
RECOMMENDATIONS FOR AN UNDERGRADUATE PROGRAM 

IN 

COMPUTATIONAL MATHEMATICS 

A Report of 

The Panel on Computing 

May 1971 

528 



TABLE OF CONTENTS 

Preface 530 

1. Philosophy and Aims of the Program 530 

2. Recommendations and Brief Course Descriptions 533 

2.1 Basic Component 

2.2 Elective Component 

3. Implementation of the Program 547 

3.1 Staff 

3.2 Facilities 

4. Detailed Course Outlines 551 

529 



PREFACE 

During the last two decades the development of computers has 
helped to stimulate the dramatic increase and diversification in the 
applications of mathematics to other disciplines. In the belief that 
the time is appropriate for a systematic approach to the impact of 
computers on undergraduate mathematics programs, the CUPM Panel on 
Computing presents this report. 

Our basic recommendation is that mathematics departments 
should experiment with innovative undergraduate mathematics 
programs which emphasize the constructive and algorithmic 
aspects of mathematics, and which acquaint students with com-
puters and with the uses of mathematics in computer applica-
tions . 

A specific undergraduate program in computational mathematics 
is proposed. This is not a program in computer science, nor is it a 
minor modification of the traditional undergraduate mathematics major. 
It is, rather, a program in the mathematical sciences that combines 
courses in mathematics, computer science, and computational mathe-
matics. It can be used as a basis for further specialization in any 
of several areas, including computer science, or mathematics, or one 
of the areas of application of mathematics. 

1. Philosophy and Aims of the Program 

Since publication of the 1964 CUPM report Recommendations on 
the Undergraduate Mathematics Program for Work in Computing, computer 
science has developed as a separate area of study. More and more 
colleges and universities are establishing computer science depart-
ments, and the number of students enrolled in computer science pro-
grams is increasing rapidly. The need for separate curriculum stud-
ies in this, new area was recognized by the Association for Computing 
Machinery, and in 1968 its Curriculum Committee on Computer Science 
published a report entitled Curriculum 68--Recommendations for Aca-
demic Programs in Computer Science. This widely acclaimed report is 
still regarded as giving a good description of curricula in computer 
science. Its recommended minimal mathematics preparation is about 
equivalent to that usually required of students in the physical 
sciences and engineering. 

More recently, three trends have become noticeable. First, 
there appears to have developed a strong tendency on the part of 
computer science programs to minimize prerequisite requirements in 
traditional mathematics, particularly analysis, and also to under-
emphasize or even to disregard most areas of scientific computing. 

530 



Second, many disciplines, including in particular the biological, 
social, and behavioral sciences, have become increasingly mathemati-
cal, giving rise to a need in these fields for expanded education in 
mathematics and in scientific computing. Finally, the computer has 
begun to have a direct effect upon mathematics courses themselves. 
New courses, particularly in computationally-oriented applied mathe-
matics, are being introduced into many mathematics curricula, and 
traditional courses are being modified and taught with a computer 
orientation. As an example of the latter we cite only the teaching 
of calculus. Approximately 100 schools now offer a course in calcu-
lus using the text Calculus, A Computer Oriented Presentation, pub-
lished by the Center for Research in College Instruction in Science 
and Mathematics. Other computer calculus projects were reported in 
the 1969 CUPM Newsletter, "Calculus with Computers," now out of print. 

These three trends all indicate a need for the mathematics com-
munity to accept a responsibility for mathematical or scientific com-
puting and to broaden educational opportunities toward a more encom-
passing "mathematical science" in which students may explore the 
areas of overlap between pure and computational mathematics, as well 
as computer science. There is thus a need for innovative undergradu-
ate programs which provide for a wide range of options, different 
opportunities for graduate study, and a variety of future careers. 

A new view of mathematics as a mathematical science in the 
above sense raises many curricular questions, to which several CUPM 
panels have begun to address themselves. In particular, a need arose 
for reappraisal of the already-cited 1964 report. Such a reappraisal 
is desirable if for no other reason than that a large number of all 
undergraduate mathematics majors are likely to find themselves later 
in some computer-related field. 

The present report is the result of such a reappraisal by the 
CUPM Panel on Computing. From the outset it was evident that the 
aims of this report should be different from those of the earlier 
work, since its intended audience is different. The present report 
does not address itself to the training of computer scientists. In-
stead, its concern is for the education of mathematicians who will 
know how to use and to apply computers. Programs in computational 
mathematics necessarily have different objectives than do programs 
in computer science. 

In accordance with our previous remarks, the mathematics pro-
gram presented here is intended to be a departure from the tradi-
tional undergraduate mathematics curriculum. It should not be re-
garded, however, as a replacement for that curriculum, but rather, 
together with it, as one of several equally valid options for stu-
dents of the mathematical sciences. It should meet the needs of stu-
dents who plan to enter careers in scientific computing or who wish 
to enroll in graduate programs in computationally-oriented applied 
mathematics. With some suitably selected options during the senior 
year, a continuation in many computer science graduate programs should 
be possible. With other options, a continuation in pure mathematics 

531 



should also be possible. At the same time, several of the courses 
included in the program meet the mathematical needs of students in 
other disciplines and may also be appropriate for prospective second-
ary school mathematics teachers. 

The program proposed here is presented in a spirit of open ex-
perimentation, not as a final product. In its design the Panel has 
been neither as conservative nor as radical as it might have been. 
For instance, a conservative approach might be to combine a list of 
suitable mathematics courses of a traditional nature with a comple-
mentary list of computer science courses. This is easily accomplished 
in an institution having both a mathematics and a computer science 
department, but it leads to a large number of required courses and 
provides for little or no interaction between the two parts of the 
program. At the other extreme stands a curriculum in which computing 
has been completely integrated with the mathematical material, either 
by the introduction of new courses or by the repackaging of old ones. 

In designing its program the Panel has taken a path somewhere 
between the extremes indicated above. Several new computer-oriented 
mathematics courses are described here; at the same time, some stan-
dard computer science and mathematics courses are included and, in 
particular, no recommendations are made concerning the redesigning 
of standard mathematics courses, such as the calculus, to include 
computer use. Where they are available, such computationally-oriented 
basic mathematics courses could be ideal components of this program, 
but their definition still requires considerable study and experimen-
tation. The Panel felt that such a study on its part would serve only 
to divert its attention from its main concern, namely, the description 
of a new curriculum in computational mathematics for the undergraduate 
mathematics major which can be implemented in many institutions with-
out excessive cost or delay. 

In this latter connection the Panel believes that its program 
can be offered even by smaller colleges having suitable access to 
educational computing equipment, with only modest additions to their 
mathematics staffs. More specifically, through the junior year, the 
new computationally-oriented mathematics courses recommended here 
number only four. These, together with the three basic and rela-
tively standard computer science courses, could be handled by the 
equivalent of one mathematician interested in applied mathematics 
with an emphasis on computing and numerical analysis and one special-
ist in computer science. The remaining core courses can be taught 
by the other members of the mathematics department. Clearly, this 
small staff could offer only a few of the additional courses listed 
in this report as possible electives, but the Panel believes that 
even such a minimal program would be desirable for many students. 

532 



2. Recommendations and Brief Course Descriptions 

For a major undergraduate program in Computational Mathematics 
we recommend a basic core curriculum of 12 one-semester courses: 
five in mathematics, four in computational mathematics, and three in 
computer science. We will refer to these courses in the sequel, 
respectively, by the symbols Ml, M2, M3, M4, M5, CM1, CM2, CM3, CM4, 
CI, C2, and C3. 

Each of the courses carries 3 credits; at the same time it is 
desirable that some of the computer-oriented courses include a sched-
uled laboratory period for which additional credit may be awarded. 
As described below, this sequence can be handled in three years, 
leaving the senior year for electives, also set forth below. 

2.1 Basic Component 

Before describing the 12 courses in the Basic Component, it may 
be instructive to illustrate one way of imbedding them into the first 
three undergraduate years. In the chart on page 534, arrows indicate 
the "prerequisite structure," i.e., the dependency of each course on 
those which precede it. Notice that two courses are recommended for 
each semester. Mathematical progress within the program is not dif-
ferent from that in standard programs. If the student wishes to 
switch to pure mathematics after sampling the eight core courses of 
the first two years, it will be a simple matter for him to do so with 
no loss of mathematical pace. It should also be noted that of the 
CM and C courses, three are taught in the first semester and four in 
the second semester of each year. This part of the program could 
easily be handled by the equivalent of two teachers in a small col-
lege where multiple sections are unlikely. 

Let us now describe these 12 courses briefly, leaving detailed 
course outlines and references for Section 4. 

a) Mathematics- courses 

These five courses are described in the CUPM document Commen-
tary on A General Curriculum in Mathematics for Colleges, page 
Incidentally, the committee which produced the Commentary has already 
noted that there is little need for M3 to require M1-M2 as explicit 
prerequisites. This fact has been observed in the chart. 

Ml 
M2 
M3 
M4 
M5 

Calculus I 
Calculus II 
Elementary Linear Algebra 
Multivariable Calculus I 
Multivariable Calculus II 

533 



CHART SHOWING ONE WAY OF IMBEDDING THE BASIC COMPO-
NENT INTO THE FIRST THREE UNDERGRADUATE YEARS. ARROWS 
INDICATE THE PREREQUISITE STRUCTURE. 

COMPUTATIONAL 

SEMESTER MATHEMATICS MATHEMATICS COMPUTER SCIENCE 

CM4 C3 
g Differential Programming 

Equations and Languages and 
Numerical Methods Data Structures 

531; 

Ml 

Calculus I 

Cl 

Introduction 

to Computing 

M2 

Calculus II 

CM1 

Computational 

Models and 

Problem Solving 

C2 

Computer 

Organization 

and Programming 

M3 

Elementary 

Linear Algebra 

CM2 

Introduction 

to Numerical 

Computation 

M4 

Multivariable 

Calculus I 

M5 

Multivariable 

Calculus II 

CM3 

Combinatorial 

Computing 

1 

2 

3 

4 

5 



b) Computational Mathematics 

These courses constitute the heart of our program. While their 
spirit is mathematical, computing plays an important role in each. 
The courses CM1 and CM3 are novel in character, while CM2 and CM4 
are intended to replace the traditional first courses in Numerical 
Analysis and Ordinary Differential Equations, In the initial phase 
of implementing this program the traditional versions of these 
courses could be used temporarily in place of CM2 and CM4, thereby 
allowing the faculty to concentrate first on the development of the 
new courses CM1 and CM3. 

CM1. Computational Models and Problem Solving 

Prerequisite: CI 

The purpose of this course is to introduce students early in 
their programs to a wide variety of different computer applications. 
This is to be accomplished mainly through the construction and inter-
pretation of computational models for several interesting and worth-
while practical problems from various disciplines, including the bio-
logical and behavioral sciences as well as the physical sciences and 
mathematics. 

The spirit in which the course is presented is of utmost impor-
tance. The applications discussed in the course should be reasonably 
realistic and comprehensive, and the students should become aware of 
the very serious difficulties and limitations that can arise. Ques-
tions should be raised about the validity of models, the effect of 
numerical errors, the significance of statistical results, the need 
for data verification, the difficulties in testing programs, docu-
mentation, etc. Whenever possible, the basic mathematical aspects 
of the different models should be discussed in general and related 
to the computational results. However, since the course is intended 
for freshmen or sophomores, no attempt can be made to enter into any 
deeper analysis of specific mathematical questions. With a proper 
balance between the computational and mathematical points of view, 
the course should provide the students not only with an appreciation 
of both the potential and limitations of computer applications but 
also with an interest in learning more about the many relevant areas 
of mathematics. 

The outline included in Section 4 places special emphasis on 
the use of computational models for the simulation of random and non-
random processes, although a few numerical and nonnumerical computer 
applications are also included. The latter types of problem will be 
considered in more detail in the subsequent courses CM2 and CM3. 

It should be noted that this course may also be of considerable 
value and interest to students outside the present program. 

535 



CM2. Introduction to Numerical Computation 

Prerequisites: CI, M2, M3 

This first course in numerical analysis may be taken in the 
sophomore year. Since it is based on as little as one year of analy-
sis, the emphasis should be more on intuition, experimentation, and 
error assessment than on rigor. The methods considered should be 
amply motivated by realistic problems. It is better to treat a few 
algorithms thoroughly than to be exhaustive in the number of algo-
rithms considered. Students should be expected to program and run a 
number of problems on a computer, and considerable time should be 
spent analyzing the results of such runs. In particular, the analy-
sis of roundoff and discretization errors, as well as the efficiency 
of algorithms, should be stressed. 

Topics should include the solution of linear systems, the solu-
tion of a single nonlinear equation, interpolation and approximation 
(including least squares approximation), differentiation and inte-
gration, and elements of the numerical solution of eigenvalue prob-
lems . 

CM3. Combinatorial Computing 

Prerequisites: CI and M3 

Combinatorial computing is concerned with the problem of how to 
carry out computations with discrete mathematical structures. It 
bears to combinatorial (discrete, finite) mathematics the same rela-
tionship that numerical analysis bears to analysis. Numerical analy-
sis is much more widely known and much better developed than combina-
torial computing. However, there are many reasons to believe that 
within the next decade combinatorial computing will rival numerical 
analysis in its importance to computer users. In fact, outside of 
the traditional areas of applications of mathematics to the physical 
sciences, discrete mathematical structures may occur more frequently 
than continuous ones, and even in large problems in the physical 
sciences data-handling considerations lead quickly to questions in 
combinatorial computing. 

This course is intended as an introduction to the emerging field 
of combinatorial computing. Its objectives are (1) to acquaint stu-
dents with certain types of problems which occur frequently when 
problems are formulated in combinatorial terms, so that they are able 
to recognize them when they encounter them in disguise, and (2) to 
teach students certain important concepts and proven techniques which 
experience has shown to be useful in solving many combinatorial prob-
lems, particularly on a computer. 

Typical topics to be covered in the course are the representa-
tion of integers, sets, and graphs; counting and enumeration tech-
niques; sorting and searching methods; and selected problems and 

536 



algorithms in graph theory. Students should be expected to write 
programs for various algorithms and to experiment with their applica-
tion to appropriate problems. 

CM4. Differential Equations and Numerical Methods 

Prerequisites: CM2 and M4 

This course is intended to replace the more traditionally 
oriented course in differential equations in which the focus is often 
on nonconstructive developments. It has the objective of introducing 
the student to key concepts underlying the qualitative understanding 
of differential equations as well as to methods for constructing their 
approximate solutions. It is intended for the junior year. The his-
torical development of the subject is closely related to the physical 
and engineering sciences; nevertheless, it is recommended that ex-
amples from biology, economics, and other fields be chosen where pos-
sible, so as to draw upon a student�s intuitive understanding of the 
processes illustrated. Some further suggestions for such material 
can be found in the CUPM report Applied Mathematics in the Undergradu-
ate Curriculum, page 705. 

As a result of this course the student should have confidence 
in his ability to develop an approximate solution of a differential 
equation, be able to discuss the basic qualitative behavior of the 
solution, and have an appreciation of the importance of analytic 
methods in furthering his understanding of the subject. 

Typical topics should include a discussion of simple linear 
equations, the initial value problem for the first-order equation 
y� = f(x,y) and some methods for its numerical solution, a basic 
introduction to first-order systems and their applications including 
plane autonomous systems, and finally some topics relating to bound-
ary value problems. 

c) Computer Science 

The following three courses represent certain modifications of 
several of the basic courses in Curriculum 68. All three courses 
should not consist simply of lectures but should also incorporate a 
scheduled laboratory period. 

CI. Introduction to Computing 

Prerequisite: College admission 

This first course in computing has by now become standard in 
many institutions. The 1964 CUPM report Recommendations on the Under-
graduate Mathematics Program for Work in Computing recommended a par-
ticular version of this course, and the corresponding course Bl in 

537 



Curriculum 68 has been widely referenced. The course serves several 
purposes: 

(1) To develop an understanding of the concept of an algorithm and 
of the algorithmic formulation of methods for the solution of 
problems on a computer. 

(2) To train the student in the use of at least one algorithmic 
programming language and to introduce him to the basic struc-
tural aspects of such languages. 

(3) To acquaint the student with the basic characteristics and prop-
erties of computers. 

For the program proposed here the stress of the course should be on 
problem solving by computer. Accordingly, the student should be as-
signed a number of different problems both of the numerical and non-
numerical type, including at least one larger project. 

C2. Computer Organization and Programming 

Prerequisite: CI 

The purpose of this course is to provide the student with a 
basic introduction to the structure and organization of digital com-
puters and to the use of assembly language programming systems, with-
out becoming involved in a too-detailed discussion of computer hard-
ware or assembly language programming. 

The course proposed here is in part similar to the course B2 in 
Curriculum 68 with the addition of some topics from the course 13 in 
the same report. However, unlike those courses, it has primarily a 
survey character. Typical topics include computer structure, assem-
bly languages, data representation, addressing techniques, elements 
of logic design, discussion of the principal units of a digital com-
puter, systems software, and a survey of contemporary computers. 

C3. Programming Languages and Data Structures 

Prerequisite: CM1 

This course is intended to introduce the student to some of the 
elements of programming languages as well as to certain important 
techniques of organizing and linking together information stored in 
a computer. Topics covered in the course include the basic structure 
of algorithmic languages, tree and list structures in a computer, 
string manipulation, data structure and storage allocation, and basic 
aspects of languages and grammars. The students should become ac-
quainted with at least two different-level languages, such as a string 
manipulation language and an advanced algorithmic language. 

538 



The course covers a number of topics from the ACM courses II 
and 12 but is otherwise novel in character. Some instructors may 
find it desirable to use CM3 as a prerequisite; this would be similar 
in spirit to the approach of the ACM recommendations. But it is 
equally conceivable to introduce C3 as a prerequisite for CM3, al-
lowing a much wider range of computational assignments in the latter 
course. 

2 .2 Elective Component 

Given the Basic Component described above, and depending on the 
student�s particular interests, there are several ways to round out a 
good major program. Broadly speaking, possible technical electives 
can be grouped under the following six�somewhat over lapping�cate-
gories, not necessarily in order of importance: 

a) Mathematics 
b) Probability and statistics 
c) Computationally-oriented mathematics 
d) Other applied mathematics 
e) Computer science 
f) Other disciplines 

The specific courses listed here under each of these headings are not 
meant to exhaust all possibilities; clearly, there are various other 
choices and variations. If the Basic Component of the program has 
been completed during the first three years, the elective courses 
will�most probably�be concentrated during the senior and part of 
the junior year. But other arrangements of the Basic Component are 
also possible, thereby allowing for a distribution of elective courses 
throughout most of the undergraduate program. 

a) Mathematics 

Several of the courses offered as part of the standard mathe-
matics curriculum can serve as electives for a computational mathe-
matics program. This involves, in particular, 

Introductory Real Variable Theory (Mathematics 11-12 of 
GCMC) 

Complex Analysis (Mathematics 13) 
Introductory Modern Algebra (Mathematics 6M) 
Linear Algebra (Mathematics 6L) 
Introduction to Mathematical Logic 

The Basic Component, augmented by a year course in real variables and 
a year course in algebra, would constitute minimally adequate prepara-
tion for graduate study in mathematics. These additions could easily 
be achieved in the senior year. 

The standard introductory course in ordinary differential equa-
tions has not been mentioned here again since it was replaced by CM4. 

539 



A beginning course in partial differential equations is included in 
subsection c) below. 

b) Probability and Statistics 

Statistical computations represent a large percentage of scien-
tific computing work in many disciplines. Accordingly, the Panel be-
lieves that a good introduction to probability and statistics is 
highly important to students in a program of the kind discussed here. 
In fact, it may be very desirable to require such an introduction of 
all students in the program. 

The Panel recommends a one-year combination of probability and 
statistics with M4 as a prerequisite. The first semester should pro-
vide an introduction to probability, with the second covering suit-
able topics from statistics. Courses like this are already offered 
in many schools, and recommendations about the material to be covered 
have been set forth by the CUPM Panel on Statistics in Preparation 
for Graduate Work in Statistics, page 459. 

For the purposes of a computational mathematics program it may 
be highly desirable to integrate computational aspects directly into 
these courses. But in line with the approach taken in this report, 
the Panel did not wish to make any such specific recommendations at 
this time. 

c) Computationally-oriented Mathematics 

The courses grouped under this subheading are similar to CM1-
CM4; that is, their spirit and content are mathematical, but comput-
ing plays an important role in each. Accordingly, it is most desir-
able that a program in computational mathematics include at least 
some additional courses of this nature. 

From among the variety of possible topics the Panel decided to 
select five course areas which appear to be fairly representative. 

Numerical linear algebra 

This course covers the description and analysis of some of the 
principal computational methods in linear algebra. It uses CM2 and 
M3 as prerequisites and could replace the standard advanced linear 
algebra course for students in this program. Typical topics might in-
clude a thorough discussion of elimination methods and of Wilkinson�s 
backward error analysis, iterative methods for large linear systems 
and the corresponding basic convergence results, and methods for solv-
ing eigenvalue-eigenvector problems. The various topics should be 
motivated and illustrated by means of different applications. 

Courses like this have become almost standard in many institu-
tions. The course material can be found, for example, in parts of 

540 



the following texts: 

Forsythe, George E. and Moler, Cleve �. Computer Solution of Linear 
Algebraic Systems. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 
1967. 

Householder, Alston S. The Theory of Matrices in Numerical Analysis. 
Waltham, Massachusetts, Blaisdell Publishing Company, Inc., 1964. 

Noble, Ben. Applied Linear Algebra. Englewood Cliffs, New Jersey, 
Prentice-Hall, Inc., 1969. 

Varga, Richard S. Matrix Iterative Analysis. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc., 1962. 

Wilkinson, James H. The Algebraic Eigenvalue Problem. New York, 
Oxford University Press, Inc., 1965. 

Applied modern algebra 

The purpose of this course is to introduce the student to the 
discrete algebraic structures most commonly used in applications. It 
is intended to replace the standard modern algebra course (Mathe-
matics 6M of GCMC) for those students who are concerned with applica-
tions of algebra rather than with algebra as pure mathematics. Where-
as the topics are in general not intended to be treated in depth, the 
treatment should be adequate enough in each case to enable the stu-
dent to read independently in more complete expositions. According-
ly, the presentation should include formal definitions and proofs of 
fundamental theorems, but at the same time there should be consider-
able emphasis on practical applications. 

While courses on applied and computational linear algebra have 
become reasonably common, the same cannot be said about courses on 
applied modern algebra. Moreover, at present there exists essen-
tially only one text on this topic, namely, 

Birkhoff, Garrett and Bartee, Thomas C. Modern Applied Algebra. New 
York, McGraw-Hill Book Company, 1970. 

This book contains material for a full year course. A one-semester 
course on the senior level with a prerequisite of CM3 might begin with 
a review of set algebra and an introduction to semigroups and groups 
and some of their applications. Then the stress could be placed on 
partially ordered sets, lattices and Boolean algebra, and their appli-
cations in switching algebra and logic. Another approach would be to 
play down Boolean algebra and to stress rings and fields, including, 
in particular, polynomial rings and finite fields, and their applica-
tions to coding theory. 

541 



Optimization 

* See also the CUPM reports Recommendations on the Undergraduate 
Mathematics Program for Engineers and Physicists [page 628] and 
Applied Mathematics in the Undergraduate Curriculum [page 705]. 

542 

Optimization problems arise frequently in scientific computer 
applications. This includes problems from the entire area of mathe-
matical programming as well as from optimal control theory, calculus 
of variations, and from parts of combinatorics. A one-semester intro-
ductory course in optimization problems, with CM2 and M4 as prerequi-
sites, is therefore a highly desirable elective in a program of this 
kind. 

Such a course--not stressing computational aspects--was de-
scribed in the CUPM report Mathematical Engineering--A Five Year 
Program, page 649.* It begins with a discussion of specific examples 
of typical optimization problems from the various cited fields, and 
continues with an introduction to convexity and �-space geometry, 
Lagrange multipliers and duality, and the Simplex method. Then it 
turns to some combinatorial problems and to elements of the classical 
calculus of variations and of control theory. In a more computation-
ally-oriented version of the course it appears to be desirable to 
delete the latter three topics and to present instead an extended 
coverage of the numerical aspects of linear programming, as well as a 
discussion of transportation problems. The course could then end 
with an introduction to numerical methods for convex programming 
problems. The student would be assigned computational projects in-
volving some of the many available library subroutines; in fact, an 
important by-product of the course in this form might be to familiar-
ize the students with the extensive computational effort that has 
already been spent in connection with mathematical programming tech-
niques . 

There is an extensive list of available references relating to 
this course. Without attempting to be comprehensive, we mention only 
the following books: 

Berge, Claude and Ghouila-Houri, A. Programming, Games and Trans-
portation Networks. New York, John Wiley and Sons, Inc., 1965. 

Dantzig, George B. Linear Programming and Extensions. Princeton, 
New Jersey, Princeton University Press, 1963. 

Hadley, George F. Linear Programming• Reading, Massachusetts, 
Addison-Wesley Publishing Company, Inc., 1962. 

Hadley, George F. Nonlinear and Dynamic Programming. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1964. 



K�nzi, Hans P.; Tzschach, �.; Zehnder, C. Numerical Methods of 
Mathematical Optimization with ALGOL and FORTRAN Programs. New York, 
Academic Press, Inc., 1968. 

Polak, E. Computational Methods in Optimization. New York, Academic 
Press, Inc., 1971. 

Partial differential equations and numerical methods 

The general aim of this course is to survey the standard types 
of partial differential equations, including, for each type, a dis-
cussion of the basic theory, examples of applications, classical 
techniques of solution with remarks about their numerical aspects, 
and finite difference methods. By necessity, most proofs of exist-
ence and uniqueness theorems and of the properties of the numerical 
methods are to be omitted. 

A course of this kind--based on CM4 and M5--requires in general 
two semesters, and even then it will be very demanding of the students 
at the senior level. Typical topics include first-order equations and 
the elements of the theory of characteristics for linear and quasi-
linear equations; linear second-order equations in two variables; 
classification; canonical forms; a discussion of the wave, diffusion, 
and Laplace equations; and a survey of some topics about other equa-
tions. For a description of a one-year course on partial differen-
tial equations--not stressing numerical methods�see also the CUPM 
report Mathematical Engineering�A Five Year Program, page 649. 

There do not appear to be any entirely appropriate texts for 
this course. The following are some possible titles: 

Ames, William F. Numerical Methods for Partial Differential Equa-
tions . New York, Barnes and Noble, 1970. 

Probably too difficult as a text for a first undergraduate 
course, but valuable as a reference for the course. 

Berg, Paul W. and McGregor, James L. Elementary Partial Differential 
Equations. San Francisco, California, Holden-Day, Inc., 1966. 

Elementary introductory text, but does not emphasize numerical 
methods. 

Forsythe, George E. and Wasow, Woolfgang R. Finite Difference 
Methods for Partial Differential Equations. New York, John Wiley 
and Sons, Inc., 1960. 

Important reference for numerical methods. 

Mitchell, A. R. Computational Methods in Partial Differential Equa-
tions . New York, John Wiley and Sons, Inc., 1969. 

Weinberger, Hans F. A First Course in Partial Differential Equations. 
Waltham, Massachusetts, Blaisdell Publishing Company, 1965. 

Introductory text which places special consideration on physical 
applications. 

543 



Introduction to applied functional analysis 

544 

The purpose of this course is to present some of the basic 
material of elementary functional analysis as it is of use and impor-
tance in numerical and applied mathematics. With a prerequisite of 
CM2 and M5, the course includes an introduction to metric spaces, 
the contraction mapping theorem and various of its applications, 
normed linear spaces, linear and nonlinear operators, the differential 
calculus on normed spaces, applications to iterative processes such 
as Newton�s method, minimization techniques for nonlinear functionals 
on Banach spaces, and, if time permits, some discussion of the rela-
tionships between functional analysis and approximation theory. 

By necessity, the material has to be presented from a geometri-
cal and intuitive viewpoint rather than in a formal and abstract man-
ner. Some of the results should be explored further by applying them 
to specific computational problems; here team projects may be very 
appropriate. 

The following are some texts which cover parts of the material 
mentioned above: 

Collatz, Lothar. Functional Analysis and Numerical Mathematics. New 
York, Academic Press, Inc., 1966. 

Survey of many of the interactions between the two fields. 

Davis, Philip J. Interpolation and Approximation. Waltham, Massa-
chusetts, Blaisdell Publishing Company, 1963. 

For the connections to approximation theory. 

Dieudonne, Jean. Foundations of Modern Analysis. New York, 
Academic Press, Inc., 1969. 

For the differential calculus on normed linear spaces. 

Goffman, Casper and Pedrick, George. First Course in Functional 
Analysis. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1965. 

For much of the basic material; not numerically oriented. 

Goldstein, Allen A. Constructive Real Analysis. New York, Harper 
and Row, Publishers, 1967. 

For minimization methods. 

Kantorovich, L. V. and Akilov, G. P. Functional Analysis in Normed 
Spaces. Elmsford, New York, Pergamon Press, Inc., 1964. 

Contains a detailed discussion of Newton�s method. 

Kolmogoroff, A. N. and Fomin, S. V. Elements of the Theory of Func-
tions and Functional Analysis, vol. I. Baltimore, Maryland, Gray-
lock Press, 1957. 

Schechter, Martin. Principles of Functional Analysis. New York 
Academic Press, Inc., 1971. 



In some of these courses it may be desirable to add a second 
semester in order to provide a more extended coverage of the mate-
rial. This applies also to CM4, where a second semester is probably 
very desirable for many students. 

The Panel believes that students in a program such as this 
might benefit by being able to deepen their knowledge in graph 
theory and combinatorics beyond the material covered in CM3. A 
course in this area is described in Applied Mathematics in the Under-
graduate Curriculum, page 734. 

d) Other Applied Mathematics Courses 

As discussed in the beginning, a main aim of this program is to 
provide the student with a basic understanding of the application and 
use of computers in the solution of scientific problems. Accordingly, 
it will be most important that the student acquire a certain famili-
arity with at least some of the many applications of mathematics and 
with mathematical model building. 

A number of suitable topics for an applied mathematics course 
are discussed in Applied Mathematics in the Undergraduate Curriculum, 
page 705 . Outlines for some courses in physical mathematics are de-
scribed in the CUPM report Mathematical Engineering�A Five-Year 
Program, page 649. From this latter report we mention, in particular, 
the following courses: 

ME3 Mechanics 
ME8 �lectromagnetics 
ME9 Thermodynamics and Statistical Mechanics 
0R2 Operations Research 
0R3 Systems Simulation 
0M3 Celestial Mechanics 
0M4 Orbit Theory 
CT2 Control 
CT4 Linear Systems 
CT7 Information Theory 

It should be stressed that for the purposes of this program the spe-
cific topics covered in any of these courses are not as important as 
the applied mathematical spirit, that is, the emphasis on model build-
ing, on analysis of the model, and on interpretation of the results. 

It should also be noted that by listing these courses separately 
from those in the previous subsection we do not mean to imply that 
little or no computational work is to be involved here. In fact, in 
many of these courses computer applications might prove to be of con-
siderable value and might strengthen the student�s understanding of 
the interrelationship among scientific problems, mathematical models 
for them, and numerical methods for finding approximate solutions of 
these models. 

545 



e) Computer Science 

In an institution with an ongoing computer science program, 
many of the courses offered as part of that program can serve well 
as possible technical electives in this curriculum. We mention, in 
particular, the following courses described in Curriculum 68: 

Some introductory courses in mathematical logic covering topics from 
17, Al, and A7 are also offered by many mathematics departments and 
may serve as possible electives. 

Finally, it may be of interest to note that with the addition 
of three or four courses, such as 14 and 15 or Al, to the Basic Com-
ponent, a student would meet more than the minimal requirements in 
Curriculum 68 for an undergraduate major in computer science. Such 
additions could easily be achieved in the senior year. 

f) Other Disciplines 

This last and yet by no means least important subgroup of pos-
sible electives concerns courses in any of the disciplines outside of 
mathematics which are sources of mathematical computing problems. 
The Panel firmly believes that an understanding of the ideas, prin-
ciples, and methods of at least one such area is a basic ingredient 
of the education of a computational mathematician and hence that any 
student in this program should take at least some suitable courses in 
another discipline. It should be stressed that this need not be the 
traditional introductory physics sequence, but that beginning courses 
in the engineering, biological, behavioral, or social sciences might 
be equally appropriate. The specific type and number of courses 
depends in each case on what is available, the field selected, and 
the student�s depth of interest. 

14 
15 
16 
17 
Al 
A2 
A4 
A5 
A7 

Systems Programming 
Compiler Construction 
Switching Theory 
Sequential Machines 
Formal Languages and Syntactic Analysis 
Advanced Computer Organization 
System Simulation 
Information Organization and Retrieval 
Theory of Computability 

546 



3. Implementation of the Program 

3.1 Staff 

It was stated earlier that the program of the Basic Component 
could be carried out by a mathematics department with the equivalent 
of one faculty member interested in numerical analysis and computing, 
and one in computer science. Such a department could offer some of 
the elective courses as well, depending on the interests of its mem-
bers. A year course in Probability and Statistics is already taught 
in many colleges, and courses in Modern Applied Algebra are beginning 
to appear in addition to, or as replacements for, the usual courses 
in Abstract Algebra. Courses resembling those in Optimization or 
Applied Functional Analysis are also offered by many colleges. 

Thus, while the entire program could not be offered except in 
an institution with several faculty members in applied and numerical 
mathematics as well as in computer science, much of it--and especial-
ly the Basic Component�may be possible in a small college with an 
expanded mathematics department as described above, provided a com-
puter is available. 

This leaves, of course, the question of staffing the computing 
facility itself, which in turn depends strongly on the nature of that 
facility. In most cases, such a facility requires the supervision of 
at least one professional manager or director, who in turn may be 
capable of teaching the necessary computer science courses in this 
program. Besides this person, many colleges have found that the prob-
lem of staffing the computing laboratory can be solved in part, or 
even completely, through the students themselves. One of the virtues 
of the computer as an instructional device is the personal involve-
ment that it demands of and readily receives from the students. They 
learn quickly for the most part and teach one another very effec-
tively. They serve well in many jobs associated with the operation 
of the computer facility. To bring them formally into the teaching 
process is sensible and rewarding. 

3.2 Facilities 

Apart from dealing with the arrays of desk calculators which 
have served statistical laboratories in the past, mathematics depart-
ments have not faced the wide variety of problems connected with the 
incorporation of laboratory work into their academic programs. The 
implementation of this program necessarily requires careful planning 
and maintaining of proper laboratory facilities. Because of sus-
tained increases in costs of education, college administrations are 
understandably hesitant to incur major new expenditures. The follow-
ing discussion is directed toward helping to clarify or distinguish 
among various factors which might characterize a computational facil-
ity suitable t�o this program. 

547 



The principal ways of incorporating computer use into an educa-
tional program can be characterized as follows: 

1) Discussion of computational results obtained directly or 
indirectly by the instructor. 

2) Student use of computers outside the classroom in a batch 
mode. Here, typically, programs are collected and submitted to be 
run together on a computer, without the possibility of further inter-
action from the originator. Very often the input is in the form of 
punched cards. 

3) Student use of computers outside the classroom in a time-
sharing mode. Here either simple teletypewriters or more elaborate 
character- and graphical-display devices are in open communication 
with the processor. A user can input his program almost instantane-
ously and, by executing or modifying it at will, he is able to inter-
act in an experimental manner with the computational process. 

4) Use of time-shared classroom display facilities to inte-
grate the presentation of the theoretical and computational aspects 
of the course material. 

5) Use of special laboratories having dedicated computers 
(i.e., reserved solely for this use) for part or all of the meetings 
of the class in order to integrate computational work directly into 
the instructional process, 

6) Use of special laboratories for computer-aided instruction. 

At present, the most frequently used approaches are those under 
1), 2), and 3); for this program, 1) by itself is not satisfactory. 
Accordingly, we shall focus our discussion primarily upon the use of 
the batch mode 2) or the time-sharing mode 3). 

No matter which type of computational service is chosen, the 
most essential points appear to be that it must be reliable, respon-
sive to fluctuating student demands during a semester, and capable of 
allowing the student to complete assignments in a reasonable time 
span. In line with this, a complete dependence on slack-hour use of 
a computer owned by local industry, the shared use of campus equip-
ment dedicated primarily to accounting and administrative functions, 
or the "generous" gift of an outdated computer will generally prove 
unsatisfactory. 

For most of the requirements of this program, computational 
services in the batch mode can be entirely satisfactory, effective, 
and at the same time economical. One of the critical factors is then 
the "turnaround time" between the submission of input and the return 
of the output to the originator. Since the completion of a problem 
by a student may require four to eight, or even more, machine runs, 
a turnaround time that allows at least two runs during a normal day 
appears to be rather desirable. (With the aid of multi-processing 

548 



systems, it is possible to achieve a turnaround time of a few min-
utes or less for short student runs.) Besides the turnaround time, 
another controlling parameter in batch service is the availability 
of ancillary equipment for producing and handling punched cards. 
Here queues easily develop which are not readily reduced without con-
siderable cost. It may be hoped that this latter problem will be al-
leviated considerably by the development of less expensive mark-
sensing or character-reading devices. 

Time-sharing services have much to recommend them. However, 
their costs are generally higher than those of acceptable batch ser-
vices. Moreover, they can also lead to considerable queueing prob-
lems if not enough consoles are available to the students. The 
critical parameter is the maximal number of terminals which can be 
sustained by the particular computer system without a significant 
degradation of the response time. 

The repertoire of available computer languages is an important 
consideration for any computational service. For many of the require-
ments of this program, one scientific language such as FORTRAN, BASIC, 
ALGOL, PL/1, or APL is sufficient. In general, however, it is de-
sirable that the student gain experience with more than one language, 
and in certain courses, such as C3 or CM3, additional languages such 
as SNOBOL are particularly important. In several courses, including, 
for instance, CM1, CM2, or CM4, plotting and display facilities could 
also play a useful role. Indeed, here a versatile time-shared class-
room display system of the type mentioned under 4) might be ideal and 
could completely determine the character of the courses. However, 
more modest services can be completely successful. 

Broadly speaking, the computational services required by this 
kind of program can be provided in one or a combination of the fol-
lowing ways: 

1) Use of off-campus computing facilities 

2) Participation in an educational computer network 

3) Operation of a campuswide educational computer facility 

4) Operation of separate computer laboratories by different 
departments 

Except under special circumstances, exclusive dependence on the 
first of these approaches is, in the long run, not very satisfactory. 
However, certain supplementary off-campus computer services, if reli-
able and economical, can provide highly advantageous solutions to en-
riching more modest services available on the campus 

At present, educational computer networks have been established 
in only a few geographical locations. The organization of these net-
works ranges from fairly loose mutual assistance groups to highly 
organized hardware networks. Either time-sharing or batch-processing 

549 



services can be provided�sometimes both. Clearly, the access to a 
large central computer with a massive program library, large memory, 
fast central processor, and large systems and programming staffs 
represents a considerable advantage. On the other hand, logistical 
and communication problems, lack of control, etc., may turn out to 
be very detrimental for a participant college. Nevertheless, the 
possibility of joining such a network when feasible certainly de-
serves proper consideration. 

Probably the most common approach toward meeting the educational 
computer needs of a college or university is the establishment of a 
centralized, campuswide academic computing center. Such a center 
will serve its expected purpose only when operated by an adequate 
staff in an efficient, professional manner; this is a point too often 
overlooked. 

In recent years many small and medium-sized computers have been 
marketed at relatively low prices. This has made it possible for 
many institutions to have separate computers of varying sizes for in-
dividual departmental use. The assured availability of a specialized 
service to the department is, of course, one of the greatest advan-
tages of this approach. It also allows the development of special 
laboratories of the type mentioned under 5) above. On the other hand, 
the computational work possible on these machines is severely limited 
by their size, and for more sophisticated tasks additional computer 
services are often needed. 

The actual costs of a computing facility depend upon many fac-
tors, including the desired quality of the service, the intended 
group of users, the specific type of equipment selected, local physi-
cal facilities, and the corresponding staff needs. The Panel there-
fore decided not to include here any cost estimates for the facilities 
needed in this program. Some data on such costs are given, for ex-
ample, in recent reports of the Southern Regional Education Board and 
the American Council on Education.* 

* See Guidelines for Planning Computer Centers in Universities and 
Colleges and Computers in Higher Education, both publications of 
the Southern Regional Education Board, 130 Sixth Street, N.W., 
Atlanta, Georgia 30313. See also Computers on Campus, American 
Council on Education, One Dupont Circle, Washington, D. C. 20036, 
and "A Survey of Computing Costs," CRICISAM Newsletter 3, Septem-
ber, 1971, pp. 2-5. 

550 



4. Detailed Course Outlines 

In this section we present outlines for the seven courses CM1, 
CM2, CM3, CM4 and CI, C2, C3. They are intended to suggest topics 
which might be included in these courses and should not be inter-
preted as check lists of required material. Where appropriate, sug-
gested numbers of lectures to be spent on the various topics are in-
cluded in the descriptions. These lectures total approximately 36 
hours for a semester course; this leaves room for examinations, re-
views, and lectures on supplementary technical material. 

CM1. Computational Models and Problem Solving 

Prerequisite: CI 

Depth of treatment for the topics outlined below will vary 
with the interest of instructor and students, and lecture hours are 
therefore not assigned to any of the topics. It is recommended that 
a small number of fairly substantial projects be required in this 
course, rather than a larger number of smaller problems. Some of 
the material is suitable for group projects. 

Detailed Outline 

Statistical calculations 

Tabulation of data 

Calculation of means and variances 
Least squares fitting of straight lines 
Intuitive meaning of randomness 
Random number generators 
Tests of generators (e.g., chi-square) 

Simulation of random processes 

Queues, inventories, random walks, etc. 
Discussion of statistical significance (confidence intervals) 
Games such as blackjack and bingo 
Monte Carlo calculations 

Simulation of nonrandom processes 

Simple hypothetical computer 
Approximations to physical, economic, and biological processes 
Discussion of errors in such approximations 
Deterministic games such as nim 

Other nonnumerical problems 

Enumeration 
Searching and sorting 

551 



Connectivity of graphs, shortest paths 
Text editing 
Elementary computer graphics 
Handling arithmetic expressions 

Sample Problems 

1. Develop a program for the least squares fitting of straight 
lines to given data. The program should input pairs of values 
(x^>y.) a n < 3 output the values of (a,b) where y = ax + b is the 

best fit. Is the same line obtained when the values of � and y 
are interchanged? Show how your program can be used to fit curves 

� b 
given by y = ab or y = ax by taking the logarithms of each 
side of these equations. Are the results the same as those obtained 
by a true least squares fit of these curves without taking logarithms? 

2. Write a program to generate 1000 pseudo-random numbers and 
calculate the chi-square statistic that is associated with 10 equal 
subintervals of the interval in which the random numbers are supposed 
to be uniformly distributed. If the numbers are random, the value of 
this statistic should exceed 16.9 with a probability of only 5 per 
cent. On the basis of this test, have you any reason for doubting 
the usefulness of your generator? 

3. One relatively simple game of solitaire begins with a deal 
of nine cards, face up. If any two of these cards have the same face 
value, they are covered with two new cards, also face up. The last 
step is repeated until the deck has been exhausted except for one 
card, in which case the dealer has won the game, or until there are 
no more pairs showing, in which case the dealer has lost. Write a 
program to simulate this game and use it to determine an approxima-
tion to the probability of winning. How reliable do you believe the 
approximation to be? 

4. Describe a model of cars moving through a highway toll 
station, and write a program to simulate the process. Use it to 
find approximations to the average delay and show how this delay 
depends on traffic density. Discuss the main limitations of your 
model. Assuming that one has a good model, what further limitations 
are there in the results obtained from any such simulation? 

5. Write a program to simulate a game of blackjack and use it 
to compare different strategies. (This problem can be used as the 
basis for a group project.) 

6. Describe a simple hypothetical computer and write a program 
to simulate its behavior. The description of the machine should be 
carefully documented so that any potential user will be able to deter-
mine exactly what the machine will do in every conceivable circum-
stance . 

7. A man starts at the southwest corner of a field and runs 
north at 15 feet per second. His dog starts at the southeast corner, 

552 



200 feet from where the man starts, and runs directly towards his 
master at the rate of 40 feet per second. Calculate an approxima-
tion to the dog�s path and to the time taken by the dog to catch his 
master. Compare this time with the time required if the shortest 
path had been taken. 

8. Suppose that the adjacency matrix for a graph is given, 
along with two of its nodes. Write a program that will determine 
whether or not there is a path between the two nodes. Develop a 
second program for the same task, but based on a distinctly different 
algorithm, and compare the relative merits of the two different pro-
grams . 

9. Develop a program for right-justifying text material. In-
put to the program should be a paragraph of text, and the correspond-
ing output should be the same paragraph properly justified. (This 
problem can be expanded into a more substantial project on text edit-
ing by including additional features such as section headings and 
paging.) 

10. A package of programs is to be developed for producing 
sequences of pictures. The pictures are to be output on a printer 
and must therefore be relatively simple, but the basic ideas are 
similar to those needed for computer-produced movies. (This can be 
a good group project. Once agreement is reached on how to represent 
the data, members of the group can be assigned separate tasks, such 
as developing subprograms for input, output, moving, shrinking, and 
rotating pictures.) 

Bibliography 

Most introductory books on computer programming contain mate-
rial on computer applications. Some of these texts are cited in the 
outline of course CI below. The following texts are primarily con-
cerned with computer application problems suitable for this course: 

Barrodale, Ian; Ehle, Byron L. ; Roberts, F. D. K. Elementary Computer 
Applications in Science, Engineering, and Business. New York, John 
Wiley and Sons, Inc., 1971. 

Gruenb�rger, Fred and Jaffray, George. Problems for Computer Solu-
tion. New York, John Wiley and Sons, Inc., 1965. 

Hull, Thomas E. and Day, David D. F. Computers and Problem Solving. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1970. 
(in particular, Part 2) 

553 



CM2. Introduction to Numerical Computation 

Prerequisites: CI, M2, M3 

Each of the major topics in the course should be amply moti-
vated by introducing applications from the physical and social 
sciences. A consideration of electrical networks or input-output 
systems in economics leads, for instance, to linear systems; vibra-
tion problems from mechanics or Markov processes provide examples 
for eigenvalue problems; root-locus problems arise in several areas 
of engineering; observational data collected in practical experi-
ments lead to a consideration of interpolation and least squares 
techniques. A selection of problems can be found, for example, in 
the book by Carnahan, Luther, and Wilkes (see bibliography). 

During the course the students should solve a number of prob-
lems on the computer. Some of these should involve programming of 
the simpler algorithms and others should make use of library sub-
routines . 

Detailed Outline 

Introduction (2 lectures) 

Number representation on a computer 
Computer arithmetic 
Discussion of the various types of errors 

Linear systems of equations (9 lectures) 

Gaussian elimination and the LU factorization 
Partial and complete pivoting 
Example of ill-conditioning 
Discussion of ways for detecting ill-conditioning 
The Wilkinson backward error result and its implications (no 

proofs) 
Iterative improvement 
Iterative methods with simple convergence criteria (no proofs) 

Solution of a single nonlinear equation (6 lectures) 

Successive approximation 

The Point of Attraction Theorem and its implications 
Discussion of the rate of convergence 
Newton�s method and the simplified Newton method 
Secant method and method of false position 
Stopping criteria for iterations 
Extension of Newton�s method to two equations in two unknowns 
Roots of polynomials 
Sturm sequences 
Example of ill-conditioning of the roots of a polynomial 

554 



Interpolation and approximation (6 lectures) 

Lagrange interpolating polynomial 
Error term for an interpolating polynomial 
Newton forward and backward difference polynomials 
Piecewise polynomial interpolation 
Least squares approximation, including numerical problems 

associated with the normal equations and orthogonal poly-
nomials and their use in least squares 

Chebychev economization of power series 

Numerical differentiation and integration (6 lectures) 

Error in differentiating the interpolating polynomial 
Differentiation by extrapolation to the limit 
Integration formulas based on interpolating polynomials and 

the associated error terms 
Romberg integration 
Gaussian quadrature formulas 
Adaptive methods 

The eigenvalue problem (6 lectures) 

Direct root-finding methods such as Muller�s or the secant 
method 

The power method for the dominant eigenvalue 
Subdominant eigenvalues by the inverse iteration method 
The Householder-Givens method for symmetric matrices (without 

proofs) 

Bibliography 

Carnahan, Brice; Luther, �. �.; Wilkes, James 0. Applied Numerical 
Methods. New York, John Wiley and Sons, Inc., 1969. 

Primarily as a source of problems. 

Conte, Samuel D. Elementary Numerical Analysis: An Algorithmic 
Approach. New York, McGraw-Hill Book Company, 1965. 

Fox, Leslie and Mayers, D. F. Computing Methods for Scientists and 
Engineers. New York, Oxford University Press, Inc., 1968. 

Frb�berg, Carl E. Introduction to Numerical Analysis, 2nd ed. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1969. 

Henrici, Peter K. Elements of Numerical Analysis. New York, John 
Wiley and Sons, Inc., 1964. 

McCracken, Daniel D. and Dorn, William S. Numerical Methods and 
FORTRAN Programming. New York, John Wiley and Sons, Inc., 1964. 

Stiefel, �. L. An Introduction to Numerical Mathematics. New York, 
Academic Press, Inc., 1963. 

555 



Wendroff, Burton. First Principles of Numerical Analysis. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1969. 

CM3. Combinatorial Computing 

Prerequisites: CI and M3 

The material listed here may be more than can be covered prop-
erly in one semester. Since many topics are rather independent of 
each other, an instructor can make his own selection of what to ex-
clude. For this reason no breakdown into the number of lectures for 
each topic was included. Students are expected to implement some of 
the algorithms on the computer and also to experiment with relevant 
library subroutines. For this computational work, it may be desir-
able to assign team projects rather than to let every student proceed 
on his own. 

Detailed Outline 

The machine tools of combinatorics 

Integers and their representation, including radix, modulo, 
and factorial representation (and its use in indexing over 
permutations), monotonic vector representation (and its use 
in indexing over combinations and partitions) 

Sets and their representation, including bitstring and index 
representation 

Some aspects of list processing and storage organization, in-
cluding representation of variable length sequences, one-
and two-way lists, tree structures, free storage, and gar-
bage collection 

Enumeration and counting 

Enumeration techniques, such as backtrack and sieve methods 
Counting techniques, including recurrence relations and tech-

niques for solving them, Polya�s counting formula 

Sorting 

Internal sorting; insertion, selection, and enumeration 
me thod s 

External sorting; long-sorted subsequences, merging, distribu-
tion sorting 

Searching 

Searching in a linearly ordered set, including hash-coding or 
scatter storage techniques, Fibonacci search 

Trees and their use in ordering sets, rooted trees and their 
properties, representation of trees, methods of traversing 
trees, internal and external path length, optimal and near 
optimal search trees 

556 



Heuristic search, game trees, minimax evaluation, pruning, 
static evaluation functions, backing up uncertain values 

Graph algorithms 

Some concepts from graph theory, such as graphs, directed 
graphs and their representation, paths, trees, circuits 
and cutsets 

Connectedness and shortest path problems, including various 
related algorithms 

Flow problems, max-flow and min-cut theorem, Ford-Fulkerson 
algorithm 

Spanning trees, and algorithms for finding them 
Graph isomorphisms 
Planarity of graphs 

Sample Problems 

1. In how many different ways can one color the six faces of 
a cube which may be freely rotated with two colors? [Topics: count-
ing, group of transformations, Polya�s theorem] 

2. An integrated circuit manufacturer builds chips with 16 
elements arranged in a 4 X 4 array as shown below. To realize dif-
ferent circuits all patterns for interconnecting the elements are 
needed. Direct interconnections are made only between horizontally 
or vertically adjacent elements, e.g., as shown below: 

(Closed loops do not usually occur, but this is ignored here for 
simplicity�s sake.) To deposit interconnections on the chip a photo-
mask of the interconnection pattern is needed. Notice that the same 
photo-mask will do for the two interconnection patterns shown above. 
How many photo-masks are required in order to lay out all possible 
interconnection patterns on these chips? 

a) Carefully define the permutation group involved. 

b) Solve the problem using Burnside�s lemma alone. 

557 



c) Solve the problem using Polya�s counting formula. 

[Topics: counting, group of transformations, Polya�s theorem] 

3. List all the essentially different ways in which eight 
queens can be placed on a chessboard so that no two are on the same 
row, column, or diagonal. Two ways of placing queens are essen-
tially different if they cannot be transformed into each other by a 
rotation of the board or by reflection on any of the axes shown in 
the figure: 

4. Assume a large deck of � punched cards is dropped on the 
floor, but fortunately each card contains a unique sequence number 
from 1 to � which indicates its position in the deck. After the 
cards have been picked up, the deck is not in complete disorder; it 
contains long runs of cards in proper order. Discuss what sorting 
techniques can be considered to sort the deck as efficiently as pos-
sible. What standard sorting techniques would definitely be inef-
ficient in this case? [Topics: linear order, expected number of 
comparisons, sorting algorithms] 

5. a. Prove that every positive integer A has a unique 
representation a^, a^, a^ which satisfies the conditions 

(i) A = a.-l! + a -2! + ... + a -n!; 1 2 � 

(ii) 0 s a t S i for i = 1, 2, n; 

(iii) a n � 0. 
Let the factorial representation for zero be a. = 0, so that 
0 = 0�1!. 

b. Devise an algorithm for adding 1 to a number in 
factorial representation. 

c. Devise algorithms for adding and subtracting two 
numbers in factorial representation. 

558 



d. For fixed � s 1, there are (N+l)! numbers whose 
factorial representation a,, a� a has � S N. From this 

1 2 � 
fact and from the uniqueness of the factorial number representation 
proved in (a), derive the identity: 

1-1! + 2 - 2 ! + 3 - 3! + ... + N-N! = (N+l)! - 1 

e. The factorial number representation is useful in 
enumerating permutations. This can be done in many ways. The tech-
nique discussed below is called the Derangement Method of M. Hall. 

Let � = (ig, i^j i^) be a permutation of the N + l 

integers 0, 1, ..., N. For j = 1, 2, ..., � define: 

a. = (the number of integers < j which occur to 

the right of j in permutation P) 

As an example, the permutation � = (2, 0, 1) yields 

3 � = 0, a 2 = 2. 

By considering a^, . .., a^ to be the factorial representation of 

an integer A, we have set up a correspondence between the (N+l)! 
permutations of the integers 0, 1, ..., � and the (N+l)! numbers 
with factorial representation a^, a n (n s N ) . 

(e^) Prove that this correspondence is 1:1. 

(e^) Devise an algorithm which constructs the permuta-

tion associated with an integer A from the factorial repre-

sentation of A. 

6. Devise an algorithm for finding shortest paths in a graph 
with weighted nodes. The length of a path is defined to be the sum 
of the weights of all nodes which lie on the path. 

Consider the following three variations of the problem: 

a. paths between two given nodes 

b. paths between one given node and all other nodes 

c. paths between all pairs of nodes 

[Topics: shortest paths, wave propagation algorithm] 

Bibliography 

There are several good books on combinatorial mathematics in 
general and on graph theory in particular, but there appears to be 
none which is written from the point of view proposed here, of em-
phasizing the computational aspects of algorithms for solving com-
binatorial problems. 

559 



The book that comes closest to this point of view is 

Beckenbach, Edwin F., ed. Applied Combinatorial Mathematics. New 
York, John Wiley and Sons, Inc., 1964. 

Much useful material on computational and programming aspects 
of algorithms, combinatorial ones in particular, can be found in: 

Knuth, Donald E. The Art of Computer Programming. Reading, Massa-
chusetts, Addison-Wesley Publishing Company, Inc. 

Vol. 1. Fundamental Algorithms, 1968. 
Vol. 2. Seminumerical Algorithms, 1969. 
Vol. 3. Sorting and Searching, 1971-72. 

The following references are not intended to be exhaustive by 
any means, but simply to point to a few papers which are typical of 
those which concentrate on computational aspects of combinatorics. 

The machine tools of combinatorics 

Hall, Marshall, Jr. and Knuth, Donald E. "Combinatorial 
analysis and computers." American Mathematical Monthly, 
72 (1965), pp. 21-28. 

Lehmer, Derrick H. "The machine tools of combinatorics." In 
Beckenbach, Edwin F., ed. Applied Combinatorial Mathematics. 
New York, John Wiley and Sons, Inc., 1964. 

Lehmer, Derrick H. "Teaching combinatoric tricks to a com-
puter." Proceedings of Symposia in Applied Mathematics, 10. 
Combinatorial Analysis, pp. 179-194. Providence, Rhode Island, 
American Mathematical Society, 1960. 

Enumeration and counting 

Golomb, Solomon W. and Baumert, Leonard D. "Backtrack pro-
gramming." Journal of the Association for Computing Machinery, 
12 (1965), pp. 516-524. 

Lehmer, Derrick H. "The sieve problem for all-purpose com-
puters ." Mathematical Tables and Other Aids to Computation, 
7 (1953), pp. 6-14. 

Swift, J. D. "Isomorph rejection in exhaustive search tech-
niques." Proceedings of Symposia in Applied Mathematics, 10. 
Combinatorial Analysis, pp. 195-200. Providence, Rhode 
Island, American Mathematical Society, 1960. 

Walker, R. J. "An enumerative technique for a class of combi-
natorial problems." Proceedings of Symposia in Applied Mathe-
matics, 10. Combinatorial Analysis, pp. 91-94. Providence, 
Rhode Island, American Mathematical Society, 1960. 

560 



Searching 

Hlbbard, Thomas N. "Some combinatorial properties of certain 
trees with applications to searching and sorting." Journal of 
the Association for Computing Machinery. 9 (1962), pp. 13-28. 

Morris, Robert. "Scatter storage techniques." Comrnunications 
of the Association for Computing Machinery, 11 (1968), pp. 38-
44. 

Peterson, W. W. "Addressing for random access storage." IBM 
Journal of Research and Development. 1 (1957), pp. 130-146. 

Graph algorithms 

Cornell, D. G. and Gottlieb, C. C. "An efficient algorithm 
for graph isomorphism." Journal of the Association for Com-
puting Machinery, 17 (1970), pp. 51-64. 

Dijkstra, E. W. "A note on two problems in connexion with 
graphs." Numerische Mathematik, 1 (1959), pp. 269-271. 

Edmonds, Jack. "Paths, trees and flowers." Canadian Journal 
of Mathematics, 17 (1965), pp. 449-467. 

Gottlieb, C. C. and Cornell, D. G. "Algorithms for finding a 
fundamental set of cycles for an undirected linear graph." 
Communications of the Association for Computing Machinery, 10 
(1967), pp. 780-783. 

Lee, C. Y. "An algorithm for path connections and its applica^ 
tions." Institute of Radio Engineers Transactions on Elec-
tronic Computers, EC-10 (1961), pp. 346-365. 

Moore, Edward F. "The shortest path through a maze." Pro-
ceedings of the International Symposium on the Theory of 
Switching, pp. 285-292. Cambridge, Massachusetts, Harvard 
University Press, 1959. 

Warshall, Stephen. "A theorem on Boolean matrices." Journal 
of the Association for Computing Machinery, 9 (1962), pp. 11-
12. 

CM4. Differential Equations and Numerical Methods 

Prerequisites: CM2, M4 

Throughout this course it is desirable to introduce problems 
which lead to the types of equations considered at the time. Excel-
lent sources include circuit theory, mechanical systems, biological 
systems, particle dynamics, and economics. Numerical methods are to 
be introduced early in the course both to illustrate the qualitative 

561 



behavior of solutions and to motivate uniqueness and existence argu-
ments. In considering these methods the student should be made aware 
of the effects of discretization--and roundoff errors--and of stabil-
ity. The students are expected to write some programs for various 
methods and to use existing library subroutines for others. 

Detailed Outline 

Origin and examples of differential equations (2 lectures) 

Sample (deterministic and nondeterministic) problems from the 
physical, social, and biological sciences, including predator-
prey model 

Difference equations, including examples of different equations 
leading to the same differential equation 

Simple linear equations (4 lectures) 

y� = f(x), y� = ay + f, y" = ay� + by + f 
Representation of solutions by indefinite integrals and special 

functions 
Direction fields 
Qualitative behavior of solutions 
Uniqueness and continuous dependence on initial data 
Consequences of linearity 
Approximation by Taylor series 
Polygon method 
Trapezoidal approximation 
Equivalence of second-order equations to first-order systems 
Introduction to first- and second-order difference equations 

and their elementary properties 

The first-order equation y� = f(x,y) (9 lectures) 

Graphical treatment, polygon method 
Relation to integral equations, Picard iteration 
Quadrature methods 
Picard existence and uniqueness theorem with proof 
Statement of Peano existence theorem 
Nonuniqueness examples 
Discussion of continuous dependence on initial data 
Power series solution and numerical methods 
Runge-Kutta methods 
Predictor-corrector methods 
Discussion on consistency and convergence (without proofs) 

First-order systems of equations (8 lectures) 

Redevelopment for first-order systems--using vector notation--
of the major results about single first-order equations 

Review of matrix results, similarity transformations, series 
for exp(At) and semigroup properties 

Vector space of solutions of y� = Ay, the adjoint solution 

562 



Representation of solutions of nonhomogeneous problems 
Stiff systems 

Plane autonomous systems (7 lectures) 

Numerical exploration of y� = ax + by + f(x,y), x� = cx + dy 
+ g(x,y) 

Poincare phase plane and critical solutions 
Critical points and concepts of stability 
Numerical comparison of linear and nonlinear equations 
The Lienard equations 
Liapounov�s ideas 
Exploration of predator-prey model 

Two-point boundary value problems (6 lectures) 

Exploration of the linear second-order equation with 
boundary conditions by shooting techniques 

Discretization and methods for solving the resulting 
Extensions to nonlinear equations 

Bibliography 

Birkhoff, Garrett and Rota, Gian-Carlo. Ordinary Differential Equa-
tions . Boston, Massachusetts, Ginn and Company, 1962. 

Selected topics. 

Daniel, James W. and Moore, Ramon E. Computation and Theory in 
Ordinary Differential Equations. San Francisco, California, W. H. 
Freeman and Company, 1970. 

Henrici, Peter. Discrete Variable Methods in Ordinary Differential 
Equations. New York, John Wiley and Sons, Inc., 1962. 

Keller, Herbert B. Numerical Methods for Two-Point Boundary Value 
Problems. Boston, Massachusetts, Ginn and Company, 1968. 

Advanced discussion of material on two-point boundary value 
problems. 

Lapidus, Leon and Seinfeld, John H. Numerical Solution of Ordinary 
Differential Equations. New York, Academic Press, Inc., 1971. 

CI. Introduction to Computing 

Prerequisite: College admission 

As stated in Section 2, this course should be oriented toward 
problem solving with computers. Accordingly, it is important that, 
throughout the course, different types of problems are considered 
and appropriate algorithms for their computational solution are de-
signed and discussed. In particular, it is essential that both 
numerical and nonnumerical applications are presented. The problems 

mixed 

equations 

563 



should be reasonably interesting and realistic, and some should be 
open-ended, requiring a certain effort to identify what is required 
and how the solution is to be obtained. At least one major project 
leading to a completely verified and documented program should be 
included. 

The course can serve to introduce many traditional mathematical 
ideas from a different point of view (e.g., subroutines and functions, 
induction and recursion, etc.). Such identifications should be 
strengthened where possible. 

The course should be organized so that students can write small 
computer programs almost immediately. This may be accomplished by 
representing algorithmic processes from the outset both by flowcharts 
and programming languages. 

The following outline is for a one-semester course meeting 
three times each week for lectures. In addition, it is generally 
advisable to schedule a regular weekly laboratory period of at least 
two hours. No lecture hours were assigned since the need for proper 
sequencing of programming assignments often demands that certain 
topics are either interchanged or distributed throughout the course. 

Detailed Outline 

Problems, algorithms, and programs 

Typical problems and mathematical models 
Concept of an algorithmic process 
Flowcharts 
Basic structure and properties of algorithms 
Concept of a program 
How computers execute programs 
Elements of a higher-level programming language 

Basic programming 

Number and character representation 
Constants and variables 
Principal syntactic statements of the language 
Functions, subroutines, and complete programs 
Elements of the system being used 
Libraries 
Program testing and documentation 

Errors and approximations 

The approximate character of mathematical models 
Truncation and roundoff error 
Verification of algorithms 
Error conditions and messages 
Techniques for algorithm testing 
The idea of numerical stability 

564 



Data structures 

Discussion of a variety of problems leading to different data 
structures such as vectors, arrays, strings, trees, linked 
structures 

Basic manipulation of the different structures 

Advanced topics 
Further details of the programming language 
Aspects of compilers 
Basic structure of an operating system 
Aspects and organization of computer systems 

Survey of computers, languages, and systems 

Historical developments, discussion of different language 
types, aspects of systems programs, new developments 

Bibliography 

Arden, Bruce W. An Introduction to Digital Computing. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1963. 

A good reference for the instructor. 

Cole, R. W. Introduction to Computing. New York, McGraw-Hill Book 
Company, 1969. 

Forsythe, Alexandra I.; Kennan, Thomas �.; Organick, Elliott I.; 
Stenberg, Warren. Computer Science: A First Course. New York, John 
Wiley and Sons, Inc., 1969. 

This is a text for a high school course but may be appropriate 
for this course. 

Galler, Bernard A. The Language of Computers. New York, McGraw-Hill 
Book Company, 1962. 

A good reference for the instructor. 

Gruenberger, Fred. Computing: An Introduction. New York, Harcourt 
Brace Jovanovitch, Inc., 1969. 

Hull, Thomas E. Introduction to Computing. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc., 1966. 

Hull, Thomas E. and Day, David D. F. Computers and Problem Solving. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 
1970. 

Part I of this text emphasizes material appropriate for this 
course. 

Kemeny, John G. and Kurtz, Thomas E. Basic Programming. New York, 
John Wiley and Sons, Inc., 1967. 

An introduction to programming with applications. 

565 



Rice, J. �. and Rice, J. R. Introduction to Computer Science: 
Problems, Algorithms, Languages, Information and Computers. New 
York, Holt, Rinehart and Winston, Inc., 1969. 

Walker, Terry M. and Cotterman, William W. An Introduction to 
Computer Science and Algorithmic Processes. Boston, Massachusetts, 
Allyn and Bacon, Inc., 1970. 

C2. Computer Organization and Programming 

Prerequisite: CI 

This course includes computational projects in assembly lan-
guage programming. However, in line with the survey character of 
the course, care should be taken not to involve the students in a 
too-detailed discussion of assembly languages or of computer hard-
ware. A scheduled laboratory period is desirable. 

Detailed Outline 

Computer structure and machine language (2 lectures) 

Fundamentals of computer organization, including registers, 
arithmetic units, memory, I/O units, and their interdependence 

Description of typical single-address machine instructions 
Programs as sequences of machine instructions and their execu-

tion 

Introduction to symbolic coding and assembly systems (5 lectures) 

Mnemonic operation codes 
Labels, symbolic address 
Literals 
Pseudo operations 
General construction of assemblers 
Simple examples and exercises using a locally available 

assembler 

Digital representation of data (3 lectures) 
Bits, fields, words 
Character representation 
Radix representation of numbers, radix conversion, representa-

tion of integers, floating point, and multiple precision 
numbers in binary and decimal form 

Variable length data 

Addressing (2 lectures) 

Absolute addressing, indexing, indirect addressing, relative 
addressing 

Zero-, one-, two-, three-address instruction formats 
Address transformations 

566 



Machine organization to implement addressing structures 
Character- versus word-oriented machines 

Logic design (5 lectures) 

Elements of Boolean algebra 
AND, OR, NOT logic gates 
Implementation of Boolean functions 
Encoders and decoders 
Descriptive discussion of clocked circuits, flip-flops, regis-

ters, shift registers, accumulators, counters, timing chains 

Arithmetic units (3 lectures) 

Serial versus parallel arithmetic 
Implications of choice of radix 
Design of a simple arithmetic unit 
Design of half-adder and adder 
Algorithms for multiplication and division 

Instruction units (3 lectures) 

Instruction fetch and decoding 
Program sequencing 
Branching 
Subroutine calls 
Interrupts 
Control and timing logic 
Micro-programming as a means of implementing control units 

Storage units (3 lectures) 

Structure of core memory 
Typical memory bus structure 
Memory overlap, protection, relocation, and paging 
Word versus character organizations 
Types of bulk memories 
Descriptive discussion of stack memories, associative memories, 

read-only memories, and virtual memory schemes 

Input-output systems (3 lectures) 

Direct memory access I/O 
I/O channels and controllers, multiplexers 
Characteristics of various types of input/output devices 
Relation of I/O system to control unit and main memory 
Input/output programming 
Buffering and blocking 
Interrupts 
Problems of error detection and correction in data transmission 

567 



Systems software (4-5 lectures) 

Operating systems 
Input/output packages 
Assemblers, loaders 
Interpreters, compilers 
Utility programs and libraries 

Survey of contemporary computers (3-6 lectures) 

A survey of contemporary computers emphasizing a variety of 
machine organization. Typical topics: large versus small 
computers; single register, multiple register, and stack 
machines; unorthodox machines. Discussion of possible imple 
mentation of high-level programming language statements on 
typical computers. 

Bibliography 

Bell, C. G. and Newell, A. Computer Structures. New York, McGraw-
Hill Book Company, 1970. 

Survey of computer organizations. Source of material for the 
survey of contemporary computers. 

Chu, Yaohan. Digital Computer Design Fundamentals. New York, 
McGraw-Hill Book Company, 1962. 

A somewhat dated reference on logic design. 

Gear, C. William. Computer Organization and Programming. New York, 
McGraw-Hill Book Company, 1969. 

Reference on assembly language programming. 

Gschwind, H. W. Design of Digital Computers: An Introduction. 5th e 
New York, Springer-Verlag New York, Inc., 1970. 

Text on computer design and organization, slightly engineering 
oriented. 

Hellerman, H. W. Digital Computer System Principles. New York, 
McGraw-Hill Book Company, 1967. 

Uses Iverson notation, directed toward IBM equipment, 
especially S/360. 

Knuth, Donald E. The Art of Computer Programming. Volume 2, Semi-
numerical Algorithms. Reading, Massachusetts, Addison-Wesley 
Publishing Company, Inc., 1969. 

Reference for a mathematical treatment of computer arithmetic 
(Chapter 4). 

McCluskey, E. J. Introduction to the Theory of Switching Circuits. 
New York, McGraw-Hill Book Company, 1965. 

Reference for basic switching theory. 

568 



Nashelsky, Louis. Digital Computer Theory. New York, John Wiley 
and Sons, Inc., 1966. 

A paperback containing a survey of many of the topics covered 
in this course. 

C3. Programming Languages and Data Structures 

Prerequisite: CM1 

Detailed Outline 

Structure of algorithmic languages (8 lectures) 

Review of basic program constituents of the language intro-
duced in CI 

Introduction to the elements of AUJOL or PL/1 
Informal syntax and semantics of simple statements in that 

language 
Backus normal form 
Grouping of statements and block structure of programs 
Scopes, local and nonlocal quantities 
Functions and procedures 
Formal and actual parameters 
Binding time of program constituents 
Simple recursive procedures 
Concept of a stack 
Simulation of recursions as iterations using stacks 

Arithmetic statements (4 lectures) 

Brief discussion of graphs and trees 
Tree diagrams of arithmetic expressions 
Informal discussion of precedence hierarchies 
Infix, prefix, postfix notation 
Translation between infix and postfix notation 
Evaluation of expressions in postfix notation 

Trees and lists in a computer (8 lectures) 

Types of data nodes and linkages 
List names, list heads, sublists 
Multilinked lists 
Stacks as list structures with usage discipline 
Representation of trees as special cases of lists 
Accessing, insertion, deletion, and updating in trees 
Traversal schemes for trees 
Application to the generation of machine code from expression 

trees 

String manipulation (7 lectures) 

Introduction to a string manipulation language such as SNOBOL 

569 



Data declarations in such a language 
Recursive algorithms in such languages 
Applications to formal differentiation of expressions 

Data structures and storage allocation (3 lectures) 

Storage allocation for algorithmic language structures such as 
independent, nested blocks, strings, arrays, etc. 

Procedures using run-time stacks 
Storage allocation for string manipulation languages 

Some aspects of languages and grammars (6 lectures) 

Syntax, semantics, and pragmatics of programming languages 
The concept of a formal grammar 
Production notation 
Discussion of Chomsky�s classification of grammars 
Discussion of computability, undecidability 
Syntax and semantics of arithmetic statements 
Precedence and operator precedence grammars 
Syntactic specification of procedures, blocks, and statements 
Formal semantics corresponding to syntactic specifications 

Bibliography 

Genuys, F., ed. Programming Languages. New York, Academic Press, 
Inc., 1968. 

Harrison, M. C. Data Structures and Programming. Courant Institute 
of Mathematical Sciences, New York University, 1970. 

Knuth, Donald E. The Art of Computer Programming. Volume I, 
Fundamental Algorithms. Reading, Massachusetts, Addison-Wesley 
Publishing Company, Inc., 1968. 

Important presentation of data structures. 

Rosen, Saul, ed. Programming Systems and Languages. New York, 
McGraw-Hill Book Company, 1967. 

Contains, among other things, a discussion of SN0B0L and a 
comparison of list processing languages. 

Sammet, Jean E. Programming Languages: History and Fundamentals. 
Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1969. 

A comprehensive survey of languages. 

Wegner, Peter. Programming Languages, Information Structures, and 
Machine Organization. New York, McGraw-Hill Book Company, 1968. 

An approach to programming languages as information structures. 

570 


