by Fourier series and inte-1 2 

grals. The Fourier transform in L and L . (8 lessons) 

b. Random processes: definition, examples, representations; 

autocorrelation, power spectrum; estimation of spectral densities. 

(14 lessons) 

c. Linear mean-square estimation, filtering and prediction. 

The Wiener-Hopf equation; solution by the Wiener filter and Kalman-

Bucy filter. (11 lessons) 

d. Detection and parameter estimation. Application to digital 

communications system and radar. (6 lessons) 

CT6. Advanced Control. (3 semester hours) 

This course treats advanced topics in control so that students 
can readily read the current literature. Multiple-input multiple-
output systems are included. 

a. Nonlinear control. (10 lessons) Describing function. 

Subharmonics. Stability: Sandberg circle criterion, Popov-type 

criteria. Lyapunov method used as a design tool. Lyapunov method 

for systems with inputs. Bounds on output. 

b. Adaptive control. (8 lessons) Examples of adaptive 

control: identification techniques and parameter adjustment. Sto-

chastic approximation. 

c. Optimum control. (21 lessons) Formulation of the problem. 

Examples: systems described by ordinary differential equations and 

difference equations. Maximum principle for differential systems. 

Numerical methods. Relation of maximum principle with steepest 

descent. 

CT7. Information Theory. (3 semester hours) 

a. The concept of the source and of an information measure. 

Desirable properties of information measure, examples of simple 

sources. (3 lessons) 

b. Codes, their efficiency and redundancy. The efficient 
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encoding of discrete independent sources. (4 lessons) 

c. General discrete sources, Shannon�s encoding theorem, 

the nature of written and spoken English. (4 lessons) 

d. The concept of a channel, channel capacity, symmetry of a 

channel. (3 lessons) 

e. The fundamental theorem of information theory, error-

detecting and error-correcting codes, the geometric interpretation 

of coding problems. (17 lessons) 

f. Generalization to continuous channels, channel capacity 

of continuous channels. (8 lessons) 

CT8. Advanced Communications. (3 semester hours) 

a. Review. (4 lessons) Signal and noise representations, 

the purpose of modulation. 

b. Amplitude modulation. (7 lessons) The generation and 

detection of AM waves, power spectrum, single side-band and vestigial 

side-band transmission, effects of distortion and noise. 

c. Frequency and angle modulation. (12 lessons) Generation, 

detection, power spectrum, effects of distortion and noise. 

d. Pulse modulation. (10 lessons) Pulse amplitude modula-

tion, pulse position modulation, pulse duration modulation. A brief 

introduction to pulse code modulation. 

e. Design. (6 lessons) The design of optimum receivers in 

the presence of additive noise and fading. 
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