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I. INTRODUCTION AND STATEMENT OF RECOMMENDATIONS 

Traditionally, attempts to solve problems in the physical 
sciences have stimulated and, in turn, extensively utilized basic 
developments in mathematics. This essential interaction between 
mathematics and the sciences is experiencing new vigor and growth. 
Recently, mathematical methods have been introduced into the social 
and life sciences, and even into some areas of the humanities. This 
has led to the development of new mathematical ideas and to new ways 
of using mathematics. The Committee on the Undergraduate Program in 
Mathematics (CUPM) appointed a Panel on Applied Mathematics to con-
sider the implications for the undergraduate curriculum of this new 
growth of the uses of mathematics. 

Instead of training students to handle all of the steps in-
volved in solving a realistic problem, typical courses in applied 
mathematics generally confine themselves to a treatment of various 
mathematical techniques; in particular, mathematical model building 
is neglected. While courses in mathematical techniques are necessary, 
they do not provide a sufficiently broad training for students in-
terested in applied mathematics. 

The Panel therefore makes the following recommendations: 

1. Every mathematics department should offer one or two courses 
in applied mathematics which seriously and comprehensively 
treat realistic problems and which emphasize model building. 

2. Mathematics courses in the first two years of college should 
contain many realistic applications. 

3. Every student taking a substantial number of courses in mathe-
matics should include at least one course in applied mathe-
matics . 

4. A concentration in applied mathematics should be made available 
if the resources of the college permit. 

The Panel is aware that the fourth recommendation is the most 
difficult to implement, especially in smaller departments. However, 
we feel strongly that most college departments can begin to imple-
ment the first three recommendations without undue difficulty or 
delay. For instance, having one instructor offer a course emphasiz-
ing model building could be an initial step toward implementing the 
first recommendation. Although the course may not have all of the 
desired characteristics the first time it is taught, the instructor�s 
experience, along with ideas from this report, should enable him to 
come closer to meeting the objectives described here when he teaches 
the course again. Instructors in calculus, for example, can help to 
implement the second recommendation by introducing in their courses 
some applications different from the usual ones. In any case, the 
first of these recommendations can be effected by instituting one or 
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two new courses at the upper-division level, and the second by in-
corporating applications in the lower-division courses. 

II. DISCUSSION 

Pure mathematics has undergone tremendous development during 
the past 25 years. Consequently, the recent generation of mathe-
maticians is concerned primarily with pure mathematics, not only in 
research but also in educational activities. This is evidenced by 
the abstractness of some high school mathematics courses and the 
early introduction of axiomatic courses in colleges. 

While the Panel applauds the advances in pure mathematics, it 
feels that it is unfortunate that education in applied mathematics 
has not received the same attention as that in pure mathematics. As 
a result, many other departments offer courses having substantial 
mathematical content, and mathematics faculties have tended to be 
unaware of the mathematization of many areas. It is encouraging, 
however, that there seems to be a recognition of this tendency and 
that a sympathetic interest in applications of mathematics is spread-
ing. There is much more emphasis now than there was ten years ago 
on areas which directly attack problems of contemporary society such 
as ecological studies, city planning, water and atmosphere restora-
tion, etc. This interest manifests a return to an attitude held in 
earlier times when mathematics was viewed as closely related to other 
areas such as the physical sciences and engineering. The unique way 
in which mathematics can contribute to an understanding of important 
problems in modern society is acknowledged, and many mathematicians 
have been attracted to the new ideas involved in recent applications 
because they are eager to have their teaching and research contribute 
to solutions of problems which are practical and contemporary. 

These recent applications have contributed to changes in applied 
mathematics, both in its nature and in its methods. Applied mathe-
matics may once have been identified exclusively with areas of analy-
sis which had particular bearing on physics and engineering. But be-
cause mathematics is used in the social, life, and managerial sci-
ences, and even in the humanities, applied mathematics must now 
include topics such as linear programming, graph theory, optimiza-
tion theory, combinatorics, game theory, and linear algebra, in 
addition to those which have been traditionally associated with it. 
Similarly, methods of applied mathematics may have been thought of 
as involving complicated calculations with numbers or analytic ex-
pressions. While techniques for calculation are important, they are 
only part of the professional resources of an applied mathematician. 
Theory construction and model building are now essential for him. 
In studying the role of applied mathematics in the undergraduate cur-
riculum, the Panel has taken into account these new topics and methods. 
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Having considered all of these points, we conclude that under-
graduate instruction in applied mathematics must have a strong com-
ponent specifically devoted to model building, and that undergradu-
ates generally should be more aware of the many uses of mathematics 
in other areas. 

III. NEW COURSES IN APPLIED MATHEMATICS 

In our considerations we have been guided by the steps a work-
ing applied mathematician follows in studying a given situation. 
This process has been described in many ways by various authors. We 
use a description which is reminiscent of the one given by Murray 
Klamkin in the American Mathematical Monthly, 78 (1971) pp. 55-56 
(ascribed to Henry 0. Pollak): 

1. Recognition of the nonmathematical problem. 

2. Formulation of the mathematical model. 

3. Solution of the mathematical problem. 

4. Relevant computations. 

5. Explanation of results in the context of the original 
problem. 

Courses in mathematical topics give training in the solutions 
of mathematical problems (step 3), and courses in computer science 
and numerical analysis explain computational and approximative tech-
niques (step 4 ) , but very few courses adequately treat the processes 
involved in recognition, formulation, and explanation (steps 1, 2, 
and 5). While the student must, of course, have sufficient mathe-
matical and computational techniques at his command to solve the 
mathematical problems he confronts and to obtain the numerical re-
sults which are needed, we are convinced that the training of a 
student of applied mathematics must be more comprehensive. He must 
be thoroughly grounded in the techniques of mathematical model build-
ing, and he must have ample practice in interpreting the results of 
his mathematical solution in the original setting. 

The first recommendation of the Panel is that each department 
should offer a course or two in applied mathematics which treat some 
realistic situations completely, beginning with a careful analysis 
of the nonmathematical origin of the problem; giving extremely care-
ful consideration to formulation of a mathematical model, solution 
of the mathematical problem, and relevant computations; and present-
ing thoughtful interpretations of the theoretical results to the 
original problem. In other words, there should be a few courses 
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which give the students the experience of grappling with an entire 
problem from beginning to end. 

To aid colleges in implementing the first recommendation, the 
Panel has constructed outlines of courses which emphasize model 
building. These courses are not intended to replace courses stress-
ing mathematical techniques which are offered for students majoring 
in other areas, nor should they replace those standard mathematical 
offerings in which applications play a useful motivational role. 
Service courses are valuable and should continue to be offered by 
the mathematics department; indeed, they should be designed in active 
collaboration with members of concerned departments. Courses in 
mathematical topics which have their origins in applications are 
also important. However, the courses we recommend here provide a 
complementary training by giving students active experience in 
mathematical model building. 

The Panel has given at the end of this report three course 
outlines which illustrate how a course stressing model building can 
be designed. These outlines are centered around the topics of 
optimization, graph theory and combinatorics, and fluid mechanics. 
The optimization course is intended as an example of a sophomore-
junior course, the course on graph theory and combinatorics is 
appropriate at the junior level, and a course along the lines of the 
fluid mechanics option can be taught at the senior level. The 
optimization course and the course in graph theory and combinatorics 
can be offered at various levels by changing the level of rigor, 
varying the pace, concentrating longer on problems from a specific 
area, etc. These particular topics were chosen as unifying themes 
because of the experiences, interests, and competencies of individ-
ual Panel members, and because the courses on optimization and on 
graph theory and combinatorics illustrate the use of topics not 
traditionally viewed as being part of applied mathematics. In 
choosing these topics, the Panel does not mean to exclude other 
topics which might be used as the unifying element of an applied 
mathematics course. On the contrary, we hope that these outlines 
will stimulate instructors to construct similar courses around other 
topics. In fact, within reasonable limits, the particular topics 
chosen are not nearly so crucial as the emphasis on the model build-
ing process. 

IV. GUIDELINES FOR TEACHING THE NEW COURSES 

In planning or in teaching courses which emphasize model build-
ing, the instructor should keep in mind certain points which are es-
sential for proper implementation of our recommendations. 
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First, the role of model construction must be made clear and 
amply illustrated throughout the course. The student must have as 
much experience as possible in constructing models. Real-life situa-
tions are often so complex that it is impossible to formulate a 
satisfactory model immediately; quite often it is necessary to con-
struct a succession of models in an effort to find a satisfactory 
one. The student should have experience with this process. Further-
more, he should be aware that there may be several approaches which 
lead to essentially different mathematical models for the same prob-
lem. Therefore, a critical evaluation of the steps in constructing 
a model is essential in order that the student know what kind of 
information he can expect or cannot expect from a model and that he 
be able to choose the model which is most effective for his purpose. 

Constructing a model for a given situation requires originality 
and a thorough understanding of the original nonmathematical situa-
tion. To appreciate what is involved, students must be active in 
formulating models. This aspect of the training is so important 
that the instructor should be willing to sacrifice some topics to 
insure the student�s thorough grounding in model building. If the 
instructor conducts his class in the traditional lecture fashion, 
then he should prepare homework projects which require his students 
to formulate and to refine models for various situations. However, 
the Panel explicitly calls attention to the possibility of conducting 
these courses as seminars in which students and faculty members work 
cooperatively. Such a seminar could be organized around various 
problems, or it could develop a model for a complicated system which 
can be subdivided into smaller units. A benefit of the latter for-
mat is the experience of teamwork. Another possibility is for stu-
dents to choose projects which they pursue independently. These 
projects could range from original investigations to reports based 
on the literature. In this case, students should periodically re-
port their progress to the other participants in the seminar. 

It is important to realize that model building has many forms. 
The activity which is most usually associated with the term modeling 
and which is actually always present in some form consists of formu-
lating in explicit terms the dependence of the phenomenon under in-
vestigation upon the relevant factors. A classic example is the 
construction of a model for the motion of a vibrating string leading 
to a linear partial differential equation. In this case the factors 
which are to be neglected as well as those which have considerable 
effect on the motion can be identified, and the sort of physical 
assumptions which simplify the model are relatively clear. With 
appropriate assumptions, an analysis of the physical laws governing 
the motion of a particle lead to a mathematical model for the motion 
of the string consisting of a partial differential equation and suit-
able boundary conditions. The solution of this mathematical problem 
aids in the description of the motion of the string. The degree to 
which the solution of the mathematical problem contributes to an 
understanding of the physical one depends upon the degree to which 
the assumptions fit the real situation. 
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The model for motion of a vibrating string is a deterministic 
one; that is, it is based on the assumption that the physical laws 
and the initial conditions determine the response of the system 
exactly. Such models are not always appropriate, and there are 
instances in which uncertainty in the real situation should be re-
flected in the model, as, for example, in stochastic models. As an 
illustration, consider the construction of a model for the spread of 
a disease. The number of people who become ill during an epidemic 
depends on a number of factors associated with the disease--its 
virulence and period of contagion for example--and also on the ran-
dom contacts between infected and susceptible individuals. In some 
instances the results obtained by ignoring the probabilistic features 
of the situation may be adequate, while in others inclusion of the 
probabilistic features may be required in order to obtain a satis-
factory fit between the predictions of the model and the results of 
observations. 

Alternatively, it may be that any model which accounts for what 
appear to be the essential features and which is formulated for 
mathematical analysis will lead to mathematical problems which are 
either totally intractable or beyond the scope of investigation. In 
such cases a computer simulation may be useful. Simulations may be 
performed on both deterministic and stochastic models, and they may 
provide much of the same type of information that is obtained from 
a mathematical analysis when such analysis is feasible. 

The point is that there are many kinds of models, and the stu-
dent of applied mathematics should be aware of them. Consequently, 
the topics for investigation must be chosen carefully so that differ-
ent types of models will be illustrated. 

Second, the problems chosen for investigation must be realistic. 
In this report, when we use the term "realistic" referring to prob-
lems or situations, we have in mind those which arise directly from 
nature or from social behavior and which have some current signifi-
cance. We label as "artificial" those problems which seem to be 
designed purely to illustrate some mathematical point. While some 
artificial problems have undeniable pedagogical value, relying al-
most exclusively on such problems will not instill the attitude of 
mind which should characterize the modern applied mathematician. In 
a contrived situation it is difficult to create and maintain interest 
in the multitude of concerns which arise in problems occurring in the 
real world. Since it is the Panel�s intention that the student rec-
ognize the complexities of the real world and that he come to terms 
with these complexities in his model building process, the student 
must face real problems. In the course outlines we have given 
references to assist those who wish to acquaint themselves with 
significant problems in other fields. 

Third, the original nonmathematical situation should not be 
forgotten once a mathematical formulation has been achieved. The 
results of the mathematical study need to be interpreted in the 
original setting. Stopping short of this gives the impression that 
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manipulation of symbols or that techniques of computation or approxi-
mation are the important points, whereas they are only intermediate 
steps, although absolutely essential, in studying a realistic non-
mathematical situation. For this reason we urge that in these 
courses the situations should not only be realistic but that they 
should be treated as completely as possible. 

Fourth, the mathematical topics treated should be worthwhile 
and have applicability beyond the specific problem being discussed. 
They should be appropriate to the level at which the course is 
offered; problems and examples should be chosen to illustrate more 
than just elegant or ingeneous applications of mathematically trivial 
ideas. It is impossible for a single course to contain all of the 
mathematical techniques which all students may need; nevertheless, 
it is possible to select as illustrative techniques those which will 
be valuable to a large portion of the students. 

Finally, an instructor of applied mathematics should not view 
his work as being confined to one academic department or, for that 
matter, restricted to his college or university. Applied mathematics 
affords unique opportunities for cooperative projects with other 
members of the college community and with people outside the college 
whose professional work is related to mathematics. We encourage 
instructors to invite active participation by students and faculty 
members from other departments in planning and conducting courses or 
seminars. In some instances it may be valuable to include nonacadem-
ic professional people having interests and competencies related to 
the area being studied; their experience and point of view may add 
a new dimension to the investigations. It is our view that instruc-
tors in applied mathematics are in a particularly good position to 
initiate cooperative ventures of this type. 

V. USE OF COMPUTERS IN APPLIED MATHEMATICS 

Mathematics education has been influenced in several ways by 
the recent trend toward the widespread use of computers. This is 
particularly true of instruction involving applications. The role 
of computing in the mathematics curriculum is being studied in de-
tail by the CUPM Panel on the Impact of Computing on Mathematics 
Courses [see Recommendations on Undergraduate Mathematics Courses 
Involving Computing, page 571], and comments on computing as a part 
of a concentration in applied mathematics can be found in Section 
VIII of this report. The purpose of this section is to draw atten-
tion to the ways in which machine experience can reinforce ideas and 
techniques which the student is learning and thereby contribute to 
the teaching of applications. 
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The use of computers makes it possible to consider situations 
having a much greater complexity than would be possible if the asso-
ciated numerical work were to be carried out by hand or with the 
assistance of a desk calculator. This is true not only in courses 
specifically oriented toward applications but also in the standard 
undergraduate courses. As an illustration of the sort of activity 
which illustrates the process of applied mathematics and which be-
comes feasible through the use of computers, consider the example of 
determining as a function of time the position and velocity of a 
rocket traveling to the moon. The depth of the study obviously de-
pends heavily on the audience, but certain versions are appropriate 
for students in courses in elementary calculus or ordinary differ-
ential equations. A sample discussion in the spirit of this report 
would include the following features. 

1. Newton�s laws of motion and gravitation and a mathematical 
model for the system. A careful discussion of the idealiza-
tions and approximations made in constructing the model. 

2. Derivation of the differential equations governing the motion 
of a rocket in one dimension between the earth and moon. 

3. Discussion of the qualitative features of the solution. 

4. Selection of a numerical method. 

5. Preparation and testing of a computer program for the integra-
tion of a system of first-order ordinary differential equa-
tions . 

6. Use of the program to obtain quantitative information on the 
motion of the rocket. Determine the escape velocity of the 
earth-moon system and compare it with that of the earth alone. 

7. Comparison of results predicted by the 1-dimensional model 
with observed phenomena and a discussion of the inadequacies 
of such a model. 

8. Derivation of the differential equations describing the motion 
of a rocket in two dimensions. 

9. Numerical solution of these equations in two dimensions [re-
peat steps 3, 4, and 5 in this case]. Use a plotter to graph 
the trajectories as functions of initial velocity and firing 
angle. 

10. Comparison of these results with observations. Discussion of 
discrepancies. 

In addition to its use in the activities described above, the 
computer can also be used to obtain the best values of parameters 
occurring in the model and to test the validity of the model. The 
latter usually involves comparing predictions based oh the model 
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with experimental data by using statistical techniques. Finally, 
both analog and digital computers are useful tools for simulation 
when the situation cannot be modeled in a form susceptible to mathe-
matical analysis. 

VI. RECOMMENDATIONS CONCERNING MATHEMATICS COURSES IN THE FIRST TWO 
YEARS 

The Panel believes that many students lose their enthusiasm 
for mathematics even as a tool because their mathematics courses seem 
unrelated to their own discipline. A large segment of students in 
lower-division mathematics courses is primarily interested in fields 
outside mathematics. These students want to use the ideas and tech-
niques of mathematics in their fields of interest; they are not in-
terested in majoring or minoring in mathematics. We feel that the 
best way to demonstrate the power and utility of mathematical ideas 
to these students and thereby to sustain their interest is to intro-
duce applications to other fields in the early mathematics courses. 
Therefore, the second recommendation of the Panel is that a greater 
number of realistic applications from a greater variety of fields be 
introduced into the mathematics courses of the first two years. 

The suggestions made earlier about the choice of problems and 
examples apply here too. Instructors should strive to avoid arti-
ficial or contrived examples and applications. It is especially 
important to formulate the problem clearly and to mention explicitly 
the assumptions, approximations, and idealizations used to obtain a 
reasonable mathematical model. If simplifications are needed to 
make the mathematical problem workable, then they should be clearly 
stated and discussed. In other words, the applications should be 
significant and their treatment should be as complete and intellec-
tually honest as the level of the course will allow. 

The applications should be chosen from various fields in order 
to illustrate the use of a mathematical model or idea in different 
settings. If the course and the background of the students permit, 
some problems should be treated which require one to construct a 
succession of mathematical models in an effort to conform better to 
experimental data. Numerical methods might be included. 

As we have already mentioned, some students who are not mathe-
matics majors lose enthusiasm for mathematics because their courses 
do not contain applications. However, the Panel is also concerned 
that the mathematics major have an appreciation for the importance 
of mathematics in other areas. Even if he becomes a research mathe-
matician, he is very likely to teach some undergraduate mathematics 
courses. His effectiveness in these courses can be greatly increased 
by a grasp of the relations among different branches of mathematics 
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and the relations between mathematics and other disciplines. There-
fore, we feel that he should see many significant applications in 
his elementary mathematics courses. 

Unfortunately, very little literature on applications of ele-
mentary mathematics exists at the present time. One source is the 
Proceedings of the Summer Conference for College Teachers on Applied 
Mathematics held at the University of Missouri--Rolla with the sup-
port of the National Science Foundation, published by CUPM. These 
proceedings contain applications of elementary calculus, linear 
algebra, elementary differential equations, and probability and 
statistics. 

Textbooks for most undergraduate mathematics courses vary con-
siderably in their emphasis on applications, and instructors should 
consult various books so that they can provide their classes with a 
variety of interesting applications. For example, in differential 
equations there are many modern texts which contain discussions of 
genuine applications. Two books which contain a variety of applica-
tions not duplicated in many other places are: 

Bellman, R. and Cooke, K. L. Modern Elementary Differential 
Equations, 2nd ed. Reading, Massachusetts, Addison-Wesley 
Publishing Company, Inc., 1971. 

Carrier, G. F. and Pearson, C. E. Ordinary Differential 
Equations. Waltham, Massachusetts, Blaisdell Publishing 
Company, 1968. 

Also, modern texts in general physics and mechanics usually have 
examples suitable for discussion in a course on differential equa-
tions. 

Another standard undergraduate course--linear algebra--has 
many applications to both physical problems and linear programming. 
In addition to the references listed in connection with the optimiza-
tion outline given later in this report, the following text deserves 
mention : 

Noble, B. Applied Linear Algebra. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc., 1969. 

The following book is a collection of realistic problems suit-
able for undergraduate mathematics courses. The problems are cate-
logued according to the mathematical tools used in their solution. 
Every teacher of freshman and sophomore mathematics should be aware 
of this source of applications. 

Noble, B. Applications of Undergraduate Mathematics in 
Engineering. New York, The Macmillan Company, 1967. 

As an example of the way in which a specific subject matter 
area may be used to provide applications for elementary courses, 
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consider the biological sciences. Population growth, for example, 
can serve as a motivation for the introduction of elementary dif-
ferential equations. Also, population growth problems can be con-
sidered from a probabilistic point of view; indeed, many problems in 
the biological and social sciences admit both deterministic and sto-
chastic models, so it may be wise to introduce probability along 
with calculus in order to be able to study both kinds of models. 
Books are now available which take this approach; for example, 

Chover, J. The Green Book of Calculus. Menlo Park, 
California, W. A. Benjamin, Inc., 1971. 

Stein, Sherman K. Calculus in the First Three Dimensions. 
New York, McGraw-Hill Book Company, 1967. 

The instructor who wishes to include applications to the bio-
logical sciences will find the following references useful. Al-
though some of this material can be treated with little modification 
in lower-division classes, these sources are more suitable for the 
instructor than for the student. 

Gerstenhaber, �. et al. AMS Lectures on Mathematics in the 
Life Sciences: Some Mathematical Problems in Biology, vol. I. 
Providence, Rhode Island, American Mathematical Society, 1968. 
(See particularly the first paper.) 

Pielou, E. C. An Introduction to Mathematical Ecology. 
New York, John Wiley and Sons, Inc., 1969. 

Smith, J. M. Mathematical Ideas in Biology. New York, 
Cambridge University Press, 1968. 

VII. COMMENTS ON SECONDARY SCHOOL TEACHER TRAINING 

Our third recommendation is that every student whose degree 
program includes a substantial number of courses in mathematics 
should take at least one course in applied mathematics. This recom-
mendation clearly should apply to mathematics majors, but the Panel 
wishes to emphasize that every prospective secondary school teacher 
of mathematics should also have at least one course in applied mathe-
matics. The role of applied mathematics in the training of teachers 
of secondary school mathematics has been underscored by the American 
Association for the Advancement of Science* and by other CUPM panels. 
[See Recommendations on Course Content for the Training of Teachers 

* Guidelines and Standards for the Education of Secondary School 
Teachers of Science and Mathematics. Washington, D. C , 
American Association for the Advancement of Science, 1971. 
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of Mathematics, page 158 J The M A S recommendations state that "an 
undergraduate program for secondary school mathematics teachers 
should ... provide substantial experiences with mathematical model 
building so that future teachers will be able to recognize and con-
struct models illustrating applications of mathematics." The CUPM 
Panel on Teacher Training recommends that prospective teachers 
should complete a major in mathematics and that the courses in the 
program should include not only a mixture of motivation, theory, 
and application but also an introduction to model building. Indeed, 
that Panel recommends that a course in applied mathematics is par-
ticularly desirable as an upper-division option for the mathematics 
major. 

The Panel on Applied Mathematics strongly supports these recom-
mendations and emphasizes the following reasons for a secondary 
school teacher of mathematics to have a knowledge of applications: 

1. Appropriate applications provide excellent motivational 
material. 

2. The teacher should be aware that most of the mathematics en-
countered in the secondary school has its origins in problems 
in the real world, and he should know what these origins are. 

3. The teacher should be aware of the applications of mathematics 
in the social and life sciences as well as in the physical 
sciences. Since mathematical notions are occurring with in-
creasing frequency in elementary texts in the social and life 
sciences, and since it is unlikely that most teachers of these 
subjects have adequate mathematical training to appreciate this 
material, the mathematics teacher may well be called upon to 
serve as a resource person for other teachers. 

4. Carefully selected applications may aid significantly in de-
veloping the student�s ability to recognize familiar proc-
esses which occur in complex situations. 

Further discussion of these and other ideas can be found in refer-
ences [E] and [P] at the end of this section. 

We make the following recommendations: 

1. In those courses of the basic curriculum which are taken by 
substantial numbers of prospective secondary school teachers 
(viz., Mathematics 1, 2, 3, 4 and 2P of Commentary on A 
General Curriculum in Mathematics for Colleges (CGCMC)), appli-
cations of the subject to problems arising outside mathematics 
should receive more attention than is generally given now. 

2. Each prospective teacher should be strongly encouraged to take 
one of the courses proposed in Section III of this report or a 
course in applied mathematics designed especially for secondary 
school teachers. Sample materials appropriate for an applica-
tions-oriented course for teachers include [�], [Po], and [S], 
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VIII. RECOMMENDATIONS CONCERNING A CONCENTRATION IN APPLIED 
MATHEMATICS 

The fourth recommendation of the Panel is that an undergraduate 
concentration in applied mathematics should be offered if the re-
sources of the college permit. In many institutions there are stu-
dents who desire such a program. These students should take some 
courses in model building such as those described in Section III, 
and they should be trained in mathematical topics useful in applica-
tions. We are concerned both that the training of the students 
properly reflect the changes taking place in applied mathematics and 
that a department of mathematics be able to begin implementation of 
our recommendations immediately with a relatively small change in 
cours.e offerings. For these reasons our recommendations center 
around courses of the type we have already described and courses in 
various mathematical techniques which are common in many colleges. 

A student interested in a concentration in applied mathematics 
should take three courses in calculus (Mathematics 1, 2, 4 of CGCMC) 
and a course in linear algebra (Mathematics 3 of CGCMC). (For those 
who notice the omission of differential equations, we point out that 
Mathematics 2 of CGCMC contains an introduction to differential equa-
tions.) To insure training and practice in modeling, he should take 
at least one and preferably two of the new courses described in this 
report. A student who has a particular area to which he wishes to 
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apply his mathematics should select courses in mathematical topics 
which are useful in that area as well as courses in the field of 
application which utilize significant mathematics. The topics sug-
gested below can be organized into courses in various ways. How-
ever, we do recommend that applications be introduced in these 
courses, and we feel that the comments made in Section VI on appli-
cations in the freshman and sophomore courses are particularly appro-
priate here. 

A student who is interested in applications to the physical 
sciences or in some areas of life sciences (e.g., ecology) should 
take a physical science version of an applied mathematics course 
such as the one in fluid mechanics outlined in this report. His 
further mathematics courses should include as many of the following 
topics as possible: probability theory; elementary partial differen-
tial equations (some of this is already contained in the fluid 
mechanics course); topics in ordinary differential equations such as 
asymptotic solutions, stability, and periodic solutions; boundary 
value problems (including Fourier series); computer-oriented topics 
from numerical analysis such as those which emphasize numerical 
solutions of ordinary differential equations, numerical linear alge-
bra, solution of nonlinear equations, or numerical quadrature. 

A student interested in applications to business and social 
sciences should take courses such as the optimization course and the 
graph theory course outlined in this report. His further mathematics 
course work should include as many topics as possible from the fol-
lowing: probability theory and applications as described in the 
report of the CUPM Panel on Statistics, Preparation for Graduate 
Work in Statistics; statistics as described in the same document; 
computational linear algebra. 

Furthermore, because much work in applied mathematics involves 
computations, approximations, and estimates, it is clear that stu-
dents concentrating in applied mathematics should have training in 
the use of computers. Beyond increasing computational power, a 
knowledge of the uses of computers can provide a new perspective for 
formulating and analyzing problems of applied mathematics. Conse-
quently, the Panel strongly recommends that the following phases of 
computer experience be included in the program of every student of 
applied mathematics: 

1. Computer programming. The student should have sufficient 
familiarity with a programming language to be able to use 
computer facilities in ways that are appropriate for his 
mathematical course work. 

2. Computational mathematics. The approximations, estimations, 
algorithms, and programming necessary to derive numerical 
solutions of mathematical questions should be presented. 

3. Training and experience in the use of a computer at the vari-
ous stages of solving a problem in applied mathematics. The 

720 



Student should have experience in using the computer to 
organize large quantities of numerical data and to simulate 
complicated processes. 

IX. COURSE OUTLINES 

To exemplify the kinds of courses recommended in Section III, 
the Panel has constructed three course outlines. These courses do 
not deal merely with mathematical topics; they are courses in which 
the momentum comes from real situations. In particular, stress 
should be placed on model building and on interpretation of mathe-
matical results in the original nonmathematical situation. 

These outlines are not offered as perfect models of the kinds 
of courses we recommend. Rather, they represent our present best 
efforts to construct courses with these new emphases. We hope that 
they will produce a thoughtful response in the form of even better 
outlines for applied mathematics courses. 

It is essential that these outlines be read with the recom-
mendations of Section IV in mind. Also, the reader should have in 
hand one or two of the primary references in order to find examples 
of the kind of treatment we are suggesting. 

In reading these outlines, in teaching these courses, or in 
constructing other courses along the lines of our recommendations, 
instructors should strive to stay well between the extremes of: 
(a) a course about mathematical methods whose reference to science 
consists mainly of assigning appropriate names to problems already 
completely formulated mathematically, and (b) a kind of survey of 
mathematical models in which only trivial mathematical development 
of the models is carried out. 

The course in optimization was planned as a one-quarter course, 
with additional material in the sections marked * bringing the 
total to a one-semester course. The courses in graph theory and 
combinatorics and in fluid mechanics were designed as one-semester 
courses. 

The number of lectures specified indicates the relative em-
phasis we have in mind for the various topics and serves as an 
actual time estimate for a well-prepared class. The Panel appre-
ciates the fact that some instructors will find these time estimates 
somewhat unsuitable (for instance, they do not take into account the 
pursuit of finer points or the review of prerequisite material) and 
will find it necessary to make modifications in the courses for their 
classes. The Panel was tempted to construct less ambitious outlines 
but decided against this, because it felt that a prospective 
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instructor would be helped by having more examples of the treatment 
we recommend rather than fewer. Nonetheless, a valuable course can 
be constructed by choosing a few of the topics listed and treating 
them carefully and thoroughly. Furthermore, if the students become 
actively engaged in the model building activity, then the time 
estimates given are not appropriate. In any case, we encourage in-
structors to engage in open-ended discussions with class participa-
tion in the modeling aspect of the course and, if necessary, to 
restrict the subject matter content of the course in order to accom-
modate this. 

IX.1. OPTIMIZATION OPTION 

This course was designed to provide an introduction to the 
applications of mathematics in the social and management sciences. 
The goals of this course, as stated in Sections III and IV, are a 
study of the role of mathematics as a modeling tool and a study of 
some mathematical notions of proven usefulness in problems arising 
in the social and management sciences. The mathematical content con-
sists of programming and game theory. This selection is a consid-
ered choice, although it is recognized that several other alterna-
tives could serve as well. 

The proposed course can be taught at several levels to fit the 
competencies and interests of the class. In particular, one version 
might be appropriate for freshmen whereas another might be appropri-
ate for upper-class students in the management and social sciences. 
The course outlined here is intended for an average junior-level 
class. The students should have completed the equivalent of two 
semesters of calculus and should have some familiarity with elemen-
tary probability theory. Linear algebra is not included as a pre-
requisite, as the necessary background is developed in the course. 
No specific knowledge of any other discipline is assumed. 

A.bibliography and an appendix, important adjuncts to the 
course coutline, are found after the outline. References to the 
bibliography are enclosed in square brackets [ ], and references to 
the appendix are enclosed in braces { }. The bibliography contains 
a selection of books and other references which have proved useful 
in courses of this sort. Certain references have been designated as 
primary references, and comments have been provided which indicate 
those features of particular interest for an instructor. Most of 
the citations in the course outline are to the primary references. 
The instructor should have at least one of the primary references 
at hand while reading the outline. The appendix contains examples 
of the types of problems which can be studied using the ideas and 
methods of this course. 
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COURSE OUTLINE 

1. Mathematical foundations of model building (4 lectures) 

The real world and abstractions to mathematical systems; axiom 

systems as used in model building. 

The ideas of a mathematical model and model building are intro-

duced by using several examples which can be developed quickly and 

which illustrate applications in several different fields. Typical 

examples might be drawn from business (programming models for re-

source allocation), ecology (linear programming models of pollution 

control), psychology (2- or 3-state Markov chain models for learning), 

and sociology (game theory models for conflict). Assumptions made in 

the construction of these models should be carefully identified. The 

status of empirical "laws" should be discussed: law of gravity, law 

of reflection, law of supply and demand. It should be pointed out 

that all model building requires some essentially arbitrary decisions 

on the part of the person who is constructing the model. For example, 

whether to select a deterministic or a stochastic model is ultimately 

a decision of the investigator. In most instances there is no single 

best model. A model which was constructed to account for observed 

phenomena of one type may not give predictions which agree with other 

observations. The role of approximation and idealization in model 

building is fundamental. Approximations which are made and justified 

for real-world reasons should be distinguished from those whose basis 

is mathematical. Students need practice in making connections be-

tween assumptions about the real world and axioms in a mathematical 

system. Some of the examples should bring out the fact that an im-

portant (and frequently difficult) part of model building is asking 

the right question and viewing the real world problem from the right 

perspective. Some attention should be given to the practical prob-

lems of critically evaluating models and estimating parameters. 

Most of the references contain some comments on model building. 

The initial chapters of primary references [D], [KS], and [Sa] have 

more comprehensive discussions. The books [ABC] and [LR] discuss 

modeling from the point of view of the social scientists. 
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2. Linear Programming models (18 lectures) 

a) Construction of linear programming models. (1 lecture) 

A detailed discussion of a real-world situation which can be reason-

ably modeled in terms of a linear program. 

Examples similar to {1] or {2} might be used. Assumptions 

which lead to the axioms of linearity should be explicitly noted and 

adequately justified. It may be that the linear model is meant to 

serve only as a first approximation to a more complicated situation. 

Also, a linear model is frequently realistic only for restricted 

values of some variables. Such questions need to be considered. It 

is desirable to introduce both deterministic and stochastic models 

and later to compare two models of the same situation. The history 

of the development of linear programming during and after World War 

II is interesting. The book [D] is a useful reference for this 

material. 

b) The basic problem. (6 lectures) The algebra and geometry 

of systems of linear inequalities in R n. Matrix and vector notation 

and elementary linear algebra. Systems of linear equations and their 

application to systems of linear inequalities (e.g., if A is an 

m � � matrix and b � R m (b � 0), then there exists � � R n satis-

fying Ax = b or there exists � � R m satisfying A�v. = 0, 

k-� * 0). 

The notion of duality and the fundamental theorem should be 

introduced and illustrated. Consider complementary slackness and 

its economic interpretation. Selections from the primary references 

[D], [Ga], [SpT], and [W] provide appropriate sources. 

* Proof of the fundamental duality theorem. 

c) Algorithms: the simplex method. (6 lectures) 

Much of the usefulness of linear programming models rests on 

the fact that the resulting mathematical problems can be efficiently 

solved. Accordingly, it is important to give some attention to com-

putation, although only a bare introduction is proposed here. The 

method can be introduced as a sequence of replacement operations 

similar to a method for solving systems of linear equations. Alge-

braic and economic considerations can be used to describe and moti-

vate the method. The concept of degeneracy arises naturally, but a 
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complete discussion of this idea is beyond the scope of the course. 

Larger and more realistic problems should be solved, and students 

with computer competence should be encouraged to use it. The refer-

ences are the same as those cited in b). 

* Further remarks on degeneracy. 

* A proof of the convergence of the simplex algorithm, 

d) Refined models: linear programming and uncertainty. 

(5 lectures) 

These models should be introduced by discussing the inadequacy 

of deterministic models for certain problems. One example is the 

allocation of aircraft to routes (this is discussed in Chapter 28 of 

[D]). There is no single formulation for stochastic models, as for 

deterministic ones, and there is little general theory. However, 

this is an important modeling technique which serves to demonstrate 

how models can be refined to take account of additional information. 

Examples can be given which show that one is not usually justified 

in simply substituting expected values for coefficients which are 

actually random variables. The basic problem is to formulate the 

stochastic model in such a way that relevant information can be 

obtained by studying an ordinary deterministic model. Chance con-

strained programming provides an interesting special case. Primary 

references [D] and [W] contain this material. 

* Multistage models and dynamic programming. 

* Geometry of the simplex method. 

* Linear models of exchange and production. 

3. Game-theoretic models (10 lectures) 

a) Games and decision-making with uncertainty models for 

systems involving opposing interests. (3 lectures) The role of 

games as a modeling technique in the social sciences. The basic 

assumption of rational behavior and its validity. 

Introduce utility theory, in both its qualitative and quanti-

tative aspects. Consider individual decision-making under uncertainty 

and compare this to games. Discuss examples and, in particular, the 

relevance of a mathematical theory of games for the real world. The 

basic reference [LR] is useful here. Both [LR] and [BN] discuss 
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game theory from the social scientist�s point of view. 

b) Games with two sets of opposing interests. (3 lectures) 

Two-person zero-sum matrix games and the connection between such 

games and linear programming. 

Although such games are of limited use in applications, they 

provide a convenient vehicle for introducing basic notions of 

strategy and payoff. The fundamental (minimax) theorem of two-person 

zero-sum games. In primary references [D] and [Ga] this material is 

closely connected with linear programming. The discussion in [LR] 

is more comprehensive, and the notions of extensive and normal forms 

for games are introduced. 

c) Nonzero-sum games. (3 lectures) 

Games of the "prisoner�s dilemma" type are of particular inter-

est to the social scientist and can be used to illustrate the dif-

ficulties which arise in more complex models. The theory for such 

games is not nearly so well developed as for the games of b ) , but 

the study should bring out many of the questions that arise in 

mathematical work in the social sciences. Primary reference [LR] 

contains some of this material; more detailed expositions can be 

found in [BN] and, among the additional references, in [R]. 

d) �-person games. (1 lecture) 

There is a qualitative difference between two-person situations 

and those involving three or more independent interests. Thus, there 

are new difficulties which arise in modeling three-interest conflict 

situations. The notion of a "solution" to such games requires care-

ful analysis. The role of bargaining and coalitions is important in 

such models. See primary reference [LR]. 

* Games of timing. Reference [Dr] is especially complete on 

this topic. 

* Two-person cooperative games. 

References 

A bibliography consisting of several hundred items on the 
topics listed in the course outline could easily be compiled. Thus, 
with some exceptions, the list of references is restricted to those 
sources specifically cited in the course outline. Several of the 
books listed here contain extensive bibliographies. The books given 
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extended annotation are, with one exception, examples of writing 
which reflect the spirit of the course. The exception [0] is a 
mathematics textbook which presents some of these notions from a 
purely mathematical point of view. Critical reviews are indicated 
according to the following scheme: AMM, American Mathematical 
Monthly; MR, Mathematical Reviews; OR, Operations Research; and SR, 
SIAM Review. Also, each reference has been broadly classified 
according to whether it is primarily concerned with the mathematical 
content (M) or applications (A), and whether it is most useful for 
the student (S) or instructor (I). Several of the other references 
have been given a one-line annotation where useful. 

Primary References 

[D] Dantzig, George B. Linear Programming and Extensions. 
Princeton, New Jersey, Princton University Press, 1963, 
625 p. AMM 72, p. 332; MR 34 #1073; OR 14, p. 734. 
(M and A, S) A textbook on mathematical programming 
written by one of the founders of the field. It includes 
chapters on the history of the subject and on model formu-
lation. Chapter 3 contains five detailed examples. 
Standard topics in linear programming, extensions to inte-
ger, stochastic, and nonlinear programming, and many appli-
cations. Connection between programming and matrix games 
is included. Basic linear algebra is covered rapidly, and 
some probability is needed for the chapters on stochastic 
programming and games. No other prerequisites. Last two 
chapters contain detailed examples of formulation and study 
of models for nutrition and transportation. Extensive 
bibliography, many examples, and exercises. 

[Dr] Dresher, Melvin. Games of Strategy: Theory and Applications. 
Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1961, 
184 p. AMM 69, p. 243; MR 22 #13310; OR 10, p. 272. 
(M and A, S) The basic theory of two-person zero-sum games 
is developed in the first three chapters independent of its 
connection with linear programming. The remaining chapters 
include methods of solution, extensions to games with an 
infinite number of strategies, and games of timing. Basic 
calculus and probability are required. Several thoroughly 
discussed examples and applications, particularly to mili-
tary problems. No exercises. 

[Ga] Gale, David. The Theory of Linear Economic Models. New 
York, McGraw-Hill Book Company, 1960, 330 p. MR 22 #6599. 
(M and A, S) Theoretically oriented presentation of linear 
programming and game theory with emphasis on the use of 
these concepts in developing linear economic models. An 
advanced undergraduate textbook with no specific mathematics 
prerequisites, but almost everything is proved and several 
proofs require considerable sophistication. Chapter 2 pro-
vides a self-contained study of linear algebra including 
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linear inequalities. The approach is both algebraic and 
geometrical throughout. Validity of the models is not 
discussed. Exercises are a definite asset; they vary from 
routine to nontrivial extensions of the theory. 

Kaufmann, A. and Faure, R. Introduction to Operations 
Research. New York, Academic Press, Inc., 1968. (A, S ) 
Collection of 18 chapters, each a completely worked-out 
independent example, generally written in anecdotal form. 
Few specific mathematics prerequisites; calculus and finite 
mathematics certainly sufficient. Basic ideas thoroughly 
explained but involved mathematical arguments are avoided. 
Applications are mostly to business situations and problems 
have an aura of reality. 

[KS] Kemeny, J. C. and Snell, J. L. Mathematical Models in the 
Social Sciences. Waltham, Massachusetts, Blaisdell Pub-
lishing Company, 1962, 145 p. AMM 71, p. 576; MR 25 #3797. 
(A, S) Collection of eight independent examples of the 
construction and study of mathematical models drawn from 
several scientific disciplines. Stated mathematics pre-
requisites are one year of calculus and a good course in 
finite mathematics, but most students will require more 
background. No specific social science knowledge is assumed. 
There is an introductory chapter on the methodology of mathe-
matical model building. Exercises and projects at the end 
of each chapter. 

[LR] Luce, R. D. and Raiffa, H. Games and Decisions. New York, 
John Wiley and Sons, Inc., 1957, 509 p. MR 19, p. 373. 
(A, S) This is more a book about the concepts and results 
of game theory than a mathematics textbook; there are al-
most no proofs. Modest prerequisites: some knowledge of 
finite mathematics plus a bent for mathematical thinking. 
Thoroughly motivated discussions of the heuristic considera-
tions which precede the mathematical formulation of the 
problems. These discussions are colored by a social science 
point of view. The introductory chapters consider the role 
of game theory in the social sciences and give a relatively 
complete discussion of utility theory including an axio-
matic treatment. Extensive bibliography. No exercises. 

[0] Owen, Guillermo. Game Theory. Philadelphia, Pennsylvania, 
W. B. Saunders Company, 1968, 228 p. MR 36 # 7420. (�, I) 
Mathematics textbook on two-person (chapters 1-5) and n-
person (chapters 6-10) game theory, including those aspects 
of linear programming which are important for the study. 
Assumes basic calculus and probability. Convexity used but 
developed in an appendix. Chapters on infinite games and 
utility theory. Written in Definition-Theorem-Proof style. 
Many exercises of varying difficulty. Few applications. 

728 



[Sa] Saaty, Thomas L. Mathematical Methods of Operations 
Research. New York, McGraw-Hill Book Company, 1959, 421 p. 
AMM 68, p. 188; MR 21 #1223. (� and A, I) A textbook on 
operations research consisting of three major units. Part 
I contains chapters on the scientific method, mathematical 
existence and proofs, and some methods of model formation. 
The first chapter is particularly relevant for this course. 
Part II includes classical optimization techniques as well 
as linear programming and game theory. Part III is devoted 
to probability theory and its applications, particularly to 
queueing. There are many examples with convenient refer-
ences to the literature, and a large bibliography accom-
panies each chapter. Assumes basic calculus and matrix 
theory. Some sections require multidimensional calculus. 
No exercises. 

Simonnard, Michele. Linear Programming (translated by 
William S. Jewell). Englewood Cliffs, New Jersey, Prentice-
Hall, Inc., 1966, 430 p. MR 34 #1079, original French 
edition MR 25 #1952; SR 9, p. 608. (�, I) A textbook on 
linear programming covering the general theory (chapters 
1-7), integer programming (chapters 8-9), and the trans-
portation problem (chapters 11-15). The connection of lin-
ear programming with game theory and extensions to stochas-
tic and dynamic programming are omitted. The book is 
oriented in a practical direction, and emphasis is on effec-
tive methods. It contains references to the literature, 
and there is an extensive bibliography but no exercises. 
Appendices on linear algebra, convex polyhedra, and graphs. 
No specific prerequisites. 

[SpT] Spivey, W. A. and Thrall, R. M. Linear Optimization. New 
York, Holt, Rinehart and Winston, Inc., 1970, 530 p. (M and 
A, S) A mathematics textbook on linear programming with 
emphasis on the development of the simplex algorithm. The 
approach is a spiral one, and most topics are developed at 
several levels of difficulty. Chapter 2 discusses modeling 
and presents several examples. There is a chapter on game 
theory. The necessary background material on foundations, 
sets, functions, and linear algebra is given in appendices. 
Many exercises. Suitable as a text for students with 
limited backgrounds. 

[W] Wagner, �. M. Principles of Management Science with Appli-
cations to Executive Decisions. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc., 1970, 562 p. (A, S) A text-
book of mathematical model building and optimization in a 
business setting. Prerequisites are a year of calculus and 
finite mathematics. No knowledge of business administra-
tion or economics is assumed. Emphasis on linear, dynamic, 
and stochastic programming with chapters on waiting-line 
models and computer simulation. Broad selection of exer-
cises ranging from computational to "Form a mathematical 
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model for ... ." Some proofs, but many results are provided 
only heuristic justification. 

Additional References 

Ackoff, Russell L., with the collaboration of S. K. Gupta 
and J. S. Minas. Scientific Method: Optimizing Applied 
Research Decisions. New York, John Wiley and Sons, Inc., 
1962. AMM 72, p. 216; OR 11, p. 157. The philosophy and 
formulation of mathematical models, including utility 
theory. 

[ABC] Atkinson, R. C ; Bower, G. H. ; Crothers, E. J. An Intro-
duction to Mathematical Learning Theory. New York, John 
Wiley and Sons, Inc., 1965. 

Bellman, Richard, ed. Mathematical Optimization Techniques. 
Berkeley, California, University of California Press, 1963. 

Blalock, �. M. Theory Construction, from Verbal to Mathe-
matical Formulations. Englewood Cliffs, New Jersey, 
Prentice-Hall, Inc., 1969. AMM 77, p. 216. 

[BN] Buchler, I. R. and Nutini, H. G., eds. Game Theory in 
the Behavioral Sciences. Pittsburgh, Pennsylvania, 
University of Pittsburgh Press, 1969. 

Charnes, Abraham and Cooper, W. W. Management Models and 
Industrial Applications of Linear Programming, vol. I, II. 
New York, John Wiley and Sons, Inc., 1961. MR 28 #1003a,b. 

Dantzig, George B. and Veinott, A. F., eds. Mathematics in 
the Decision Sciences, Parts 1, 2. (Lectures in Applied 
Mathematics, vol. XI, XII) Providence, Rhode Island, 
American Mathematical Society, 1968. 

Duffin, R. J.; Peterson, E. L.; Zener, C. Geometric 
Programming. New York, John Wiley and Sons, Inc., 1967. 
AMM 77, p. 1024; SR 10, p. 235. 

Freudenthal, �., ed. The Concept and the Role of the Model 
in Mathematics and Natural and Social Sciences. New York, 
Gordon and Breach, Science Publishers, Inc., 1961. 

Gale, D.; Kuhn, �. W.; Tucker, A. W. "Linear programming 
and the theory of games." Cowles Commission for Research 
in Economics, Monograph #13. New York, John Wiley and Sons, 
Inc., 1951. 

Goldman, A. J. and Tucker, A. W. "Theory of linear program-
ming." Annals of Mathematics Studies No. 38. Princeton, 
New Jersey, Princeton University Press, 1956, pp. 53-98. 
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Hadley, G. Linear Programming. Reading, Massachusetts, 
Addison-Wesley Publishing Company, Inc., 1962. AMM 71, 
p. 815; SR 6, p. 191. 

Rapoport, Anatol. Fights, Games, and Debates. Ann Arbor, 
Michigan, University of Michigan Press, 1960. 

Rapoport, Anatol. Two-Person Game Theory: The Essential 
Ideas• Ann Arbor, Michigan, University of Michigan Press, 
1966. MR 35 #1356. Nonmathematical exposition of basic 
ideas of two-person game theory. 

[R] Rapoport, Anatol and Chammah, A. M. Prisoner�s Dilemma; 
a Study in Conflict and Cooperation. Ann Arbor, Michigan, 
University of Michigan Press, 1965. 

Shubik, Martin, ed. Game Theory and Related Approaches to 
Social Behavior. New York, John Wiley and Sons, Inc., 1964. 
OR 12, p. 637. Collection of articles on the applications 
of game theory in the social sciences. 

Spivey, W. A. Linear Programming: An Introduction. New 
York, The Macmillan Company, 1963. 

Vajda, S. Mathematical Programming. Reading, Massachusetts, 
Addison-Wesley Publishing Company, Inc., 1961. 

Ventzel, E. S. Lectures on Game Theory. New York, Gordon 
and Breach, Science Publishers, Inc., 1961. 

Wilder, R. L. Introduction to the Foundations of Mathe-
matics , 2nd ed. New York, John Wiley and Sons, Inc., 1965. 

Williams, J. D. The Compleat Strategyst, rev. ed. New 
York, McGraw-Hill Book Company, 1966. Intended for readers 
with no background in mathematics, this book develops the 
basic ideas of game theory through a variety of clever 
examples. 

Appendix 

The problems given here are indicative of the sorts of ques-
tions that can be studied using the techniques and ideas of this 
course. Problems similar to these should be approached in the spirit 
of Section 1 of the outline, where the question is phrased in real-
world terms and a mathematical model is constructed. In such a dis-
cussion, close attention should be paid to assumptions, both explicit 
and tacit. The student should be made aware of the strengths and 
shortcomings of the resulting models. 
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1. Linear programming 

Here are two linear optimization problems, one concerning diet 
and another concerning transportation, posed in a business context. 
The first is given in considerable detail, while the second is 
merely sketched. Possible extensions are indicated. 

1.1 This problem, the determination of an adequate diet of 

minimum cost, was one of the first studied using a linear program-

ming model. Detailed comments on the formulation of a mathematical 

model may be found in [D] and in the original paper of G. J. Stigler 

("The cost of subsistence," J. of Farm Econ.. 27 (1945), pp. 303-

314). The following is a linear programming model. 

Consider � different types of foods (apples, cheese, onions, 

peanut butter, etc.) and m nutrients (proteins, iron, vitamin A, 

ascorbic acid, etc.). In the original problem of Stigler, � = 77 

and m = 9. Suppose that one can determine the daily allowance of 

each nutrient required by an individual and the nutrient values of 

the foods per dollar of expenditure. (These assumptions are at best 

approximations and should be presented as such.) Let 

a. . = amount of nutrient i obtained from an expenditure of 

one dollar on food j, 

b^ = daily requirement of nutrient i, 

x. = number of dollars spent on food j. 

With these definitions the condition that the diet provide at least 

the daily requirement of each nutrient becomes 

The problem of finding an adequate diet of least cost is then the 

problem of minimizing � x. subject to the above inequalities. 
j=l J 

1.2 Suppose an oil company has m producing wells, � re-

fineries, and pipelines connecting certain pairs of wells and refin-

eries. Given the output at each well, the demand at each refinery, 

and the cost of transporting one barrel of oil through each pipe-

line, determine how the production of the wells should be allocated 

among refineries in order to minimize transportation costs. 

1.3 In 1.2 consider the case that only allocations in whole 

barrels are permitted. Also consider the case where supply, demand, 

� 

j = 

i = 1, 2 m. 
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or other parameters are not known exactly, but instead some random 

behavior for each is assumed. 

2. Game theory 

Here are two examples involving decision making under uncer-
tainty. The first example can be completely analyzed in terms of 
the elementary theory; the second cannot, but it illustrates a game 
that occurs frequently in the social sciences. 

2.1 Two political parties compete for public favor by stating 

their views in � different media, labeled 1, ..., n. Each party 

has finite resources and must distribute its expenditures among the 

various media without knowing the intentions of the opposing party. 

The payoff (a numerical measurement of the gain of one party or, 

equivalently, the loss of the other) resulting from use of medium i 

is given by a function p(i,x,y) depending only on the medium and 

the resources � and y committed to that medium by the opposing 

parties. The payoff for the entire game is the sum of the payoffs 

in individual media. Given a knowledge of the resources and payoffs, 

how should each political party allocate its expenditures? 

The following is a very simple model of a social situation in-
volving conflicting interests. Models of this sort and their refine-
ments are currently being studied by mathematically oriented social 
scientists. Although these models are only rough approximations to 
very complex situations, the results obtained from them are far from 
completely understood from a psychological and sociological point of 
view. 

2.2 In an isolated and self-contained environment two retail 

stores compete for the local soft drink market. Each retailer 

handles only one brand of soda pop, different from the brand handled 

by the other retailer, and the two brands are identical in quality. 

In ordinary circumstances each retailer pays 70� for a carton of pop 

which he sells for $1. However, the soft drink distributors realize 

that from time to time price competition will develop, and they agree 

to sell their products to the retailer at 60c per carton provided 

that it is offered at retail for 80� per carton. Every Saturday each 

retailer must decide independently what his price for soda pop will 

be for the following week. Each has available the following informa-

tion concerning demands: At the usual price they will each sell 1,000 
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cartons per week. If one retailer discounts while the other does 

not, then the discount store will sell 2,000 cartons while the store 

maintaining the usual price will sell only 200 cartons. If both 

stores sell at the discount price, then the total demand will be for 

2,300 cartons and each will sell half that amount. Supposing that 

this decision must be made each week, how should the store managers 

proceed? 

IX.2 GRAPH THEORY AND COMBINATORICS OPTION 

This is an outline for a one-semester course designed to ac-
quaint students with some fundamental concepts, results, and applica-
tions of graph theory and combinatorial mathematics. Only high 
school mathematics is required, but the student needs to be thor-
oughly familiar with this material. It should be kept in mind that 
this course represents just one of a number of (essentially equiva-
lent) possible courses and is intended to offer the student not only 
specific facts and applications but also a feeling for the underlying 
philosophy of combinatorial mathematics. 

A bibliography and an appendix follow the course outline. Ref-
erences to the bibliography are in brackets [ ] , and references to 
the appendix are in braces { }. The bibliography contains references 
to books and other sources, together with comments about the primary 
references. The appendix contains examples of problems which can be 
treated using the ideas and methods of this course. 

COURSE OUTLINE 

1. Mathematical foundations of model building (4 lectures) 

Real models, mathematical models, axiom systems as used in 

model building. (For discussion, see Section 1 of the course out-

line for the Optimization Option.) 

2. Graph theory (18-20 lectures) 

a) Basic concepts: relations, isomorphism, adjacency matrix, 

connectedness, trees, directed graphs, Euler and Hamiltonian cir-

cuits. (3 lectures) 

In this section the student is introduced to a number of ele-

mentary (but fundamental) ideas of graph theory. He should be given 
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as soon as possible the opportunity to formulate and discuss various 

models of real situations in these terms. [BS] is an especially good 

source of appropriate, relatively simple examples. 

This material is available from numerous sources. The presenta-

tion in [L] is suitable here; more technical treatments are given in 

[Harl] and [01], while that of [02] is probably too elementary. 

Other sources are [Bel] and (1, 2}. 

b) Circuits, cutsets, spanning trees, incidence matrices, 

vector spaces associated with a graph, independent circuits and cut-

sets, orthogonality of circuit and cutset subspaces. (5-7 lectures) 

The linear algebra required for this section is minimal and, if 

necessary, could be developed in several hours. The concepts covered 

here lead directly to one of the more important applications of graph 

theory, namely, electrical network analysis. This material is cov-

ered rather briefly in [L] with no applications, very compactly in 

[Bee], more completely in [BS], and comprehensively in [SR] (on which 

an entire course could easily be based). [SR] is also an excellent 

source of applications of these topics. 

c) Flows in networks, max-flow min-cut theorem, Ford-Fulkerson 

algorithm, integrity theorem, applications (e.g., linear programming, 

Kb�nig-Egervary theorem, multicommodity flows, marriage theorem). 

(4 lectures) 

An appropriate discussion of this material occurs in [L] and in 

selected passages of [BS]. An exhaustive treatment occurs in [FF], 

which is also a good source of examples and applications ([3] is 

typical). 

This section allows for a wide selection of applications for 

which these techniques are appropriate. Examples of multicommodity 

flow problems might be given here in order to illustrate the dif-

ficulties often encountered in more complex models. 

d) Planarity, Kuratowski�s theorem, duality, chromatic graphs, 

matching theory. (6 lectures) 

The concepts presented in this section allow the student to 

become familiar with some slightly more advanced material in graph 

theory. These can be used to model more complex situations, e.g., 

[4] and [5} (cf. [Si], [Ben]). 
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This material may be found in nearly all standard graph theory 

texts (e.g., [01], [Bel], [Harl], or briefly in [L]). Typical appli-

cations occur in [BS]. Example {4} gives a nice application of some 

of these subjects (cf. [Si]). These topics are perhaps not so funda-

mental as the preceding and may be omitted if time pressure is a 

problem. 

3. Combinatorial mathematics (19-22 lectures) 

a) Basic tools: permutations, combinations, generating func-

tions, partitions, binomial coefficients, recurrence relations, dif-

ference equations, inclusion-exclusion. (10-12 lectures) 

The concepts introduced in this section are fundamental and 

should be part of every applied mathematician�s stock in trade. 

Typical applications of this material are literally too numerous to 

be singled out. See, e.g., [F], [Rio], [L], [Bee], [Sa], [Kn], [Pe]. 

Two standard sources are the initial chapters of [F] and [Rio], 

but these might tax some students a bit. [L] is easier to read but 

says less. Crisp discussions of most of the material are given in 

[Ry]. 

b) Somewhat more advanced material. Systems of distinct 

representatives, M�bius inversion, theorems of Ramsey type, block 

designs, Hadamard matrices. (3-4 lectures) 

It is important for the student to see models which use some-

what more sophisticated concepts from combinatorial mathematics. 

Good examples of this are the studies of the dimer problem and the 

Ising model presented in [Pe] and the analysis of telephone switch-

ing networks in [Ben]. The topics listed in this section serve to 

introduce the student to more advanced ideas. (Of course, other 

similar topics listed in the available references may be substituted 

at the discretion of the instructor.) These subjects are covered 

adequately (although perhaps somewhat disjointly) in [Hal], The 

treatment in [Ry] would be suitable for the better students. The 

relevant sections of [Hal] are suitable if more emphasis on block 

designs is desired. Historically, block designs arose primarily in 

the design of statistical experiments. Recently, these concepts 

have been useful in a variety of fields, e.g., coding theory [Berl], 

spectroscopy [SFP], and data compression. (Also see [5}.) 
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c) Polya counting theory: equivalence classes, (permutation) 

groups, cycle structure, Burnsides1 theorem, Polya�s theorem, gen-

eralizations. (6 lectures) 

Historically, this subject arose from Polya1s work on enumer-

ating chemical isomers ([Po]; see also {6}). Typical applications 

include enumeration of Boolean functions [Sie] and enumeration of 

random walks on lattices [Pe]. Other examples are also available in 

[L], [Be2], [Rio]. 

[L] is appropriate here if only minimal depth is required. 

[Bee, Ch.5] gives a more detailed picture. The presentation of [Rio] 

has a reputation of being somewhat hard to read. Polya counting 

theory offers students an opportunity to apply some elementary con-

cepts from group theory to their models. Of course, several addi-

tional lectures may be needed to prepare students who have had no 

exposure to the concept of an equivalence relation or a group. Numer-

ous examples and applications of this material are available, e.g., 

[Sie], [L], [Be2], [Rio]. 

It should be kept in mind that the particular choice of models 

and results presented is not critical. The underlying object here is 

to develop in the student a feeling for the formulation and analysis 

of various models using the ideas of combinatorial mathematics. 

Many of the topics covered involve techniques for which effi-

cient algorithms are known (e.g., network flows, matching, connec-

tivity, and planarity). It would be quite appropriate for students 

to implement these algorithms on computers if facilities are avail-

able. This very effectively illustrates the savings in time and 

money achieved by using an efficient algorithm rather than, for ex-

ample, an enumerative search. 

References 

In the list of references below, there is no attempt to be ex-
haustive. Each primary reference is accompanied by a short descrip-
tion and a suggestion whether it is of interest mainly to the in-
structor (I) or to a student in the k*-*1 year of college (S-k). 
References to Mathematical Reviews (MR) are given. 
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Append ix 

1. Organization X has offices located in a number of cities. 

It wishes to establish a communication network among all its loca-

tions so that any two offices may communicate with one another, pos-

sibly by going through some of the other locations. Furthermore, it 

is desired to minimize the total length (cost) of the network. How 

should the cities be connected? If one is allowed to locate switch-

ing junctions arbitrarily rather than just at the office locations, 

then how can a minimal network be obtained? (See [Kr] and [GP].) 

2. A (traveling) salesman has a fixed set of locations (farm 

houses) that he is required to visit. He leaves from his home 

office, travels to each location once in some order, and then returns. 

In what order should he visit the locations in order to minimize his 

total distance, cost, time (energy)? (See [Li] and [KL].) 

3. An oil company has a number of oil wells (sources) and a 

number of refineries, customers, etc. (sinks), all connected by some 

intricate network of pipelines. The portions of pipeline between 

various points of the network have different (known) capacities. 

How can one route the oil through the system in order to maximize 

the flow of oil to the sinks? What if the direction of flow in 

certain pipelines is restricted? What if there are several grades 

of oil available in varying amounts from the sources and it is 

desired to maximize the value of the mixture received at the sinks? 

(See [FF].) 
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4. Certain integrated circuits can be made by depositing very 

thin metallic and dielectric films in suitable patterns on an insu-

lating substrate. Ordinarily printed circuits are strictly planar; 

crossovers are made only by leading one of the conductors entirely 

out of the plane of the circuit. In the thin film technique, how-

ever, conductors can be separated by thin insulating layers within 

the plane of the circuit, causing a nonzero capacitance between the 

crossing conductors. Thus, crossovers can be permitted, provided 

this nonzero capacitance between the crossing conductors is per-

mitted. The general problem is to determine which circuits can be 

realized by some suitable thin film circuit. This leads to a number 

of interesting questions in graph theory, one of which is the follow-

ing: Given a set S = {s^,...,s ] of arcs or "strings," what are 

necessary and sufficient conditions on a set � of pairs [s ,s.} 

so that there is some configuration of the s^ in the plane 

for which s and s intersect if and only if [s.,s.] belongs 
� j 1 � JJ 

to P? (See [Si].) 

5. The Hall theorem on systems of distinct representatives 

occurs in a variety of applications. Several of these are: 

a) In a certain company, � employees are available to fill 

� positions, each employee being qualified to fill one or more of 

these jobs. When can each employee be assigned to a job for which 

he is qualified? (See [Bel].) 

b. An m � � chessboard has a certain subset of its squares 

cut out. When is it possible to place a collection of 2 X 1 

"dominoes" on this board so that each of its squares is covered 

exactly once? (See [Pe].) 

c) A telephone switching network connecting mr inlets with 

mr outlets is made up of three stages as indicated in the figure. 

(See [Ben].) 
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Each square box represents a switching unit for which any of the 

possible permutations of connecting its local inlets to its local 

outlets is possible. The problem is to show that this network is 

rearrangeable. i.e., given any set of calls in progress and any pair 

of idle terminals, the existing calls can be reassigned new routes 

(if necessary) so as to make it possible to connect the idle pair. 

How is the reassignment made so as to change the minimum number of 

existing calls? (cf. [Ben],) 

d) If there are as many r-element subsets of an �-element set 

as there are k-element subsets, then it is possible to associate with 

each k-element subset a distinct r-element subset which contains it. 

How? 

6. A naphthalene molecule Clf.Hft (See figure on next page.) 
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contains 8 hydrogen atoms which are available for substitution. The 

symmetry group G of the underlying figure 

has order 4 and consists of the identity and three rotations about 

axes which are horizontal, vertical, or coming out of the page. 

Think of this group as just permuting the eight hydrogen atoms. The 
g 

identity fixes them all and has cycle index S^; each of the other 
three permutations moves them in four pairs of two each and contri-4 

butes to the cycle index S^. The cycle index of the group (con-

sidered as acting only on the hydrogen atoms) is thus 

Now suppose we replace k of the hydrogen atoms by chlorine atoms 

and r of the hydrogen atoms by bromine atoms. How many different 

molecules can be formed? This is exactly the kind of question that 

Polya�s theorem answers. 

Answer: In P_(S ,S�) replace S1 by 1 + � + y and S_ 
2 2 k r 

by 1 + � + y . Then the coefficient of � y is the desired 

number. In fact, after making the substitution, we have 

746 



I [(1 + � + y ) 8 + 3(1 + � 2 + y 2 ) 4 ] = 1 + 2x + 2y + 10x2 + 14xy + 10y2 

+ . . . . 

Each term in this series can be interpreted: 1 corresponds to the 

original molecule (no substitution); 2x corresponds to 

� � 

(substituting one CI for an H ) , etc. (For the notation used here, 

see [L] and [Bee]; problems of this type occur in [Pe].) 
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IX.3 FLUID MECHANICS OPTION 

The course described below is based on a view of applied mathe-
matics as a natural science distinguished from other natural sciences 
by a mathematical content that is significant in its own right. 
Fluid mechanics was chosen because it exemplifies applied mathematics 
in this sense: it is important historically, it encompasses many 
interesting physical problems, and it can be taught in the spirit of 
this report. However, to teach such a course at the undergraduate 
level requires special care in order to avoid the two possible ex-
tremes of, on the one hand, pursuing mathematical topics for their 
own sake and, on the other hand, studying physical models which in-
volve only trivial mathematical ideas. 

The approach to the subject proposed here has been selected 
with the audience and our objectives in view. Although this material 
can be taught from a more modern perspective, it would then require 
more sophisticated mathematical techniques and would be feasible 
only with very well prepared undergraduates. Our approach was se-
lected because we feel that it is accessible to a wide audience and 
because it effectively attains our goals. 

The course is intended for seniors. Prerequisites are elemen-
tary courses in calculus, differential equations, linear algebra, and 
physics. A course in advanced calculus or analysis is desirable. 
The student should be familiar, for instance, with the mathematical 
issues involved in the termwise integration of infinite series. This 
course should be valuable in solidifying and extending the student�s 
grasp of areas of analysis and differential equations. The course 
outlined here does not assume prior knowledge of complex analysis, 
partial differential equations, or fluid mechanics. 

A potential instructor of this course is faced with issues not 
present in the preceding outlines. It requires more specialized 
knowledge and would most easily be offered by someone with a back-
ground in applied mathematics. Nevertheless, we feel that the pres-
ent outline is sufficiently detailed so that it can serve as a guide 
to instructors and so that it can encourage teachers to experiment 
with courses in this area. The main point which the instructor must 
keep in mind is that this is to be a course about applied mathematics 
using fluid mechanics as its representative element; it is not a 
course on fluid mechanics alone. 

The main needs of the instructor, in addition to mathematics, 
are a basic knowledge of classical physics, a willingness to read, 
and perhaps above all an interest in nature. Those who are not 
specialists in fluid mechanics will find it particularly important 
to read this outline with one of the references at hand. While there 
are many books on fluid mechanics, there are very few which emphasize 
the point of view which the Panel has taken here. A list of books 
which may be helpful to the teacher is given in section 5 below, with 
brief comments. References to specific sections of some of these 
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books are given for each of the topics in the detailed outline in 
section 4. Unfortunately, there seems to be no book which would be 
completely satisfactory as a text for this kind of a course; the 
book by Prandtl, which includes most of the topics in the outline 
discussed clearly from the physical point of view, is perhaps the 
most appropriate. But the mathematical side of many of these dis-
cussions will require appreciable expansion for the purposes of this 
course; for digressions of a more purely mathematical nature which 
will from time to time be appropriate, one can perhaps rely on the 
general mathematical background of the instructor. 

COURSE OUTLINE 

This course has two main parts, the first of a fairly general 
nature concerned with the mathematical formulation of continuum 
models for fluids and the second dealing with more specific problems 
illustrative of the more important simplified models. In the outline 
each part is broken down into several areas, for each of which some 
remarks in the style of a "catalog description," with some sugges-
tions on the general approach, are given. These remarks are followed 
by a list of topics for each of several lectures on this area, with 
attention drawn to specific sections of the references in which a 
treatment of these topics is given. For definiteness, these specific 
references have been restricted mainly to the books of Prandtl and 
Yih. The format of the references is indicated by this example: 
[P] 11:1.1 means section 1.1 in the second chapter of Prandtl�s book. 

1. Continuum models for fluids 

This part of the course concerns primarily the formulation and 

basic properties of the principal mathematical models used in fluid 

mechanics. Here one can well emphasize the central role of model 

building in applied mathematics and the importance of models which 

are both mathematically self-consistent and capable of being criti-

cally compared with the experimental or observational facts which 

they are supposed to describe. Fluid mechanics is a particularly 

good example to illustrate that a mathematical model can be very 

helpful even though it is in a sense definitely incorrect (e.g. , the 

molecular structure of matter is completely missing from continuum 

models) and that in reality all theoretical science is done in terms 

of models, none of which should be assigned any absolute validity. 

a) The concept of continuous matter as a useful macroscopic 

model of real matter. (2 lectures) Mass and density. Kinematics: 

velocity field and the idea of a "fluid particle" as a theoretical 

concept in the continuum model, not the same thing at all as a mole-
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cule. "Eulerian" and "Lagrangian" variables and the mathematical 

form of the continuum model. The continuity equation. 

Mathematical ideas: flow as a continuous mapping, Jacobians in 

the transformation of multiple integrals, the divergence theorem. 

One might well emphasize here the reverse of the familiar physical 

"proof" of the divergence theorem--the mathematical theorem shows 

that the continuum model is in accord with our intuitive ideas about 

the continuity of matter. 

References. Continuum models for fluids; mass, density, "fluid 

particle," velocity, acceleration: [Y] 1:1,2,3,4 and [P] 11:1.1. 

Continuity equation, divergence theorem, and Jacobians: [Y] 1:5,6 

and [P] 11:1.2. More kinematics: [Y] 1:7,8,9. 

b) Dynamics. (4 lectures) Introduction to the basic ideas 

from particle mechanics (momentum, force, kinetic energy) into the 

continuum model. Pressure and stress. Stress tensor and the momen-

tum equation. Mechanical energy equation. Angular momentum and sym-

metry of the stress tensor in the absence of body torques and "torque-

stresses." 

Mathematical ideas: divergence theorem again, with more vector 

calculus. Tensors as geometric objects. Components of a symmetric 

second-order tensor form a symmetric matrix, hence have real eigen-

values and an orthonormal basis of eigenvectors (principal stresses). 

References. Pressure and stress: [P] 1:1,2,3. Concept of a 

tensor as a geometric object and its representation by components; 

stress tensor of a continuum: [Y] 1:10. Yih�s rather classical and 

formalistic view of tensors might well be given a more geometrical 

and contemporary flavor. Symmetrical second-order tensors, in par-

ticular stress and deformation tensors, relationship between a second-

order tensor and the matrix of its components; application of linear 

algebra; principal stresses and eigenvalues, principal directions, 

etc.: [Y] 1:11,12. Navier-Stokes form of the stress tensor and the 

corresponding fluid equations of motion: [Y] 1:13 and [Y] 11:1,2. 

Conservative body forces and the mechanical energy equation, vortic-

ity equation: [Y] 11:3,4. 

c) Thermodynamics. (3 lectures) The equation of state. In-

ternal energy, heat, and entropy. Heat conduction and the total 
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energy equation. 

In the absence of sufficient background in physics, this part 

may have to be limited mainly to equations of state in the simplest 

cases: incompressible fluids and the isothermal and adiabatic ideal 

gas. However, thermodynamics, where accessible, provides a good 

source of exercises in changing variables, Jacobians, etc., and also 

often illustrates rather well the advantages of a careful mathemati-

cal formulation over a loose intuitive description. 

At this point various examples of hydrostatics problems can 

conveniently be introduced. Two important points to be emphasized 

here (and throughout the course in other contexts) are: i) Hydro-

statics is a "simplified model," relevant not only when there is 

strictly no motion but also a good approximation in appropriate cir-

cumstances (vertical accelerations small compared with that of grav-

ity). One can introduce here the idea of simplifying the model on 

the basis of the smallness of certain dimensionless parameters 

characteristic of the particular case in hand, ii) By discussing 

some problems related to familiar situations, one can help the stu-

dent to form the habit of using mathematics to enhance his perception 

of nature. For example, the hydrostatics of the isothermal and 

adiabatic atmospheres can answer questions like: Is it plausible 

that oxygen should be needed when climbing Mt. Everest? or How 

much colder is it likely to be on the top of some local peak than 

it is at ground level? 

Mathematical ideas: in addition to Jacobians, etc., some 

simple ordinary differential equations. 

References. Review of thermodynamics: [Y] appendix I, pos-

sibly truncated and treated in a mathematically more sophisticated 

manner. Ideal gases: [Y] appendix I and [P] 1:5. Heat or energy 

equation: [Y] 11:8. Applications from hydrostatics: [P] 1:6,7,10. 

2. The more simplified models 

Geometrical or physical parameters needed to specify a problem 

completely lead to characteristic dimensionless parameters (e.g., 

Mach number, Reynolds number) whose smallness or largeness in particu-

lar cases indicate the usefulness of simplified models (e.g., 
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incompressible or inviscid flow). In the discussion of simplified 

models, emphasis should be shared between their general properties 

(e.g., Kelvin�s circulation theorem) and careful consideration of 

the extent to which the simplified model is in fact relevant. In 

particular, the prevalence of nonuniform convergence in going over 

to the simplified model and the kinds of additional considerations 

required in the regions of nonuniformity ("boundary layers") should 

be brought out, at least qualitatively. In assessing relevance, it 

is probably best to include with the general discussion a number of 

applications of the basic models to concrete situations. Simple and 

familiar cases which emphasize the two points mentioned under lc) in 

connection with hydrostatics should be considered where possible. 

a) Ideal irrotational flow and surface waves on water. 

(5 lectures) 

Here there are a number of opportunities for introducing impor-

tant mathematical ideas and techniques, for instance: i) some gen-

eral properties of harmonic functions; ii) solution of boundary value 

problems for Laplace�s equation by superposition of wave solutions 

(i.e., "separation of variables" or use of Fourier representations); 

iii) free waves�phase and group velocity; iv) forced waves, e.g., 

the linear wave-maker problem (radiation condition at infinity, 

Sturm-Liouville equations, and eigenfunction expansions for boundary 

value problems). 

If the students have not seen a proof of the Fourier series 

theorem, the instructor might like to insert a lecture on this topic, 

proving the theorem for piecewise continuously differentiable periodic 

functions. 

References. General properties of the inviscid flow model, 

dimensionless form of general equations, and inviscid flow as ideali-

zation for large Reynolds number: [Y] 11:5,6. Kelvin circulation 

theorem: [Y] 111:1,2 and [P] 11:2.8. Bernoulli theorems: [Y] 111:8,9 

and [P] 11:2.3,4. Ideal irrotational flow: [Y] IV:1,2,3,4 and 

[P] 11:2.9. Surface waves: [P] 11:2.15 and [�] V:1,2.1,2.2,2.3. 

Standing waves and group velocity: [�] V:2.4,2.5,2.6,2.11. The 

wave-maker problem: [Y] V:2.13. 

b) Linear shallow-water theory. (4 lectures) 
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This provides another simplified model and gives opportunity 

for further discussion of Sturm-Liouville eigenvalue problems. The 

relationship with variational techniques can be brought out here in 

the estimation with trial functions or comparison theorems of the 

resonant frequencies of soup bowls, swimming pools, harbors, and 

lakes. 

Some properties of the wave equation, for instance the signifi-

cance of characteristics, can also be included. (Nonlinear shallow-

water theory, its analogy with compressible flow and shock waves 

might be discussed, but probably there will not be sufficient time 

for this.) 

References. Linear shallow-water theory: [L] pp. 169-72, 189. 

Forced motion and normal modes: [L] pp. 176-79. Tides: [L] pp. 180-

82, 198-200. Variable depth or section: [L] pp. 185-86, 191-93. 

c) Ideal flow past bodies. (5 lectures) 

Flow past circles and spheres gives simple problems in potential 

theory which can be tied in with Fourier series and spherical har-

monics, notably by considering flow past near-circles or near-spheres; 

ideas of regular perturbation theory enter here as well. 

D�Alembert�s "paradox" provides a striking example of the fail-

ure of a simplified model when interpreted too literally, combined 

with its rescue and continued usefulness when the main source of the 

difficulty (flow separation) is identified and appropriately modeled. 

The elementary theory of airfoils and drag estimates via dynamic 

pressure arguments could be discussed with questions like: Why do 

sailplanes have very long slender wings? How big should a parachute 

be? How much air resistance is a car subject to? 

References. Examples: [Y] IV:7.4, [P] 11:2.9, and [Y] IV:18. 

Flow past a near-sphere: [Y] IV:13, possibly generalized and with 

further discussion of spherical harmonics. (Yih�s discussion is 

perhaps too brief and formalistic, and the fact that surface har-

monics are to spheres what sines and cosines are to circles is rather 

obscured.) Perhaps another mathematical digression could be added 

here: students are too often so put off by excessive emphasis on 

associated Legendre functions that they never seem to realize that 

the rotation group is behind it all. Two-dimensional flows with 
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circulation: [�] 11:10. Blasius and Kutta-Joukowski theorems: 

[Y] IV:22,22.1. Airfoils: [�] 111:16,17. 

d) Inviscid flow with vorticity. (3 lectures) 

Some interesting phenomena of this sort can be studied without 

too much complication by considering linearized flow in rotating sys-

tems. Unfortunately, a more complete picture of the applications of 

hydrodynamic theory in meteorology and oceanography probably involves 

too many other considerations to be feasible in this course. 

References. Geostropic flow and the Taylor-Proudman theorem: 

[G] I and [Y] 111:12,12.1,12.2. Effect of the earth�s rotation on 

atmospheric and oceanic flows: [P] V:8. Motion of parallel recti-

linear vortex filaments: [L] pp. 154-55. 

e) Viscosity. (4 lectures) 

References. Couette and Poiseuille flow: [Y] VII:2.1,2.2,2.3, 

2.10,2.11 and [P] 111:1.9b. Ekman and Stokes-Rayleigh boundary 

layers: [Y] VII:2.12,3.4; [P] V:9; and [G] 2.3. Secondary flow: 

[P] 111:8, [G] 2.4, and [P] V:9. The boundary layer: [P] 111:3 and 

[Y] VII:5,6. 

f) Instabilities. (2 lectures) 

(Why does water run out of an inverted glass even though the 

atmospheric pressure can support the weight of a 30-foot column of 

water--and why does it not similarly run out of a narrow tube?) 

Kelvin-Helmholtz instability, although an over-simplified model, can 

be related to wave generation by wind. 

References. Gravitational instability: [Y] IX:2.1,2.3 and 

[P] V:16. Kelvin-Helmholtz instability: [Y] IX:8.1, [ L ] p. 232, 

[Y] IX:6.1. 

References 

The books referred to in the outline are: 

[G] Greenspan, H. P. The Theory of Rotating Fluids. New York, 
Cambridge University Press, 1968. A rather advanced text 
or research monograph. 

[L] Lamb, H. Hydrodynamics. New York, Dover Publications, Inc., 
1945 (reprint). The classic work in the field. Its rather 
old-fashioned mathematical style and extensive character, 
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combined with a certain tendency to present important 
results without adequate identification, make it sometimes 
rather difficult for the novice. As with some other 
classics, results given almost parenthetically in Lamb con-
tinue occasionally to be rediscovered (and published!). 

[P] Prandtl, L. Es sentials of Fluid Dynamics. New York, 
Hafner Publishing Company, 1952. An excellent and interest-
ing book from the physical point of view, with clear dis-
cussions of many scientific and engineering applications. 
Most of the less elementary mathematical aspects, however, 
have (intentionally) been left aside. 

[Y] Yih, Chia-Shun. Fluid Mechanics. New York, McGraw-Hill 
Book Company, 1969. A good graduate-level textbook, 
emphasizing the theoretical side. Quite a few exercises. 

Some other books which the instructor may find useful to have 
on hand are listed below. 

Additional References 

Batchelor, G. K. An Introduction to Fluid Mechanics. 
New York, Cambridge University Press, 1967. 

Landau, L. D. and Lifschitz, E. Fluid Mechanics. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 
1959. 

Rouse, H. Fluid Mechanics for Hydraulic Engineers. New 
York, McGraw-Hill Book Company, 1938. 

Von Arx, W. S. Introduction to Physical Oceanography. 
Reading, Massachusetts, Addison-Wesley Publishing Company, 
Inc., 1962. 

The books by Batchelor and by Landau and Lifschitz are both 
good; Landau and Lifschitz is written perhaps more from the physi-
cist�s point of view, Batchelor from the applied mathematician�s. 

Also, a good engineering text such as the book by Rouse and, in 
connection with 2 d ) , the book by Von Arx, may be found helpful. 

There are a number of interesting 8mm. film strips on topics 
in fluid mechanics, as well as some longer films, prepared by the 
National Committee for Fluid Mechanics Films and available from 
Encyclopaedia Brittanica Films. They do not on the whole contribute 
much on the mathematical side but may well add interest and apprecia-
tion for the physics. Some which might be found useful in connection 
with the course outlined above are: 

FM-3: Shear Deformation of Viscous Fluids [continuity 
equation] 
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FM-14A and �: Visualization of Vorticity with Vorticity 
Meter [continuity equation, conservative body forces and 
the mechanical energy equation, vorticity equation] 

FM-13: The Bathtub Vortex [general properties of the 
inviscid flow model, two-dimensional flows with circula-
tion, effect of the earth�s rotation on atmospheric and 
oceanic flows] 

FM-10: Generation of Circulation and Lift for an Airfoil 
[airfoils] 

FM-11: The Magnus Effect [secondary flow] 

FM-6: Boundary Layer Formation [the boundary layer, Ekman 
and Stokes-Rayleigh boundary layers] 

FM-31: Instabilities in Circular Couette Flow [instabili-
ties, Couette and Poiseuille flows] 
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