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I. PREAMBLE--THE NEED FOR REAPPRAISAL 

In 1965 the Committee on the Undergraduate Program in Mathe-
matics (CUPM) published a report entitled A General Curriculum in 
Mathematics for Colleges (GCMC); this report has had an extensive 
influence on undergraduate mathematics programs in U. S. colleges 
and universities. Earlier CUPM reports had recommended specific 
undergraduate programs in mathematics for a variety of careers 
(teaching; mathematical research; physics and engineering; biologi-
cal, management, and social sciences; and computer science). In 
contrast, the GCMC report undertook to identify a central curriculum 
beginning with calculus that could be taught by as few as four quali-
fied teachers of mathematics (or four full-time equivalents) and 
that would serve the basic needs of the more specialized programs as 
well as possible. The extent to which the GCMC report achieved its 
purpose is indicated by the large number of colleges that have re-
vised their course offerings in directions indicated by that report. 
Indeed, its influence has been widespread in spite of its stringent, 
self-imposed restrictions. 

Many departments offer courses in addition to those mentioned 
in the GCMC report, such as a mathematics appreciation course for 
students in the arts and humanities, courses for prospective elemen-
tary school teachers, courses for students whose high school prepara-
tion is seriously deficient in mathematics, and specialized courses 
for most of the careers mentioned above. Thus the four-man "depart-
ment" of the GCMC report often consists of four full-time equiva-
lents within a much larger department having 10, 15, or even more 
members. 

Numerous conferences of collegiate mathematicians have been 
held, both by the Sections of the Mathematical Association of America 
(MAA) and by CUPM, to discuss the GCMC report and to identify dif-
ficulties in following its suggestions. Although the response has 
been generally favorable, two criticisms have been made repeatedly: 
(a) The pace of some course outlines is unrealistically fast and in 
particular leaves no time for applications. (b) Many of the colleges 
for which the GCMC report was intended have substantial commitments 
to programs that are not discussed in the GCMC report, and they 
would welcome assistance with their problems. 

For these reasons CUPM felt that the GCMC report should be re-
viewed . Such a re-evaluation of the entire program has been in 
progress for two years, and this commentary is the result of these 
deliberations. 

During this review of the GCMC report, many problems have been 
considered by CUPM, of which three central ones are briefly men-
tioned below. Aspects of the first two are subjects of other CUPM 
studies (see Section II). We hope that these problems will be con-
sidered by individual departments of mathematics in the light of 
their local conditions. 
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1) The Evolving Nature of Mathematics Curricula. During the 
recent past, mathematics has been growing at a phenomenal rate, both 
internally and in its interconnections with other human activities. 
The subject continues to grow, and its influence continues to broaden 
beyond the traditional boundaries of pure mathematics and classical 
applied mathematics to include statistics, computer science, opera-
tions research, mathematical economics, mathematical biology, etc. 
When thinking about undergraduate education, therefore, is it not 
now more appropriate to speak of the mathematical sciences in a 
braod sense rather than simply mathematics in the traditional sense? 
Although large universities may have separate departments for the 
various aspects of the mathematical sciences, this alternative is 
not feasible at most colleges. Even in institutions where separate 
departments exist, how can one coordinate the various course offer-
ings to take advantage of the impact that each branch of the mathe-
matical sciences has upon the others and on related disciplines? 

A closely related question is whether the "core" of pure mathe-
matics that all departments should offer is now the same as it was 
presumed to be a few years ago. As new fields develop, some older 
fields seem less relevant, and today some mathematicians even ques-
tion the assumption that calculus is the basic component of all col-
lege mathematics. 

However, we wish to emphasize that no matter what changes occur 
in the undergraduate mathematics curriculum, one of the desirable 
alternatives will surely include basic calculus and algebra courses 
closely akin to Mathematics 1, 2, 3, 4, and 6 of the GCMC report. 

2) The Service Functions of Mathematics. Mathematically edu-
cated people are needed in many kinds of work. It is therefore 
pertinent to ask whether the present undergraduate curriculum is 
sufficiently broad, especially in the freshman and sophomore years, 
to meet the mathematical needs of students interested in preparing 
for a variety of careers. 

The traditional mathematics curriculum was heavily weighted 
toward analysis and its applications to physical sciences. One of 
the major innovations of the program in the original GCMC report was 
the introduction of linear algebra in the sophomore year and proba-
bility in the freshman year, thus exposing a large number of under-
graduates to a wider range of mathematical topics. But because of 
its limited scope, the 1965 GCMC program is necessarily a single-
track system, or essentially so. Should a college de-emphasize 
calculus and offer a variety of entrances and exits in its lower-
level mathematics program, assuming that it has adequate staff? If 
so, what options should be available, and what advanced work should 
follow these courses? What service courses should be given? How 
should courses be taught in the light of the availability of com-
puters? How should students be introduced to the mathematics needed 
for modern applications in the behavioral, biological, and engineer-
ing sciences? 
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3) The Initial Placement of Students. Although increasing 
numbers of college freshmen arrive with mathematical preparation 
that qualifies them for advanced placement, there is a simultaneous 
need for a greater variety of precalculus courses; the latter prob-
lem is especially critical at colleges having a policy of open 
admission. Does the mathematics curriculum provide suitable points 
of entry and exit for all students? Are placement procedures and 
policies in mathematics sufficiently flexible? 

Thus, for a variety of reasons, it is no longer clear that 
there should be a single general curriculum in mathematics. Several 
alternative curricula in mathematics are emerging, and colleges with 
limited resources will soon have to make difficult choices from 
among these alternatives. 

II. THE NATURE OF THIS STUDY 

The intention of CUPM in establishing a committee to review 
the GCMC report was to publish a new version, incorporating changes 
as needed to correct deficiencies in the original study and modify-
ing the curriculum in accordance with new conditions in mathematics 
and mathematics education. Some of the technical shortcomings of 
the original course outlines (pace and content) proved to be manage-
able and are taken up below, whereas other problems mentioned in 
Section I are more difficult, both intrinsically and in their effect 
on the whole concept of a compact general curriculum. Several of 
these problems have been considered by other CUPM panels. They in-
clude : 

(a) Basic mathematics. See A Course in Basic Mathematics for 
Colleges (1971) and A Transfer Curriculum in Mathematics for Two-
Year Colleges (1969). 

(b) The training of elementary and secondary school teachers. 
See Recommendations on Course Content for the Training of Teachers 
of Mathematics (1971). 

(c) A program in computational mathematics. See Recommenda-
tions for an Undergraduate Program in Computational Mathematics 
(1971). 

(d) The impact of the computer on the content and organization 
of introductory courses in mathematics. See Recommendations on 
Undergraduate Mathematics Courses Involving Computing (1972). 

(e) Upper-division courses in probability and statistics. 
See Preparation for Graduate Work in Statistics (1971). 
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(f) Lower-division courses in statistics. See Introductory 
Statistics Without Calculus (1972). 

(g) Courses in the applications of mathematics. See Applied 
Mathematics in the Undergraduate Curriculum (1972). 

(h) New teaching techniques and unusual curricula. See News-
letter #7, "New Methods for Teaching Elementary Courses and for the 
Orientation of Teaching Assistants" (not included in this COMPEN-
DIUM). 

Clearly, a definitive restatement of the GCMC report, if pos-
sible at all, would have to take into account not only these reports 
but others that will yet emerge from further study. However, sug-
gestions for improvements in the recommendations of the GCMC report 
have been developed, and there is no need to defer their publication 
until a comprehensive reformulation is completed. Accordingly, the 
present pamphlet gives the current suggestions of CUPM for the half-
dozen courses that include a substantial part of the mathematics en-
rollment in almost all colleges, namely first- and second-year cal-
culus, linear algebra, and the elements of modern algebra. In the 
next section we shall discuss our proposed changes and our reasons 
for proposing them. It is entirely possible that when the questions 
raised in Section I are answered, the needs of large numbers of stu-
dents will be met more adequately by some completely new selections 
of courses, rather than by the traditional ones. However, as we 
stated in Section I, basic calculus and algebra courses like Mathe-
matics 1, 2, 3, 4, and 6 of the GCMC report will surely continue to 
be taught. Thus, those departments that have made or are making 
efforts to implement the recommendations of the 1965 GCMC report 
should continue to do so, with attention to the changes of detail 
proposed in Section III, changes that do no violence to the basic 
content of the core program originally proposed. 

III. NEW DESCRIPTIONS OF THE BASIC CALCULUS 
AND ALGEBRA COURSES 

As CUPM did in 1965, we use two devices to obtain enough flexi-
bility to accommodate the diversity of achievement and ability of col-
lege freshmen. We describe a basic set of semester courses rather 
than year courses; this arrangement makes it easier for students to 
take advantage of advanced placement or to leave the mathematics 
program at a variety of levels. We also suggest that, wherever pos-
sible, a college should offer the basic courses Mathematics 1 through 
4 every semester. This allows advanced placement students to con-
tinue a normal program in mathematics without interruptions. More-
over, students who need to begin with precalculus mathematics can 
follow it immediately with a calculus sequence. 
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The following list of basic courses is deliberately given with 
bare "college catalogue" descriptions, for we do not wish to seem 
overly prescriptive. In Section IV of this report, however, we in-
clude detailed course outlines and commentaries which are meant to 
identify those topics that we feel are most significant and to con-
vey the spirit in which we recommend that these basic courses be 
taught. 

Mathematics 1. Calculus I. Differential and integral calculus 
of the elementary functions with associated analytic geometry. [Pre-
requisite: Mathematics 0 or its equivalent. A description of Mathe-
matics 0 is given in Section VI.] 

Mathematics 2. Calculus II. Techniques of integration, in-
troduction to multivariable calculus, elements of differential equa-
tions. [Prerequisite: Mathematics 1] 

Mathematics 3. Elementary Linear Algebra. An introduction to 
the algebra and geometry of 3-dimensional Euclidean space and its 
extension to �-space. [Prerequisite: Mathematics 2 or, in excep-
tional cases, Mathematics 0] 

Mathematics 4. Multivariable Calculus I. Curves, surfaces, 
series, partial differentiation, multiple integrals. [Prerequi-
sites: Mathematics 2 and 3] 

Mathematics 6L. Linear Algebra. Fields, vector spaces over 
fields, triangular and Jordan forms of matrices, dual spaces and 
tensor products, bilinear forms, inner product spaces. [Prerequi-
site: Mathematics 3] 

Mathematics 6M. Introductory Modern Algebra. The basic 
notions of algebra in modern terminology. Groups, rings, fields, 
unique factorization, categories. [Prerequisite: Mathematics 3] 

(More upper-division courses are described in Section V, and 
outlines for them can be found in Section VI.) 

A reader who is familiar with the 1965 GCMC report will notice 
at once that some significant changes are being proposed here. 

In the first place, that document sketched only the broad out-
lines of a curriculum, giving for each course a (rather ample) col-
lege catalogue description. Those who accepted the broad outlines 
immediately had to face the specific details of implementation: 
What is a reasonable rate at which to cover new material for the 
average student? What specific topics can be included if this rate 
is to be achieved? 

CUPM has now attempted to answer these questions by means of 
commentaries on the course outlines. We have tried to develop a 
sense of what is meant by "the average student," taking account of 
the changing capabilities and preparation of the students in most 
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undergraduate courses. Because of the frequent objection that the 
rate apparently suggested by the 1965 GCMC report was unreasonably 
fast, we have made a special effort to be realistic about the mate-
rial that can be covered and to offer suggestions about the pace and 
style of its presentation. The course outlines are intended as 
existence proofs rather than as prescriptive recommendations; they 
represent solutions that CUPM feels are feasible, but we are aware 
that these are not the only possible solutions. In fact, we encour-
age others to devise different and more effective ways of achieving 
the same ends. 

The commentaries accompanying the course outlines attempt to 
convey some specific ideas about the manner of presentation that 
CUPM feels is appropriate. The suggested pace has been indicated by 
assigning a number of hours to each group of topics and, in many 
cases, by more detailed suggestions of what to omit, what to mention 
only briefly, what to stress. Since a standard semester contains 42 
to 48 class meetings, we arbitrarily allowed approximately 36 hours 
for each one-semester course, representing class time mainly devoted 
to the discussion and illustration of new material; thus the assign-
ment of, say, six hours to a topic is a guide to the relative propor-
tion of time to be spent on the topic. CUPM hopes that the commen-
taries are sufficiently detailed to show that the suggested material, 
in the recommended spirit, can actually be covered in 36 hours. The 
slack time that we have left provides for tests, review, etc. CUPM 
feels that a department that wishes to cover additional topics, or to 
provide deeper penetration of the topics listed, should not attempt 
to crowd such material into the course as outlined, but rather should 
either move to courses of four semester-hours or lengthen the pro-
gram. 

The structure of the calculus sequence. The 1965 GCMC report 
envisioned a program extending over four semesters to cover the 
traditional subject matter of calculus courses augmented by elemen-
tary linear algebra. The present study, on the other hand, seeks to 
return to the tradition of a basic two-semester calculus course 
serving both as an introduction to further work in calculus and as a 
unit for students who will end their study at this point. What is 
not traditional is that this course (Mathematics 1 and 2) should be 
a self-contained introduction to the essential ideas of calculus of 
both one and several variables, including the first ideas of differ-
ential equations. Students who stop at the end of a year generally 
need calculus as a tool rather than as an end in itself or as prepa-
ration for a heavily mathematical subject like physics, and they 
ought to encounter all the main topics, at least in embryo. The 
present arrangement was suggested in 1965 only as an alternative to 
a more conventional arrangement. The arguments given above for the 
present arrangement seem so compelling that now CUPM does not wish 
to suggest any alternative for the first year of calculus. 

We have, however, preserved the feature of GCMC which makes the 
first semester (Mathematics 1) a meaningful introduction to the major 
ideas of calculus (limit, derivative, integral, Fundamental Theorem) 
in a single-variable setting. 
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To achieve the aims both of Mathematics 1 in this spirit and 
of Mathematics 1 and 2 as set forth above, a very intuitive treatment 
is necessary. The course should raise questions in the minds of stu-
dents rather than rush to answer questions they have not asked. We 
consider such a treatment to be the right one in any case. It serves 
the needs of the many students who are taking calculus for its appli-
cations in other fields. It is also appropriate for mathematics 
majors. 

Although the recommended treatment is intuitive, it is not in-
tended to be careless. Theorems and definitions should be stated 
with care. Proofs should be given whenever they constitute part of 
the natural line of reasoning to a conclusion but are not technically 
complicated. Those proofs that require detailed epsilon-delta argu-
ments, digressions, or the use of special tricks or techniques should 
be consciously avoided. Every theorem should be made plausible and 
be supported by pictures when appropriate and by examples exhibiting 
the need for the hypotheses. It is often the case that such prepara-
tion for a theorem falls short of a proof by only a little. In such 
cases the proof should be completed. However, stress should always 
be placed on the meaning and use of the theorem. The following ex-
amples should clarify these ideas. 

(1) A student may get along, at least for a while, without the 
formal definition of a limit. But limits, and all other concepts of 
calculus, should be taught as concepts in some form at every stage. 
For example, the Fundamental Theorem of Calculus involves two con-
cepts: the "limit" of a sum and the antiderivative. The theorem 
states that if f is continuous and if 

J f(x) dx 
a 

has been defined by approximating sums, then 

J f(x) dx = F(b) - F(a), 
a 

where F� = f. There is, to begin with, no obvious relation between 
the two sides of this equation, and an effort is required to make it 
credible. One natural approach depends on proving that if 

G(x) = J^f(t) dt, 
a 

then G� = F� = f, whence G and F differ by a constant which 
can only be F(a). Thus a simple test to determine whether a stu-
dent understands the Fundamental Theorem is to ask him to differen-
tiate 

G(x) = J y i + t8 dt. 
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If he does not know how, he does not understand the theorem. It is 
dishonest to conceal the connection between the two concepts by con-
ditioning the student to accept the formalism without his being 
aware that the concepts are there. On the other hand, to give the 
student only the concepts without making him fully aware of the 
formalism is to lose sight of the aspect of calculus that makes it 
such a powerful tool in applications as well as in pure mathematics. 

(2) A "cookbook" course might teach the students to find the 
maximum of a function by setting its derivative equal to zero, solv-
ing the equation, and perhaps checking the sign of the second deriva 
tive; it might not discuss other kinds of critical points. A thor-
oughly rigorous course, on the other hand, might demand careful 
proofs of the existence of a maximum of a continuous function, Rolle 
theorem, and so on. What we suggest for the first calculus course 
is a clear statement of the problem of maximizing a function on its 
domain, a precise statement of such pertinent properties as the 
existence of the maximum, and examples to indicate that the maximum, 
if it exists, may occur either at endpoints, points where the deriva 
tive equals zero, or points where the derivative does not exist. 

The commentaries on Mathematics 1 through 4, given in Section 
IV, may also be consulted for a more detailed presentation of what 
we have in mind. 

The computational aspects of calculus should be the center of 
attention in Mathematics 1 and 2. This means both the techniques of 
differentiation and integration and the numerical-computational 
methods that go along with them. Many people believe that a com-
puter should be used, if possible, to supplement the formal proce-
dures and reinforce their teaching. Guidelines on the use of com-
puters in calculus courses appear in the report of the Panel on the 
Impact of Computing in Mathematics Courses (Recommendations on Under 
graduate Mathematics Courses Involving Computing). 

Finally, Mathematics 1 and 2, and indeed all the courses dis-
cussed here, should include examples of applications to other fields 
the more concrete, the better. 

The introduction of Mathematics 3 (Elementary Linear Algebra) 
was suggested in the 1965 GCMC report for the following reasons: 

Our arguments for placing a formal course in linear 
algebra in the first semester of the second year are more 
concerned with the values of the subject itself and its 
usefulness in other sciences than with linear algebra as 
a prerequisite for later semesters of calculus. Let us 
first consider prospective mathematics majors. Their 
official commitment to major in mathematics is usually 
made before the junior year of college. It is desirable 
that this decision be based on mathematical experience 
which includes college courses other than analysis. For 
these students linear algebra is a useful subject which 
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involves a different and more abstract style of reasoning 
and proof. The same contrasts could be obtained from 
other algebraic or geometric subjects but hardly with the 
same usefulness that linear algebra offers. 

The usefulness of linear algebra at about the stage 
of Mathematics 3 is becoming more and more apparent in 
physics and engineering. In physics it is virtually 
essential for quantum mechanics, which is now being studied 
as early as possible in the undergraduate curriculum, 
especially in crystal structures where matrix formulation 
is most appropriate. In engineering, matrix methods are 
increasingly wanted in the second year or earlier for com-
putation, for network analysis, and for linear operator 
ideas. The basic ideas and techniques of linear algebra 
are also essential in the social sciences and in business 
management. Students in these specialties are best served 
by an early introduction to the material in Mathematics 3. 

We think, however, that Mathematics 3 is about the 
earliest stage at which the subject can profitably be 
taught to undergraduates generally. It can be taught to 
selected students in high school, though the high school 
version of the subject tends to be somewhat lacking in 
substance. High school students do not have a sufficiently 
broad scientific or mathematical background to motivate it 
and have not yet reached the stage of their curriculum 
when they can use it outside the mathematics classroom. 

These reasons seem equally cogent today. However, CUPM is 
now more persuaded than in 1965 that it is important to have the 
terminology and elementary results of linear algebra available for 
the study of the calculus of several variables, and we propose a 
version of Mathematics 4 that takes as much advantage as possible 
of what the student has learned in Mathematics 3. How this can be 
done is explained in some detail in the commentary on Mathematics 4. 

The present version of Mathematics 3 is a less demanding 
course than the Mathematics 3 described in the 1965 GCMC report, 
which indeed has frequently been criticized as containing too much 
material. Students who need more linear algebra than can reasonably 
be included in Mathematics 3 should also take Mathematics 6L. 

In 1965 the GCMC report presented a calculus sequence that cul-
minated in Mathematics 5, a course in vector calculus and Fourier 
methods. This has long been the accepted culmination of the calculus 
sequence. CUPM no longer feels that this material is to be regarded 
as basic in the same sense as the material of Mathematics 1 through 
4. It is needed for graduate study of mathematics and for physics, 
but not for many other purposes. In fact, we do not suggest any 
single sequel to Mathematics 4 as part of the basic program but men-
tion several possible courses at this level, recommending that each 
college choose one or more of these, or a course of its own design, 
according to its capabilities and the needs of its students. 
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Mathematics 6M (Introductory Modern Algebra) introduces the 
student to the basic notions of algebra as they are used in modern 
mathematics. We regard this course, or one of similar content, as 
an essential course that should be available in every college. We 
also recommend that every college that can do so offer a semester 
course containing further topics in linear algebra (Mathematics 6L; 
this is independent of Mathematics 6M). The rationale behind these 
recommendations is contained in the course descriptions. 

IV. NEW OUTLINES FOR THE BASIC CALCULUS 
AND ALGEBRA COURSES 

The following course outlines are intended in part as extended 
expositions of the ideas that we have in mind, in part as feasibility 
studies or existence proofs, and in part as proposals for the design 
of courses and textbooks. They are intended only to suggest content, 
not to prescribe it; they do, however, convey the spirit in which we 
believe the lower-division courses should be presented. 

Mathematics 1. Calculus I. 

[Prerequisite: Mathematics 0] Mathematics 1 is a one-semester 
intuitive treatment of the major concepts and techniques of single-
variable calculus, with careful statements but few proofs; in par-
ticular, we think that epsilon-delta proofs are inappropriate at this 
level. We give a brief outline suggesting the amount of time for 
each topic; a more detailed commentary follows the outline. 

COURSE OUTLINE 

1. Introduction. (4 hours) Review of the ideas of function, 

graph, slope of a line, etc. 

2. Limits, continuity. (3 hours) Limit and approximation 

defined intuitively. Derivatives as examples. Definition of con-

tinuity, types of discontinuity, Intermediate Value Theorem. 

3. Differentiation of rational functions; maxima and minima. 

(5 hours) 

4. Chain rule. (3 hours) Include derivatives of functions 

defined implicitly, inverse function and its derivative. 
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5. Differentiation of trigonometric functions. Higher deriva-

tives. (3 hours) 

6. Applications of differentiation. (3 hours) Tangent as 

"best" linear approximation. Differential, approximations using 

differentials. Extrema, curve sketching. 

7. Intuitive introduction to area. (2 hours) 

8. Definite integral. (3 hours) 

9. Indefinite integrals, Fundamental Theorem. (4 hours) 

10. Logarithmic and exponential functions. (3 hours) 

11. Applications of integration. (3 hours) 

COMMENTARY ON MATHEMATICS 1 

The idea of this course is to provide the student with some 

understanding of the important ideas of calculus as well as a fair 

selection of techniques that will be useful whether or not he con-

tinues his study of calculus. If all this is to be done, formal 

proofs must necessarily be slighted. The following comments attempt 

to bring out the spirit that we have in mind. 

1. Introduction. The basic ideas of slope of a straight line 

and of functions and their graphs can be reviewed in the context of 

an applied problem leading to the search for an extreme value of a 

quadratic or cubic polynomial. The ideas of increasing and decreas-

ing functions and of maxima and minima should appear early. The 

direction of a graph at a point can be introduced as the limiting 

slope of chords. No formal definition of a limit need be given here: 

the derivative can be understood as a slope-function, and the van-

ishing of the derivative can be explored. Alternative interpreta-

tions are useful: derivative as velocity, as rate of change in gen-
f (x)-f(a) 

eral, and abstractly as lim —* using the intuitive idea of 
� x-«a � - a 2 

a limit. Derivatives of the functions � -� � , the general quad-

ratic function, �.-� 1/x, � -» Jx. can be determined. The need for 

a deeper study of limits can be shown by the attempted computation 

of f�(0) for f: � -� sin x. Students can use tables or a computer 

to obtain values of S i n X for � near 0. 
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2. Limits, continuity. We do not intend that this should be 

a rigorous treatment with e-� proofs. Rather, the presentation of 

continuity and the Intermediate Value Theorem should strive to make 

the definitions and the theorems (and the need for their hypotheses) 

clear by pictorial means. Limit theorems for sums, products, and 

quotients should be mentioned and various types of discontinuity 

illustrated by examples. A discontinuity not of jump type can be 

illustrated by sketching sin (1/x) near � = 0. The students 

should be convinced that rational functions are continuous (except 

at zeros of the denominator). 

3 . Differentiation of rational functions. The definition of 

derivative can be repeated with alternative notations: 

dz = U m f<rt») - f (x) . 
dx h-0 h 

(It is desirable for students to be aware of all the notations that 

they are likely to meet in other subjects.) Application of limit 

theorems will yield differentiation formulas for integral powers, 

sums, products, polynomials; products and quotients; higher deriva-

tives. Calculation of maxima and minima furnishes an immediate 

application. The distinction between local and global extrema needs 

to be made here. For curve-sketching, one can make good use of the 

proposition that a continuous function is monotone between succes-

sive local extrema. This is intuitively clear from a diagram and is 

easily proved. 

4. Chain rule. Composite functions can be thought of as com-

positions of mappings from a line to a line. If the derivative is 

thought of geometrically as a local magnification, the chain rule 

then expresses the result of two successive magnifications. 

It is worth exploring the geometrical interpretation of the 

derivative for the inverse function in terms of reflection in the 

line y = x. 

5. Differentiation of trigonometric functions. An appropri-

ate argument for demonstrating the value of lim S l n x is the x-0 x 

geometrical argument using areas (which can be more readily justi-

fied than the one using lengths). 
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6. Applications of differentiation. The Mean Value Theorem 

is needed here. When this theorem is discussed, the student should 

see its pictorial representation and should understand that the con-

ditions placed on the function (continuity on the closed interval, 

differentiability on the open interval) are no more, and no less, 

than is necessary. 

The phrase "tangent as �best� linear approximation" is in-

tended to suggest the geometric meaning of the formula 

f (x) = f (a) + f� (a) (x-a) + E, 

where E/(x-a) -� 0 as � -» a. 

7. Intuitive introduction to area. What is intended is a 

presentation along such lines as the following: Properties of area 

(e.g., A(S) a 0, S � � = �  = > A(S U �) = A(S) + �(�)). Area of 

rectangle accepted from geometry. Area within closed curve expressed 

in terms of areas under the graphs of functions. Approximation from 

above and below by sums of areas of rectangles. Idea of area as a 

limit by squeeze between upper and lower estimates. Error estimates 

(pictorially obtained) for monotone functions. 

8. Definite integral. No formal proofs of the existence and 

properties of the integral are expected. A possible outline is as 

follows: Integral as a formal generalization of the idea of area--

a number approximated by upper and lower sums formed for any func-

tion regardless of sign. Integral as limit of Riemann sums. Inter-

pretation of integral as signed area. Integral of af and of 

f + g. Reversal of order of limits of integration. Jf+J"f=J"f. 
«b »b a b a 

If f(x) ̂  g(x), then, for a < b , J f = J S -
a a 

Improper integrals: a 15-minute introduction to the idea, 

with some simple illustrative examples. 

9. Indefinite integrals. Fundamental Theorem. Integral as a 

function of the upper endpoint, F(x) = Ĵ f (t) dt. Intuitive dis-
a 

cussion of the derivative of this function for continuous f; one 

can geometrically motivate the inequalities _ min f(t) 
[x,x+hj 

F (x"fh ) — F (x) ^ —11 ~ ^—L s m a x f (t) and then apply the squeezing or 
n [x,x+h] 

47 



pinching principle. The student should have some practice in the 

use of simple substitutions to evaluate integrals by the use of the 

Fundamental Theorem, including integrals of trigonometric functions. 

A brief introduction to tables of integrals is desirable at this 

point, to be continued in the next section when more functions are 

available. 

10. Logarithmic and exponential functions. The definition of 

the logarithm as an integral is recommended. 

One can give a heuristic argument for the formula for differ-

entiating the logarithmic function: from assumed differentiability 

of the exponential function f: � -» a (a > 0), obtain f�(x) 

= f�(0)a = Cf(x); hence, for the inverse function g: � logax, 

note that g�(x) = l/(Cx). This is one way of suggesting the defini-

tion of the logarithmic function as an integral. 

The Fundamental Theorem can be used to derive some basic rules 

for logarithms. For example, using D(log ax) = ^ = D(log x) and 

integrating from 1 to b, one obtains log(ab) - log (a) 

= log(b) - log(l) or log(ab) = log(a) + log(b). 

Integration exercises requiring simple substitutions and the 

use of integral tables may be continued with special emphasis on 

integrands involving logarithmic and exponential functions. 

The discussion of the differential equation y� = ky provides 

an alternate approach to the definition of the exponential function. kx 

One starts with the solution y = y^e for the differential equa-

tion with initial condition y1(0) = y Q . To show that this initial 

value problem defines the exponential function, we must prove that 

the problem has a unique solution. To do this, suppose � is any 

solution. Let u = ze � C X. Then � = ue^ x and, since z 1 = kz, 

it follows that u� = 0. Hence u = constant and the initial con-

dition requires u = y Q . Hence � = y and the solution is unique. 

The discussion of the equation y 1 = ky also leads naturally to a 

discussion of growth and decay models as in the next section. 

Students may be reminded at this point of the basic rules for 

operations with exponents, and these rules may be justified. 

With the derivatives of logarithmic and exponential functions 

available, it is now possible to justify the expected rule for 
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differentiating general powers and hence to provide more diversified 

drill problems on differentiation of elementary functions. 

Further use of tables of integrals is now possible and is 

recommended in place of integration by ingenious devices. Of course, 

students must be able to make simple substitutions in order to use 

integral tables effectively. 

11. Applications of integration. It is very desirable for the 

students to see applications of integration to as many fields as 

possible besides geometry and physics. Since such applications do 

not yet appear in many textbooks, we have included some specific 

suggestions with references to places where more information can be 

found. 

It is particularly desirable to have some applications of the 

integral as a limit of Riemann sums, not merely as an antiderivative. 

Examples like the following can be used: defining volume of a solid 

by the parallel slice procedure; defining work done by a variable 

force applied over an interval as an integral over that interval 

suggested by Riemann sums; defining the capital value of an income 

stream obtained over time at a given rate and with interest com-

pounded continuously as the limit of a Riemann sum (see Allen, 

Roy G. Mathematical Analysis for Economists. New York, St. Martin�s 

Press, Inc., 1962). 

An intuitive understanding of probability density (perhaps 

using the analogy with mass density for a continuous distribution of 

mass on a line) can also supply sufficient background for interest-

ing applications of definite integrals, since if f is the probabil-

ity density function (pdf) of a random variable X, then 

Pr(a < X < b) = f(x) dx. Such important practical pdf�s as the 

exponential and normal can be introduced, as well as the uniform, 

triangular, and other pdf�s defined on a finite interval, e.g., 
2 

f (x) = 3(1 - x) if 0 •£ � s 1, f (�) = 0 elsewhere. The normal 

pdf offers an opportunity to point out a function that cannot be 

integrated in elementary form and for which tables are available. 

At the conclusion of this semester course, one is able to dis-

cuss the growth of a population governed by a differential equation 

a 
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of the form N�(t) = (a - bN)N. Here N(t) is the size of the popu-

lation at time t. If b = 0, then we have exponential growth with 

growth coefficient a. If, however, the growing population encounters 

environmental resistance (due to limited food or space, say), then 

b > 0 and the differential equation model involves a growth coef-

ficient (a - bN) that diminishes with increasing population size. 

This leads, when the differential equation is solved, to the logistic 

curve. 

This differential equation and the corresponding logistic curve 

arise in many different contexts: (i) in the study of the phenomenon 

of diffusion through some population of a piece of information, of 

an innovative medical procedure, of a belief, or of a new fashion in 

clothes (see Coleman, James S. Introduction to Mathematical Sociol-

ogy. New York, Free Press, 1964); (ii) in epidemiology where one 

studies the spread of a communicable disease (see Bailey, �. T. 

The Mathematical Theory of Epidemics. New York, Hafner Publishing 

Company, 1957); (iii) in biological studies of the size of popula-

tions of fruit flies as well as in demographic models of the U. S. 

population (see references in Keyfitz, Nathan. Introduction to the 

Mathematics of Population. Reading, Massachusetts, Addison-Wesley 

Publishing Company, Inc., 1968); (iv) in the analysis of autocata-

lytic reactions in chemistry (see Frost, Arthur A. and Pearson, 

R. G. Kinetics and Mechanism; A Study of Homogeneous Chemical 

Reactions. 2nd ed. New York, John Wiley and Sons, Inc., 1961); (v) 

in studies of individual response and learning functions in psychol-

ogy and in operations research models of advertising-sales relation-

ships (see references in Rao, A. G. Quantitative Theories in 

Advertising. New York, John Wiley and Sons, Inc., 1970). 

An hour or two spent on this differential equation offers an 

opportunity for students to review many parts of the course (inverse 

functions, the Fundamental Theorem, integration of a rational func-

tion, relationships between logarithms and exponentials, sketching 

the graph of a function with special attention to the asymptotic 

limiting population size t -� ��). But the logistic example enables 

the instructor also to make other useful points: that mathematics 

is widely applied in not only the physical sciences and engineering, 
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but also In the biological, management, and social sciences, and 

that the same piece of mathematics (the logistic differential equa-

tion) often makes an appearance in many different disguises and con-

texts. Finally, one can point out the progression from simple to 

more complex models (from pure exponential population growth to 

logistic growth) as one strives to develop mathematical models that 

better describe real-world phenomena and data, and one may conclude 

by pointing out that the logistic itself can be significantly im-

proved by generalizations that take account of the age structure of 

the population and of stochastic and other complicating features of 

the growth process. 

Mathematics 2. Calculus II. 

[Prerequisite: Mathematics 1] Mathematics 2 develops the 
techniques of single-variable calculus begun in Mathematics 1 and 
extends the concepts of function, limit, derivative, and integral 
to functions of more than one variable. The treatment is intended 
to be intuitive, as in Mathematics 1. 

COURSE OUTLINE 

1. Techniques of integration. (9 hours) Integration by 

trigonometric substitutions and by parts; inverse trigonometric 

functions; use of tables and numerical methods; improper integrals; 

volumes of solids of revolution. 

2. Elementary differential equations. (7 hours) 

3. Analytic geometry. (10 hours) Vectors; lines and planes 

in space; polar coordinates; parametric equations. 

4. Partial derivatives. (5 hours) 

5. Multiple integrals. (5 hours) 

COMMENTARY ON MATHEMATICS 2 

1. Techniques of integration. The development of formal inte-

gration has been kept to the minimum necessary for intelligent use of 

51 



tables. 

At the beginning of the course the instructor should review 

briefly the concepts of derivative, antiderivative, and definite 

integral, and should emphasize the relationships which hold among 

them (Fundamental Theorem). The importance of the antiderivative as 

a tool for obtaining values of definite integrals makes it desirable 

to have a sizable list of functions with their derivatives. This 

should motivate the study of the inverse trigonometric functions and 

the further development of integration methods through trigonometric 

substitutions and integration by parts. We recommend the use of the 

latter technique to obtain some of the reduction formulas commonly 

appearing in integral tables. 

The instructor should point out that not all elementary func-

tions have elementary antiderivatives and should use this fact to 

motivate the study of numerical methods for approximating definite 

integrals (trapezoidal rule, Simpson�s rule). If students have 

access to a computer, they should be required to evaluate at least 

one integral numerically with programs they have written. 

The improper integral with infinite interval of integration 

should be introduced. Comparison theorems should be discussed in-

formally as there is not enough time for an excursion into theory. 

If additional time can be spared, the improper integral for a func-

tion with an infinite discontinuity in the interval of integration 

may be considered. 

The method of "volumes by parallel slices" from Mathematics 1 

should be applied here to find the volume of solids of revolution by 

the disk method. 

2. Elementary differential equations. Solution of differen-

tial equations is a natural topic to follow a unit on formal integra-

tion, because it extends the ideas developed there and gives many 

opportunities to practice integration techniques. The coverage 

recommended below provides only a brief introduction to the subject, 

and it is intended that examples be simple and straightforward with 

time allowed for a variety of applications. 

a. First-order eouations. The notion of tangent field, 

solution curve. Separable equations. Linear homogeneous equations 

52 



of first order. Applications: orthogonal trajectories, decay and 

mixing problems, falling bodies. 

b. Second-order linear equations with constant coeffi-

cients . Homogeneous case, case of simple forcing or damping func-

tion; initial conditions. Applications: harmonic motion, electric 

circuits. These topics will require a brief discussion of the com-

plex exponential function and DeMoivre�s theorem. 

3. Analytic geometry. Vectors and vector operations (sums, 

multiples, inner products; i, j, £) should be introduced at the 

beginning of this unit because they greatly simplify the analytic 

geometry of lines and planes in 3-dimensional space. It is desir-

able to discuss the algebraic laws for vector operations, but proofs 

should be kept informal. The efficiency of vector notation can be 

illustrated by proving one or two theorems from elementary geometry 

by vector methods, e.g., that the three medians of a triangle inter-

sect in a point. 

Equations of lines and planes in 3-dimensional space should 

first be obtained in vector form and then translated into scalar 

equations. The students should be able to solve problems involving 

parallelism, orthogonality, and intersections; they should be famil-

iar with the derivation (by vector methods) of the formula for the 

distance from a point to a plane. 

A very brief introduction to polar coordinates is suggested. 

Students should learn how to draw simple polar graphs and to convert 

from x,y to r,9 and vice versa; they should be able to compute 

areas using polar coordinates. 

The brief unit on parametric equations should include para-

metric representation of curves, motion along curves, velocity, 

acceleration, and arc length. 

4. Partial derivatives. This section is intended to provide a 

basic acquaintance with functions of two or three variables and with 

the concept of and notation for partial derivatives. 

Examples of functions of two or three variables should be 

given, and methods of representing such functions as surfaces by 

means of level curves or level surfaces should be shown. The partial 

derivatives fx(a,b) and f^(a,b) should be defined and explained 
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geometrically as slopes of appropriate curves in the planes y = b 

and � = a, respectively. The concept of a tangent plane to a sur-

face at a point should be introduced. In particular, the tangent 

plane, if it exists, is generated by the tangent lines in the x- and 

y-directions. Let these be, respectively, 

z = c + o / ( x - a ) , y = b 

and 

� = c + g(y - b ) , � = a, 

where c = f(a,b), a = fx(a,b), � = f (a,b). The normal � to 

the plane must therefore be perpendicular to the directions i + a£ 
—I —I —» —» —t —� and j + pk; hence � = - oii. - Pj + k, and the tangent plane has 

the equation 

� = cKx - a) + p(y - b) + c. 

Extremum problems may be treated briefly as follows: At a 

point (a,b,c) where � = f(x,y) has a maximum or minimum value, 

the tangent plane, if it exists, must be parallel to the xy-plane. 

This gives the necessary conditions that f (a,b) and f (a,b) both 

� y 
vanish at an interior extremum. Examples should be given to show 

that this condition is not sufficient. The second derivative test for 

extrema may be stated and illustrated by examples. Applications 

should be considered, including the method of least squares. 

Topics such as the general concept of differentiability, the 

chain rule, and implicit functions are not included. (If it is pos-

sible to spend another hour or two on this section, it would be 

worthwhile to invest the time in studying the directional derivative 

for � = f(x,y), noting that the directions of greatest increase of 

the function are orthogonal to level curves.) 

5. Multiple integrals. The notions of double and triple inte-

grals should be introduced through consideration of areas, volumes, 

or moments. Evaluation of double integrals by means of iterated 

integrals can be made plausible by calculating the volume of a solid 

by integrating the cross-sectional areas. Computations in both rec-

tangular and polar coordinates should be included. 
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Mathematics 3. Elementary Linear Algebra. 

This course is an introduction to the algebra and geometry of 
R3 and its extension to R n . Most students electing Mathematics 3 
will have studied some calculus, but Mathematics 2 need not be con-
sidered a prerequisite. 

Since the content and methods of linear algebra are new to 
most students, this course should begin by emphasizing computation 
and geometrical interpretation in R-*, to allow the student time to 
absorb unfamiliar concepts. In the outline below, the first 18 
hours are devoted to this phase of the course. During the second 
half of the course, many of the same ideas are re-examined and ex-
tended in R n, so that theorem-proving techniques can be developed 
gradually. Classroom experience has shown that the two outlines 
given for Mathematics 3 in the original GCMC report are too exten-
sive, so the content of this outline has been reduced. Students who 
need to go further in linear algebra should resume their study of 
this subject in Mathematics 6L. 

In selecting topics for this first course in linear algebra we 
confirm the judgments of the 1965 GCMC report: (1) the course con-
tent should be as geometrical as possible to offset its natural 
abstractness; (2) the treatment of determinants should be very brief; 
(3) the next topics to abbreviate under pressure of limited time are 
abstract vector spaces and linear transformations. 

To prepare students adequately for Mathematics 4, this course 
must provide a knowledge of vectors in R n, geometry in R n, linear 
mappings from R n into R m and their matrix representations, matrix 
algebra, and determinants of small order. These topics, coupled with 
the solution of systems of linear equations, also provide a very use-
ful course for students in the social and life sciences, and applica-
tions to those subjects serve to enliven the course. This much can 
be accomplished in one semester, but careful planning is required, 
and the degree of generality attempted in this first course must be 
controlled. For most classes it will be necessary to defer to Mathe-
matics 6L consideration of such topics as � � � determinants, eigen-
values and eigenvectors, canonical forms, quadratic forms, orthogonal 
mappings, and the spectral theorem. 

The instructor is expected to use judgment in adjusting the 
level of this course to the ability of his class by deciding upon a 
proper balance between concreteness and generality. Not all theorems 
have to be proved, but all should be motivated convincingly and illus-
trated amply. Coordinate-free methods should be used for efficiency 
and generality in definitions, proofs, and derivations, but students 
should also be required to perform computations with �-tuples. The 
examples developed early in the course for R^ and R^ should be 
carried along as illustrations in R n . 
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COURSE OUTLINE 

56 

1. Vector algebra and geometry of R . (7 hours) Vector sum 

and scalar multiple, with geometric interpretations. Basic proper-

ties of vector algebra, summarized in coordinate-free form. Linear 3 
combinations of vectors; subspaces of R . Points, lines, and planes 
as translated subspaces. Vector and cartesian equations of lines and 

3 3 
planes in R . Dot product in R ; Euclidean length, angle, orthogon-
ality, direction cosines. Projection of a vector on a subspace; the 

Gram-Schmidt process; vector proofs of familiar geometric theorems. 
3 

Cross product in R , interpreted geometrically; the triple scalar 

product and its interpretation as the volume of the associated paral-

lelepiped . 

2. Systems of linear equations. (4 hours) Geometric inter-

pretation of one linear equation in three variables and of a system 

of m linear equations; geometric description of possible solutions. 

Systems of m linear equations in � variables; solution by Gaus-

sian elimination. Matrix representation of a linear system. Analy-

sis of Gaussian elimination as the process of reducing the matrix to 

echelon form by three basic row operations (transposition of two 

rows, addition of one row to another, multiplication of a row by a 

nonzero scalar), followed by backward substitution. The consistency 

condition; use of an echelon form of the matrix of the system to 

obtain information about the existence, uniqueness, and form of the 

solution. 
3 

3. Linear transformations on R . (7 hours) Linear dependence 
and independence; the use of Gaussian elimination to test for linear 

3 
independence. Bases of R ; representation of a vector relative to a 

2 3 
chosen basis; change of basis. Linear transformations on R and R ; 
matrix representation relative to a chosen basis. Magnification of 

2 
area by a linear transformation on R ; 2 � 2 determinants. Magnifi-

3 
cation of volume by a linear transformation on R ; 3 X 3 determinant 

expressed as a triple scalar product and as a trilinear alternating 

form. The algebra of 3 X 1 and 3 x 3 matrices, developed as a rep-

resentation of the algebra of vectors and linear transformations. 

Extension to m � � matrices; sum, scalar multiple, and product of 

matrices. 
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4. Real vector spaces. (8 hours) R as a vector space; sub-

spaces of R�. Linear independence, bases, standard basis of R n. 

Representation of a linear mapping from R n to R m by an m � � matrix 

relative to standard bases. Range space and null space of a linear 

mapping from R n to R m; vector space interpretation of the solution 

of a system of linear equations in � variables, homogeneous and 

nonhomogeneous. Axiomatic definition of a vector space over R. A 

variety of examples in addition to Rn, such as polynomial spaces, 

function spaces, the space of m � � matrices, solutions of a homo-

geneous s stem of linear equations, solutions of a linear homogeneous 

differential equation with constant coefficients. Subspaces; linear 

combinations; sum and intersection of subspaces. Linear dependence, 

independence; extension of a linearly independent set of vectors to 

a basis. Basis and dimension; relation of bases to coordinate 

systems. 

5. Linear mappings. (6 hours) Linear mappings of one real 

vector space into another. Images and preimages of subspaces; numer-

ous examples to illustrate the algebra of mappings. Range space and 

null space of a mapping and their dimensions. Nonsingularity. Matrix 

representations of a linear mapping relative to chosen bases; review 

of matrix algebra and its relation to the algebra of mappings. Impor-

tant types of square matrices, including the identity matrix, non-

singular matrices, elementary matrices, diagonal matrices. The rela-

tion of elementary matrices to Gaussian elimination, row operations, 

and nonsingular matrices. Rank of a matrix; determination of rank 

and computation of the inverse of a nonsingular matrix by elementary 

row operations. 

6. Euclidean spaces. (4 hours) Real inner products intro-

duced axiomatically; examples. Schwarz inequality; metric concepts 

and their geometric meaning in R n. Orthogonality, projections, the 

Gram-Schmidt process, orthogonal bases. Proofs of geometric theorems 
� 

in R . 

7. Determinants. (optional) If time is available, the proper-

ties and geometric meaning of 2 X 2 and 3 X 3 determinants may be 

used to motivate a brief treatment of � � � determinants. Emphasis 

should be given to properties of determinants that are useful in 
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matrix computations. 

COMMENTARY ON MATHEMATICS 3 

3 

1. Vector algebra and geometry of R . The primary objectives 
3 of this first section are to develop geometric insight into R and 

to gain experience in the methods of vector algebra. Vectors should 

be introduced both as ordered triples and as translations, the latter 

leading naturally to a coordinate-free interpretation. Algebraic 

properties of vectors should be stated in coordinate-free form; later 

in the course they can be taken as axioms for an abstract vector 

space. The geometry of lines and planes should be stressed, as 

should the geometric meanings of the dot and cross product. The 

triple scalar product should be shown to be an alternating trilinear 

form, later to be called a 3 X 3 determinant. 

2 . Systems of linear equations. The problem of determining 
3 

the subspace spanned by a given set of vectors in R leads directly 

to a system of m linear equations in three variables. The solu-

tions of such a system can first be interpreted geometrically as 

intersections of translated subspaces to provide insight for the con-

sideration of m � � systems. To solve a system of m linear equa-

tions in � variables, Gaussian elimination provides an effective 

algorithm that should be stressed as a unifying computational method 

of linear algebra. The system AX = Y can be represented by the 

augmented matrix (A|Y). A succession of elementary row operations 

can be used to replace the matrix (A|Y) by (E | Z), where �  is 

in row echelon form. The solutions of AX = Y coincide with those 

of EX = � and are easily obtained by backward substitution since 

�  is in row echelon form. At this stage the major emphasis should 

be concrete and computational. Formal representation of elementary 

row operations by elementary matrices and the concept of row equiva-

lence are considered in Section 5. For some classes it may be appro* 

priate to suggest that the operations discussed above can be carried 

out with complex numbers as well as with real numbers. 
3 

3. Linear transformations on R . Linear independence, basis, 

linear transformations, and matrix representations are introduced 
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concretely here and then are repeated in the next section for R and 

for the general vector spaces to provide a gradual, spiral develop-

ment of these important concepts. 

Determinants are introduced geometrically for the 2 X 2 and 

3 X 3 cases. Properties of these determinants should be observed in 

a way that facilitates generalization to � � � determinants, perhaps 

in a later course. 

Matrix algebra arises naturally as a representation of the 3 

algebra of vectors and linear transformations on R and then is 

easily generalized to matrices of arbitrary size. 

4. Real vector spaces. Consideration of R n can be motivated 

by a geometric interpretation of the algebra of m � � matrices. The 

basic concepts of linear algebra in R n should be studied briefly as 
3 

natural extensions of the same concepts in R . The stage is then set 

for a general study of real vector spaces in coordinate-free form, 

illustrated amply by a wide variety of familiar examples. Theorems 

of various degrees of difficulty can now be proved for any finite-

dimensional vector space, and students can be expected to prove some 

of them. 

The concepts of linear independence, basis, and dimension need 

to be illustrated with many examples. The student should understand 

that questions about linear independence reduce to questions about 

the solution of a system of linear equations to which Gaussian elimi-

nation provides an answer. The same method can be used to express a 

given vector in terms of a given basis. 

A brief mention of complex vector spaces is appropriate for 

some classes. 

5. Linear mappings. Properties of linear mappings, including 

rank and nullity and their relation to the dimension of the domain 

space, should now be treated generally. Prove that if R and � 

are nonsingular, then the rank of RST equals the rank of S. The 

isomorphism of matrix algebra with the algebra of linear transforma-

tions should be exploited. Elementary matrices, one for each of the 

three types of elementary row operations, can be used to effect row 

operations on matrices. A matrix is nonsingular if and only if it 

is the product of elementary matrices. For some nonsingular P, PA 
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is in echelon form. By observing that the column rank of a matrix in 

echelon form is the number of nonzero rows, one can show that the row 

rank and the column rank of any matrix are equal. Elementary row 

operations should be used to develop a constructive method for com-

puting the inverse of a nonsingular matrix. 

6. Euclidean spaces. The coordinate-free formulation of a 

real inner product as a bilinear, symmetric, positive-definite func-

tion from V � V to R, where V is a vector space over R, can be 3 

viewed as a natural abstraction of the dot product in R . Its role 

as a source of all metric concepts should be emphasized. The Schwarz 

inequality should be derived in coordinate-free from and then inter-

preted concretely in various inner product spaces to obtain the clas-

sical inequalities. The flavor of this section should be strongly 

geometric. 

Mathematics 4. Multivariable Calculus I. 

[Prerequisites: Mathematics 2 and 3] This course completes a 
four-semester introductory sequence of calculus and linear algebra, 
building on the intuitive notions of multivariable calculus from 
Mathematics 2 and the linear algebra of Mathematics 3. The four 
semesters contain all the topics that seem to us to be essential for 
every student who has only this much time to spend on calculus; sub-
sequently, students with various interest will need different courses. 

A considerable advance in conceptual depth should be possible 
in Mathematics 4, but there is not enough time for full formal proofs 
of the theorems; these proofs are not needed except by students who 
are going at least as far as Mathematics 12, and their omission makes 
it possible to cover more topics here. Since maximum use should be 
made of Mathematics 3 and since some of the material suggested here 
is not yet standard, we give a fairly extensive commentary on the 
outline. 

COURSE OUTLINE 

1. Curves and particle kinematics. (5 hours) 

2. Surfaces; functions from R� to R̂ ". (7 hours) 

3. Taylor�s theorem for f: R m -. R 1. (5 hours) 
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4. Sequences, series, power series. (6 hours) 

5. Functions from R m to R n (tn, � S 3). (2 hours) 

6. Chain rule. (5 hours) 

7. Iterated and multiple integrals. (6 hours) 

COMMENTARY ON MATHEMATICS 4 

1. Curves. A (parametrically represented) curve in R n is 

thought of here as the range of a function f: R��� -< R n (with princi-

pal emphasis on � = 2, 3). Set � = (�^,,.,,�^) = f(t). The idea 

of lim f(t) = a can be introduced through lim If(t) - a| = 0 : 
t-�� t-� �  � � 

this limit is the same as the component-by-component limit. Conti-

nuity can be defined via lim f(t) = ffa). The derivative of f 
t-� �  

2 3 is associated with the tangent vector. A curve in R or R can be 

thought of as the path of a particle; the first and second deriva-

tives with respect to time are then interpreted as velocity and 

acceleration. At this point plane curves should be reviewed with 

attention to curve tracing and convexity. The present point of view 

makes it easy to derive the reflection properties of the conic sec-

tions: for example, if a and b are the foci of an ellipse and � 

is a point on the ellipse, then 

|x - a| + |x - b| = k. 

Differentiate with respect to the parameter t, using 

d k i = _ 1 _ h . &\ 
dt |?| V at)� 

to obtain 

|x - a| = � V |x - b | � 
� - b 

where � = unit tangent vector. This implies that the rays to the 

foci from a point on the ellipse make equal angles with the tangent 

at that point. 

2. Surfaces. Consider functions f: R� -� R^ with emphasis on 

the case m = 2, interpreting the graph of such a function as a sur-
3 m 

face in R . The Euclidean norm |���| in R is the most useful, but 
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it is sometimes also useful to have the maximum norm ||���|| and the 

inequality ||xj[ s jxj . The limit of f: R m -� R* at a should be 

defined, and continuity should be defined by lim f(x) = f(a). The 
3?->a* 

derivative J of f at a can be introduced as the linear trans-

formation from R m to R satisfying 

f(x) = f(a) + J(x - a) + o(|x - a|) 

(but the o-notation itself should not be introduced unless there, is 

time to get the students thoroughly used to it). Thus with R m as a 

space of column vectors, f�(a) is a 1 X m matrix (or row vector), 

also called the gradient. This should be illustrated especially for 

m = 2 and compared with the treatment of the tangent plane in Mathe-

matics 2. Here J = grad f I-, _ -. = (f. (a), f (a)), where 

� — a i. £. 
f, (a) = ^-|_, _ . The directional derivative is the rate of in-
i dx^ x = a 

crease of f(x) in the direction of a given unit vector t*, namely 

t�grad f. The notation of differentials should be at least men-

tioned since books on other subjects will presumably continue to use 

it. From the present point of view, df = v-grad f, where � is an 

arbitrary vector, conventionally denoted by � dx + ] dy. The grad-

ient is a vector in the direction of maximal rate of increase and is 

orthogonal to level lines. 

In general, J is the 1 X m matrix (row vector) with compo-

nents 1_. _ _, , i = 1, m, and the idea of the directional 

ox^ x — a 

derivative and of the gradient extend to the general case. 

It is desirable to use the linear approximation also for non-

geometric applications, in particular to estimate the effect on the 

computed value of a function resulting from small errors in the 

variables (conventionally done in differential notation). 

The Implicit Function Theorem for f(x,y) = 0 should be 

treated geometrically. If J is not the zero vector, the level 

line � = 0 of the surface � = f(x,y) defines a function y = g(x) 

locally so that f(x,g(x)) = 0 (this should be treated with a 

picture, not a proof). The equation 4^ = - ~ V ~ ^ follows. r » r -i dx 8x 3y 
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3. Taylor�s theorem. Begin with f: R -> R . An easy 

approach to the the theorem assumes | f ^ n + ^ ( t ) | < M for 

|t - a| < |x - a|; repeated integration on (a,x) yields 

k=0 

where 

Mix - a|" 
(n+1)! 

n+1 
|Rn(x)| < 

Typical examples: binomial, sine, cosine, exponential, logarithm, 

arctangent. Such examples lead naturally to the idea of convergence 

of an infinite series. 2 1 

As an application one can expand f: R -» R to second-degree 

terms, first with respect to � and then with respect to y, and 

in reverse sequence; assuming continuous third derivatives one then 

shows that 

Taylor�s theorem can now be derived for f: R -» R and 

applied to extreme value problems. (Extreme value problems for 

f: R m - R 1, m > 2, should be treated lightly, if at all.) 

4. Sequences, series, power series. It is appropriate to 

introduce the epsilon and neighborhood definitions of limit of se-

quences and series of constants, but little attention need be paid 

to conditional convergence; in the context of this course, absolute 

convergence is the significant idea. The comparison test, ratio 

test, and integral test can be treated. 

For power series it is important to know that there are an 

interval and a radius of convergence; a useful formula for the 

radius is lim la /a , . 1 , provided the limit exists. The students 
1 � � "� 

should know that the differentiated and integrated series have the 

same interval of convergence as the original series; proofs can be 

omitted unless there is ample time. Applications; for example, 

dydx dxdy � 

2 1 

approximate computation of 
0 

for small � . 
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5. Functions from R m to R n. Interpret f: R m -» R n in 

various ways, e.g., the graph as a subset of R n + m ; representation 

of the range of f as a hypersurface. Interpretation by vector 
3 3 

fields, e.g., stationary field of force or stationary flow (R -> R ); 
2 3 

parametric representation of a surface (R -� R ); unsteady plane 
3 2 ~* -* 

flow (R -» R ). Limit and continuity of f: L = lixa f (x) means 
x-»a 

lim |f(x) - L| = 0 . Note that this is equivalent to taking the 
aj->0 

limit component by component: setting � = f(x) = (�^,.,.,�^), f 

can be considered as an ordered set of � mappings �^: � -� � 

from R m to r \ and %im f (x) = b if and only if _litj �, (�) = b, , 
x-»a* x->a* * k 

k = 1, n. 

The derivative J of f at a is defined as the linear 

transformation satisfying 

f(x) = f(a) + J(x - a) + o(|x - a|). 

As a linear mapping from R m to R n, J may be represented as an 

� X m matrix, the Jacobian matrix, with elements 

9 c p k , 
J = — - -. — . 
ki dx. �x = a * 

� 

6. Chain rule. Composition of functions f: R m -� R n, 

g: R n -� ; emphasis on application to change in parametic equations 

of a surface under a coordinate transformation (either of domain or 

range space). Lemma (continuity of linear transformation): For 

each linear transformation L there is a constant � such that 

|LX| ^ k | X| for all x. Proof: Let e,, e be unit 
1 1 1 1 1 m 
coordinate vectors. Lx = L(£ x.e.) = � x.Le., whence 

1 1 1 1 
|l3| s s ^ L g J imax|x i | � 2|Le\| = K m a x | X i | s . 

Theorem: If J_, J , J . are the derivatives (Jacobian 
f g gf 

matrices) of f, e, and gf, then J = J J , gf g f 

Proof: Set f(x) = f(a) + Jf(x - a) + o(x - a), 

g(z) = g(b) + Jg(z - S) + o(z - b), 

�  = f(�), b = f(a), and apply the lemma above. 
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Special cases: R -� R -* R , etc. Applications in spaces of 

dimension at most 3, particularly to polar and cylindrical coordi-

nates . 

Coordinate transformations; interpretation of the Jacobian 

determinant det J as a local scale factor for "volume." 

7. Iterated and multiple integrals. A more careful and more 

general treatment than in Mathematics 2. Iterated integrals of 2 3 

functions on R and R (partly review from Mathematics 2). Multiple 

integrals as limits of sums; evaluation by iterated integration. 

Additivity, linearity, positivity of integrals. Application 

to volumes, etc. 

Change of variables of integration; geometrical interpretation 

as coordinate transformation. Special attention to polar and cylin-

drical coordinates. Further applications. 

Mathematics 6L. Linear Algebra. 

[Prerequisite: Mathematics 3] This course is the first 
course in linear algebra proper, although it assumes the material 
on that subject taught in Mathematics 3. It contains the usual 
basic material of linear algebra needed for further study in mathe-
matics except that the rational canonical form is omitted and the 
Jordan form is given only brief treatment. 

We point out that Mathematics 6L and 6M together do not include 
the following topics in the outline of the course Abstract Algebra 
given in the 1965 CUPM report Preparation for Graduate Study in 
Mathematics [page 453]: Jordan-Holder theorem, Sylow theorems, ex-
terior algebra, modules over Euclidean rings, canonical forms of 
matrices, elementary theory of algebraic extensions of fields. 

COURSE OUTLINE 

1. Fields. (4 hours) Definition. Examples: Q, R, C, Q(x), 

R(x), C(x), QCv/2). The fields of 2, 3, 4 elements explicitly con-

structed by means of addition and multiplication tables. Character-

istic of a field. 

2. Vector spaces over fields. (9 hours) Definition. Point 

out that the material of Mathematics 3 and 4 on vector subspaces of 
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R and their linear transformations carries over verbatim to vector 

spaces over arbitrary fields. Linear dependence. Bases, dimension, 

subspaces, direct sums. Linear transformations and matrices. Rank, 

image and kernel. The preceding material is to be thought of as 

review of the corresponding material in Mathematics 3 and 4. Matrix 

representation of linear transformations. Change of basis. A trans-

formation is represented by two matrices A and � if and only if 

there exist nonsingular matrices � and Q so that A = PBQ, i.e., 

if and only if A and � are equivalent. Systems of linear equa-

tions. Relation to linear transformations. Existence and unique-

ness of solutions in both the homogeneous and nonhomogeneous cases. 

Two systems have the same solution if their matrices are row equiva-

lent. Equivalence under elementary row operations of equations and 

matrix, row echelon form, explicit method for calculating solutions. 

3. Triangular and Jordan forms. (6 hours) State without 

proof that C is algebraically closed. Any linear transformation 

(matrix) over C has a triangular matrix with respect to some basis 

(is similar to a triangular matrix). Nilpotent matrices and trans-

formations and their similarity invariants, i.e., such a transforma-

tion is completely determined by vectors v^ on which it is nilpotent 

of index q^, 1 = 1 , r. Definition of eigenvalue. Jordan form 

over C via the theorem: If � is a linear transformation on a vector 

space V over C with dim V < �� and if � has eigenvalues �. with r 1 

multiplicities m., 1 = 1 , r, then V = � V. with T(V.)cV., 

dim = m^, and � - \^ is nilpotent on V\. Elementary divisors 

and minimum polynomial. The Cayley-Hamilton theorem. 

4. Dual spaces and tensor products. (6 hours) The dual space 

of a vector space. Adjoints of linear transformations and transposes 

of matrices. Finite-dimensional vector spaces are reflexive. Tensor 

products of vector spaces as the solution of a universal problem. Be-

havior of tensor product with regard to direct sums, basis of a tensor 

product, change of base fields by means of tensor products. 

5. Forms. (5 hours) Definition of bilinear and quadratic 

forms. Matrix of a form with respect to different bases. A form 

yields a linear transformation of the vector space into its dual. 

General theory of symmetric and skew-symmetric forms, forms over 
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fields where 2 ^ 0 . Diagonalization and the canonical forms, both a 

form and a matrix approach. The case of the real and complex fields, 

Sylvester�s theorem. 

6. Inner product spaces. (6 hours) Definition over R and 

C. Orthogonal bases, Gram-Schmidt process, Schwarz inequality for 

the general case. Review of the treatment of Euclidean space in 

Mathematics 3. Self-adjoint and hermitian linear transformations and 

their matrices with respect to an orthonormal basis. Eigenvalues and 

eigenvectors. All eigenvalues of self-adjoint linear transformations 

are real. The spectral theorem in several equivalent forms both for 

transformations and for matrices. Applications to classification of 

quadrics. Relations between quadratic forms and inner products. 

Positive-definite forms. 

COMMENTARY ON MATHEMATICS 6L 

At all times a computational aspect must be preserved. The 

students should be made aware of the constant interplay between lin-

ear transformations and matrices. Thus they should be required to 

solve several systems of linear equations; find the Jordan form, in-

variant factors, and elementary divisors of numerical matrices; diag-tr 

onalize symmetric matrices and find the matrix � such that PAP 

is diagonal; and also diagonalize symmetric and hermitian matrices by 

means of orthogonal and unitary similarity. In Section 6 the concept 

of tensor product should be exploited in complexifying a real space 

in order to prove that eigenvalues of self-adjoint transformations 

are real. 

A treatment of the Jordan form along the lines of Section 3 can 

be found in Halmos, Paul R, Finite-Dimensional Vector Spaces. 2nd ed. 

New York, Van Nostrand Reinhold Company, 1958. 

In addition to the definitive treatment of tensor products to 

be found in Book I, Chapter II of Bourbaki�s treatise Algebre 

Lineaire (Bourbaki, N. Elements de Mathematiques. Livre I, Chapitre 

II (Algebre Lineaire). 3eme ed. Paris, Hermann et Cie., 1962) or in 

MacLane and Birkhoff�s Algebra (MacLane, Saunders andBirkhoff, Garrett. 

Algebra. New York, The Macmillan Company, 1967), briefer and perhaps 
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more accessible treatments may also be found in Goldhaber and Ehrlich 

(Goldhaber, Jacob K. and Ehrlich, Gertrude. Algebra. New York, The 

Macmillan Company, 1970) and in Sah (Sah, Chih-Han. Abstract Algebra. 

New York, Academic Press, Inc., 1966). 

All theorems dealing with linear transformations should be 

accompanied by parallel statements about matrices. Thus, for ex-

ample, the spectral theorem should be stated in the following three 

forms for real vector spaces: 

1(a). Let V be a real finite-dimensional inner product space 

and let � be a symmetric linear transformation on V. Then V has 

an orthononnal basis of eigenvectors of T, 

1(b). With the same hypotheses as 1(a), there exists a set of 
r 

orthogonal projections � , ..., � of V such that � = ) �.�. 

where \ are the distinct eigenvalues of �. 1 

II. Let A be a symmetric real matrix. Then there exists an 

orthogonal matrix � such that PAP ^ = PAP t r is diagonal. 

The student should understand that these are equivalent theorems 

and, given � or A, should be able to compute �^�^ and � ex-

plicitly in low-dimensional cases. 

In dealing with positive-definite forms, one should point out 

that these are equivalent to inner products and that yet another form 

of the spectral theorem asserts: 

Let A, � be symmetric real matrices with A positive-

definite. Then there is a matrix � such that PAP ^ = I and 

PBP ^ is diagonal. 

Mathematics 6M. Introductory Modern Algebra. 

[Prerequisite: Mathematics 3] This course introduces the stu-
dent to the basic notions of algebra as they are used in modern mathe-
matics. It covers the notions of group, ring, and field and also 
deals extensively with unique factorization. The language of cate-
gories is to be used from the beginning of the course, but the formal 
introduction of categories is deferred to the end of the term. In 
order to make the material meaningful to the student, the instructor 
must devise concrete examples that will relate to the student�s 
earlier experiences. 
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We again point out that Mathematics 6L and 6M together do not 
include the following topics in the outline of the course Abstract 
Algebra given in the 1965 CUPM report Preparation for Graduate Study 
in Mathematics [page 453]: Jordan-Holder theorem, Sylow theorems, 
exterior algebra, modules over Euclidean rings, canonical forms of 
matrices, elementary theory of algebraic extensions of fields. 

COURSE OUTLINE 

1. Groups. (10 hours) Definition. Examples, vector sub-

groups of Rn, linear groups, additive group of reals, permutation 

and transformation groups, cyclic groups, groups of symmetries of 

geometric figures. Subgroups. Order of an element. Theorem: 

Every subgroup of a cyclic group is cyclic. Coset decomposition. 

Lagrange�s theorem. Normal subgroups. Homomorphisms of groups. 

The first two homomorphism theorems. 

2. Rings and fields. (9 hours) Definitions. Examples: 

integers, integers modulo m, polynomials over the reals, the 

rationale, the Gaussian integers, all linear transformations on a 

vector subspace of Rn, rings of functions. Zero divisors and in-

verses. Division rings and fields. Domains, quotient fields as 

solution to a universal problem. Homomorphisms, isomorphisms, mono-

morphisms. Ideals. Congruences in Z. Tests for divisibility by 

3, 11, 9, etc. Fermat�s little theorem: a^ ^ = 1 (mod p), using 

group theory. Residue class rings. 

3. Unique factorization domains. (11 hours) Prime elements 

in a commutative ring. Reminder of unique factorization in �. Ex-

amples where unique factorization fails, say in Z[^/^5~]. Definition 

of Euclidean ring, regarded as a device to unify the discussion for 

� and F[x], F a field. Division algorithm and Euclidean algo-

rithm in a Euclidean ring; greatest common divisor; Theorem: If a 

prime divides a product, then it divides at least one factor. 

Unique factorization in a Euclidean ring. GCD and LCM. Theorem: A 

principal ideal domain is a unique factorization domain. Gauss� 

lemma. Theorem: If D is a unique factorization domain, then D[x] 

is also a unique factorization domain. 

4. Categories of sets. (6 hours) The notion of a category 
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of sets. The categories of sets, groups, abelian groups, rings, 

fields, vector spaces over the reals. Epimorphisras, monomorphisms, 

isomorphisms, surjections, injections. Examples to show that epi-

morphisms may not always be surjections, etc. Exact sequences. 

Functors and natural transformations. The homomorphism theorems of 

group and ring theory in categorical language, monomorphisms and 

epimorphisms in the categories of groups, rings, and fields. 

COMMENTARY ON MATHEMATICS 6M 

From the beginning of the course the language of category 

theory should be used. Thus arrows, diagrams (commutative and other-

wise), and exact sequences should be defined and used as soon as 

possible. For example, the first homomorphism theorem for groups 

should be stated as follows: Let G be a group, f a surjective 

homomorphism of G onto H, and � = ker f. If p: G -» G/N is the 

natural projection, then there exists a unique homomorphism g which 

makes the diagram 

1 

\ 
� 

commutative with exact row and column. 

In addition to extensive treatments of categories in such 

treatises as Mitchell�s (Mitchell, Barry. Theory of Categories. 

New York, Academic Press, Inc., 1965) and MacLane and Birkhoff�s 

(MacLane, Saunders and Birkhoff, Garrett. Algebra. New York, The 

Macmillan Company, 1967), a brief treatment of this subject can also 

be found in Goldhaber and Ehrlich (Goldhaber, Jacob K. and Ehrlich, 

Gertrude. Algebra. New York, The Macmillan Company, 1970). 
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In the section on groups, the general linear and orthogonal 

groups should be introduced and based on the material of Mathematics 

3. The affine group and its relationship to the general linear 

group should be discussed. The students should do a considerable 

number of concrete computations involving groups and counting prob-

lems . 

In Section 2 there is an opportunity to introduce some elemen-

tary number theory: the Euler phi-function counts the number of 

units of the ring Z/(n); a^ 1 1 ^ �  a is a theorem that can be demon-32 

strated by these methods; the divisibility of 2 + 1 by 641 can 

easily be asserted using congruences; calendar and time problems can 

also be introduced to illustrate the notions of congruence and 

ideals. Again, the homework should include many problems of this 

kind so that the student gains some familiarity with the notions 

introduced here. Fields of 2, 4, 3, 9, and � � elements, � a 

prime, should be introduced, at least in the exercises. 

In Section 3 the Euclidean algorithm should be introduced and 

used to calculate the greatest common divisor of large integers and 

of polynomials having degree higher than three. If time permits, 

Euclidean rings different from � and F[x] should be introduced in 

the homework. The integers of certain quadratic number fields are 

especially suitable for this. 

In Section 4 the material of the first three sections must be 

used to illustrate the definitions at each step; when natural trans-

formations are discussed, the "naturality" of the homomorphism 

theorems should be underlined and many examples given. The language 

of categories should be familiar to all students who pursue mathe-

matics beyond this level. This language reveals how much various 

mathematical disciplines have in common and how different disciplines 

may be related to each other. By virtue of its generality, category 

theory is a very valuable source of meaningful conjectures and an 

effort should be made, even at this level, to emphasize this. 
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V. A FOUR-YEAR CURRICULUM 

In the 1965 GCMC report, CUPM presented a curriculum for four 
years of college mathematics. It devoted a considerable amount of 
attention to both upper- and lower-division courses other than basic 
calculus and algebra, indicating their relationships and their sig-
nificance for various kinds of students. The 1965 GCMC report is 
now out of print, but many of its suggestions are still relevant, at 
least to one very common kind of mathematics curriculum. Conse-
quently, CUPM feels that it will be useful to repeat some of its 
suggestions of 1965 with modifications prompted by recent develop-
ments and to reprint some of the course outlines even though exper-
ience has shown they are open to objections such as excessive 
length. 

We have not described a special one-year course in mathematics 
appreciation for students in liberal arts colleges because we think 
that it is better for the student to take Mathematics 1 and 2, 1 and 
2P, or 1 and 3. (A description of the probability course Mathematics 
2P is given in Section VI.) These ways of satisfying a liberal arts 
requirement open more doors for the student than any form of appre-
ciation course, and they are consistent with our view that mathe-
matics is best appreciated through a serious effort to acquire some 
of its content and methodology and to examine some of its applica-
tions . 

A student who has successfully completed Mathematics 1 may 
select Mathematics 2, 2P, or 3 according to his interests. In par-
ticular, many students who are interested in the social sciences 
will choose Mathematics 2P or 3 in preference to Mathematics 2. 

For those students for whom a sequence beginning with Mathe-
matics 1 is not possible or not appropriate, there are several 
possibilities. In the first place, Mathematics 0 and 1 forms a 
reasonable year sequence for students whose preparation will not 
permit them to start with Mathematics 1. In many colleges students 
have been taking and will continue to take a full year course like 
Mathematics 0. (A description of Mathematics 0 is given in Sec-
tion VI.) 

Among the students for whom neither Mathematics 0 nor Mathe-
matics 1 is appropriate we recognize a sizable number who are pre-
paring to become elementary school teachers. Their needs should be 
met by special courses described in the CUPM publication Recommenda-
tions on Course Content for the Training of Teachers of Mathematics 
(1971). 

Finally, there is a rather large number of students who need 
further study of mathematics in order to function effectively in the 
modern world. Some have never had the usual mathematics courses in 
high school, whereas others have not achieved any mastery of the 
topics they studied. These students are older and more mature than 
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high school students, and so they need a fresh approach to the neces-
sary topics, if possible one involving obviously significant applica-
tions to the real world. One suggestion is the course Mathematics A, 
"Elementary functions and coordinate geometry," from the CUPM report 
A Transfer Curriculum in Mathematics for Two-Year Colleges (1969). 
For students who are not ready even for Mathematics A, we suggest the 
less conventional course Mathematics � described in considerable 
detail in the CUPM report A Course in Basic Mathematics for Colleges 
(1971). 

1. Lower-division courses. 

By lower-division courses we mean Mathematics 1, 2, 2P, 3, 4, 
Mathematics 0, and any other basic precalculus courses that are 
offered. Mathematics 1, 2, 3, and 4 have already been described in 
detail. Outlines of Mathematics 0 and of Mathematics 2P appear in 
Section VI reproduced from the 1965 GCMC report. 

2. Upper-division courses. 

The following list of typical courses might be offered once a 
year or, in some cases, in alternate years, to meet the needs of 
students requiring advanced work in mathematics. At many colleges 
some of these upper-division courses are combined into year courses. 
Which of them are offered will depend on the needs of the students 
and special qualifications of the staff. The order is a rough in-
dication of the level. The course outlines for Mathematics 6L and 
6M appear in Section IV and the outlines for the remaining courses 
appear in Section VI. 

Although we describe the upper-division work in terms of semes-
ter courses, these advanced subjects may also be treated by independ-
ent or directed study, tutorials, or seminars. This is especially 
appropriate in a small college where it may not be possible to organ-
ize classes in every subject. 

Mathematics 5. Multivariable Calculus II. This is a calculus 
course to follow Mathematics 4. Two possibilities are (1) a course 
in vector calculus and (2) a course consisting of selected topics in 
analysis. Two examples of the first possibility are quoted from the 
1965 GCMC report in Section VI. An example of the second, appropri-
ate not only for statisticians but also for physical scientists and 
mathematics majors, is quoted from the 1971 CUPM report Preparation 
for Graduate Work in Statistics. 

Mathematics 6L and 6M. Linear Algebra and Introductory Modern 
Algebra. Mathematics 6M is essential for all mathematics majors in-
cluding prospective high school teachers. Both courses are essential 
for students preparing for graduate work in mathematics and are use-
ful for computer science students as well. Many physical science 
students are now finding both courses important, and social science 
students often require the material of Mathematics 6L. 
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Mathematics 7. Probability and Statistics. In place of a one-
semester course recommended in the 1965 GCMC report we now recommend 
the two-semester course in probability and statistics suggested in 
Preparation for Graduate Work in Statistics (1971) and reproduced in 
Section VI. This course is essential for students preparing for 
graduate work in statistics. It is desirable for mathematics majors, 
for mathematically oriented biology or social science students, for 
engineering students, particularly in communication fields or in-
dustrial engineering, and for theoretical physicists and chemists. 

Mathematics 8. Introduction to Numerical Analysis. This course 
is desirable not only for mathematics majors but also for students 
majoring in a science that makes extensive use of mathematics. In 
place of the course outlined in the 1965 GCMC report we now suggest 
the course outlined in Section VI. 

Mathematics 9. Geometry. This course should cover a single 
concentrated geometric theory from a modern axiomatic viewpoint; it 
is not intended to be a descriptive or survey course in "college 
geometry." If the college undertakes the training of prospective 
secondary school teachers, the essential content of this course is 
Euclidean geometry. A more widely ranging full-year course in the 
same spirit is desirable if it is possible. Other subjects which 
provide the appropriate depth include topology, convexity, projective 
geometry, and differential geometry. A serious introduction to 
geometric ideas and geometric proof is valuable for all undergraduates 
majoring in mathematics. 

In Section VI two geometry courses of general appeal are quoted 
from the CUPM report Recommendations on Course Content for the Train-
ing of Teachers of Mathematics (1971). 

Mathematics 10. Applied Mathematics. Although-this course is 
not yet a standard part of the curriculum, it is desirable for mathe-
matics majors to become aware of the ways in which their subject is 
applied. Several versions of such a course—optimization theory, 
graph theory and combinatorial analysis, and fluid mechanics—are 
described in the CUPM report Applied Mathematics in the Undergraduate 
Curriculum (1972) [page 705]. 

Mathematics 11-12. Introductory Real Variable Theory. Prefer-
ably this is a one-year course, but if necessary it may be offered in 
a one-semester version or combined with complex analysis in a one-
year course. The student should learn to prove the basic proposi-
tions of real variable theory. 

At least one semester is desirable for any mathematics major. 
Mathematics 11-12 is essential for students preparing for graduate 
work in mathematics. On completion of Mathematics 12 a student 
should be ready to begin a graduate course in measure and integration 
theory or in functional analysis. The topics and skills are basic in 
such fields of analysis as differential equations, calculus of varia-
tions, harmonic analysis, complex variables, probability theory, and 
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many others. We feel an extensive coverage of subject matter, es-
pecially in the directions of abstract topologies and functional 
analysis, should be sacrificed in favor of active practice by the 
student in proving theorems. For an outline of Mathematics 11-12, 
see Section VI. 

Mathematics 13. Complex Analysis. This course contains stand-
ard material in the elementary theory of analytic functions of a 
single complex variable. 

Many prefer to have this course precede Mathematics 11-12. It 
is important for mathematics majors, engineering students, applied 
mathematicians, and theory-oriented students of physics and chemistry. 
For an outline of Mathematics 13 see Section VI. 

VI. ADDITIONAL COURSE OUTLINES 

Mathematics 0. Elementary Functions and Coordinate Geometry. (3 or 
4 semester hours) (Reprinted from the 1965 GCMC report) 

1. Definition of function and algebra of functions. (5 les-

sons) Various ways of describing functions, examples from previous 

mathematics and from outside mathematics, graphs of functions, alge-

braic operations on functions, composition, inverse functions. 

2. Polynomial and rational functions. (10 lessons) Defini-

tions, graphs of quadratic and power functions, zeros of polynomial 

functions, remainder and factor theorems, complex roots, rational 

functions and their graphs. 

3. Exponential functions. (6 lessons) Review of integral and 

rational exponents, real exponents, graphs, applications, exponential 

growth. 

4. Logarithmic functions. (4 lessons) Logarithmic function 

as inverse of exponential, graphs, applications. 

5. Trigonometric functions. (10 lessons) Review of numerical 

trigonometry and trigonometric functions of angles, trigonometric 

functions defined on the unit circle^ trigonometric functions defined 

on the real line, graphs, periodicity, periodic motion, inverse 

trigonometric functions, graphs. 
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6. Functions of two variables. (4 lessons) Three-dimensional 

rectangular coordinate system, sketching graphs of � = f(x,y) by 

plane slices. 

Mathematics 2P. Probability. (3 semester hours) (Reprinted from 
the 1965 GCMC report) [Prerequisite: Mathematics 1] 

1. Probability as a mathematical system. (9 lessons) Sample 

spaces, events as subsets, probability axioms, simple theorems, 

finite sample spaces and equiprobable measure as special case, bi-

nomial coefficients and counting techniques applied to probability 

problems, conditional probability, independent events, Bayes� 

formula. 

2. Random variables and their distributions. (13 lessons) 

Random variables (discrete and continuous), probability functions, 

density and distribution functions, special distributions (binomial, 

hypergeometric, Poisson, uniform, exponential, normal, etc.), mean 

and variance, Chebychev inequality, independent random variables, 

functions of random variables and their distributions. 

3. Limit theorems. (4 lessons) Poisson and normal approxi-

mation to the binomial, Central Limit Theorem, Law of Large Numbers, 

some statistical applications. 

4. Topics in statistical inference. (7-13 lessons) Estima-

tion and sampling, point and interval estimates, hypothesis-testing, 

power of a test, regression, a few examples of nonparametric methods. 

Remarks: 

For students with only the minimum prerequisite training in 
calculus (Mathematics 1), about six lessons will have to be devoted 
to additional calculus topics needed in Mathematics 2P: improper 
integrals, integration by substitution, infinite series, power series, 
Taylor�s expansion. For such students there will remain only about 
seven lessons in statistical inference. Students electing Mathe-
matics 2P after Mathematics 4 will be able to complete the entire 
course as outlined above. 
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Mathematics 5. Multivariable Calculus II, (3 semester hours) 
(Conventional version of Advanced Multivariable Calculus as printed 
in the 1965 GCMC report) [Prerequisites: Mathematics 1, 2, 3, 4] 

The differential and integral calculus of Euclidean 3-space, 
using vector notation, leading up to the formulation and solution 
(in simple cases) of the partial differential equations of mathe-
matical physics. Considerable use can and should be made of the 
students� preparation in linear algebra. 

1. Vector algebra. (4 lessons) Dot and cross product, identi-

ties. Geometric interpretation and applications. Invariance under 

change of orthogonal bases. 

2. Differential vector calculus. (8 lessons) Functions from 

V to V , continuity. Functions from V to V , differential geometry 
m � 1 3 

of curves. Functions from V^ to V^, scalar fields, directional de-

rivative, gradient. Functions from V^ to V^, vector fields, diver-

gence, curl. The differential operator V, identities. Expression 

in general orthogonal coordinates. 

3. Integral vector calculus. (15 lessons) Line, surface, and 

volume integrals. Change of variables. Green�s, divergence, and 

Stokes� theorems. Invariant definitions of gradient, divergence, and 

curl. Integrals independent of path, potentials. Derivation of the 

Laplace, heat, and wave equations. 

4. Fourier series. (6 lessons) The vector space of square-

integrable functions, orthogonal sets, approximation by finite sums, 

notion of complete orthogonal set, general Fourier series. Trigono-

metric functions as a special case, proof of completeness. 

5. Boundary value problems. (6 lessons) Separation of vari-

ables. Use of Fourier series to satisfy boundary conditions. Numer-

ical methods. 

Mathematics 5. Multivariable Calculus II. (3 semester hours) 
(Alternate version of Advanced Multivariable Calculus employing dif-
ferential forms as printed in the 1965 GCMC report) [Prerequisites: 
Mathematics 1, 2, 3, 4] 

A study of the properties of continuous mappings from E n to E m , 
making use of the linear algebra in Mathematics 3, and an introduction 
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to differential forms and vector calculus based upon line integrals, 
surface integrals, and the general Stokes theorem. Application 
should be made to field theory, elementary hydrodynamics, or other 
similar topics so that some intuitive understanding can be gained. 

1. Transformations. (15 lessons) Functions (mappings) from 

� to � , for n, m = 1, 2, 3, 4. Continuity and implications of 
� m 

continuity; differentiation and the differential of a mapping as a 

matrix-valued function. The role of the Jacobian as the determinant 

of the differential; local and global inverses of mappings and the 

Implicit Function Theorem. Review of the chain rule for differentia-

tion and reduction to matrix multiplication. Application to change 

of variable in multiple integrals and to the area of surfaces. 

2. Differential forms. (6 lessons) Integrals along curves. 

Introduction of differential forms; algebraic operations; differen-

tiation rules. Application to the change of variable in multiple 

integrals. Surface integrals; the meaning of a general k-form. 

3. Vector analysis. (4 lessons) Reinterpretation in terms of 

vectors; vector function as mapping into E^; vector field as mapping 

from E.j into E^. Formulation of line and surface integrals (1-forms 

and 2-forms) in terms of vectors. The operations Div, Grad, Curl, 

and their corresponding translations into differential forms. 

4. Vector calculus. (8 lessons) The theorems of Gauss, 

Green, Stokes, stated for differential forms and translated into 

vector equivalents. Invariant definitions of Div and Curl. Exact 

differential forms and independence of path for line integrals. 

Application to a topic in hydrodynamics, or to Maxwell�s equations, 

or to the derivation of Green�s identities and their specializations 

for harmonic functions. 

5. Fourier methods. (6 lessons) The continuous functions as 

a vector (linear) space; inner products and orthogonality; geometric 2 

concepts and analogy with E^. Best L approximation; notion of an 

orthogonal basis and of completeness. The Schwarz and Bessel in-

equalities. Generalized Fourier series with respect to an ortho-

normal basis. Treatment of the case { e i n X } and the standard trigo-

nometric case. Application to the solution of one standard boundary 

value problem. 
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Mathematics 5. Multivariable Calculus II. (3 semester hours) 
(Reprint of Selected Topics in Analysis from the 1971 report 
Preparation for Graduate Work in Statistics) 

The Panel on Statistics feels that the course Mathematics 5 
presented in the 1965 GCMC report is not particularly appropriate 
for statistics students, and it has recommended that a course in-
cluding the special topics listed below be offered in place of Mathe-
matics 5 for students preparing for graduate work in statistics. 

The course it recommends gives the student additional analytic 
skills more advanced than those acquired in the beginning analysis 
sequence. Topics to be included are multiple integration in � 
dimensions, Jacobians and change of variables in multiple integrals, 
improper integrals, special functions (beta, gamma), Stirling�s 
formula, Lagrange multipliers, generating functions and Laplace 
transforms, difference equations, additional work on ordinary dif-
ferential equations, and an introduction to partial differential 
equations. 

It is possible that the suggested topics can be studied in a 
unified course devoted to optimization problems. Such a course, at 
a level which presupposes only the beginning analysis and linear 
algebra courses and which may be taken concurrently with a course in 
probability theory, would be a valuable addition to the undergraduate 
curriculum, not only for students preparing for graduate work in 
statistics but also for students in economics, business administra-
tion, operations research, engineering, etc. Experimentation by 
teachers in the preparation of written materials and textbooks for 
such a course would be useful and is worthy of encouragement. 

Mathematics 7. Probability and Statistics. (6 semester hours) 
(Reprinted from the 1971 report Preparation for Graduate Work in 
Statistics) 

This key course is a one-year combination of probability and 
statistics. On the semester system, a complete course in probability 
should be followed by a course in statistics. If the course is given 
on a quarter system, it may be possible to have a quarter of proba-
bility, followed by two quarters of statistics or by a second quarter 
of statistics and a third quarter of topics in probability and/or 
statistics. In any case, these courses should be taught as one 
sequence. 

Prerequisites for this one-year course are Mathematics 1, 2, 
and 4 (Calculus). Students should also be encouraged to have taken 
Mathematics 3 (Elementary Linear Algebra). [For detailed course 
descriptions see Section IV.] All students in this course, whether 
they be prospective graduate students of statistics, other mathematics 

79 



majors, or students from other disciplines, should be encouraged to 
take the full year rather than only the first-semester probability 
course. Almost all students will have studied the calculus sequence 
and perhaps linear algebra without interruption during their first 
two years in college. Although our recommended probability course 
and Mathematics 2P differ only little in content, our course assumes 
the additional maturity and ability of students who have success-
fully completed the three or four semesters of the core curriculum 
described above. 

The probability course should include the following topics: 

Sample spaces, axioms and elementary theorems of proba-

bility, combinatorics, independence, conditional proba-

bility, Bayes1 theorem. 

Random variables, probability distributions, expectation, 

mean, variance, moment-generating functions. 

Special distributions, multivariate distributions, trans-

formations of random variables, conditional and marginal 

distributions. 

Chebychev�s inequality, limit theorems (Law of Large 

Numbers, Central Limit Theorem). 

Examples of stochastic processes such as random walks and 

Markov chains. 

The course in probability should provide a wide variety of ex-
amples of problems which arise in the study of random phenomena. 
With this aim in mind, we recommend that this course be taught so as 
to maintain a proper balance between theory and its applications. 

The time allotted to the probability course will not permit 
detailed treatment of all topics listed above. We recommend that 
such topics as the Central Limit Theorem and the use of Jacobians 
in transformations of random variables be presented without proof. 
Also, discussion of multivariate distributions should include only 
a brief description of the multivariate normal distribution. Random 
walks and Markov chains may serve as useful topics for two or three 
lectures to illustrate interesting applications of probability theory. 
Even though the topics of this paragraph are not treated in depth 
mathematically, we recommend their inclusion to enrich the student�s 
comprehension of the scope of probability theory. 
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The statistics course can be implemented in a variety of ways, 
giving different emphases to topics and, indeed, including different 
topics. Widely divergent approaches are acceptable as preparation 
for graduate work and are illustrated in the statistics books listed 
below, selected from many appropriate texts for this course: 

Brunk, H. D. Introduction to Mathematical Statistics. 2nd ed. 
New York, Blaisdell Publishing Company, 1965. 

Freeman, H. A. Introduction to Statistical Inference. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1963. 

Freund, John E. Mathematical Statistics. Englewood Cliffs, 
New Jersey, Prentice-Hall, Inc., 1962. 

Had ley, G. Introduction to Probability and Statistical Deci-
sion Theory. San Francisco, California, Holden-Day, Inc., 
1967. 

Hoel, Paul G.; Port, Sidney C ; Stone, Charles J. Introduction 
to Statistical Theory. Boston, Massachusetts, Houghton Mifflin 
Company, 1971. 

Hogg, Robert V. and Craig, A. T. Introduction to Mathematical 
Statistics, 3rd ed. New York, The Macmillan Company, 1970. 

Lindgren, B. W. Statistical Theory. 2nd ed. New York, The 
Macmillan Company, 1968. 

Mood, Alexander M. and Graybill, F. A. Introduction to the 
Theory of Statistics, 2nd ed. New York, McGraw-Hill Book 
Company, 1963. 

Despite the diversity of possible approaches, most will include 
the following topics: 

Estimation: consistency, unbiasedness, maximum likeli-

hood, confidence intervals. 

Testing hypotheses: power functions, Type I and II 

errors, Neyman-Pearson lemma, likelihood ratio 

tests, tests for means and variances. 

Regression and correlation. 

Chi-square tests. 

Other topics to be included in the statistics course will 
depend on the available time and method of approach. Possible 
topics include: 

Estimation: efficiency, sufficiency, Cramer-Rao theorem, 

Rao-Blackwell theorem. 
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Linear models. 

Nonparametrie statistics. 

Sequential analysis. 

Design of experiments. 

Decision theory, utility theory, Bayesian analysis. 

Robustness. 

The above list of additional topics for the key course in sta-
tistics is much too large to be adequately covered in its entirety. 
The fact that many topics will have to be omitted or treated super-
ficially gives the statistics course much more flexibility in ap-
proach and coverage than is possible in the probability course. The 
instructor�s choice of topics may be influenced by the following 
factors. Decision theory, Bayesian analysis, and sequential analysis 
dealing with foundations of inference will appeal to the philosophi-
cally inclined students. The Cramer-Rao theorem and the Rao-Blackwell 
theorem appeal to mathematically oriented students and illustrate 
statistical theory. In design of experiments and estimation, one 
has an opportunity to apply techniques of optimization. Nonparametric 
techniques utilize combinatorial probability and illustrate the high 
efficiency that can be attained from simple methods. Analysis of 
variance provides an application of linear algebra and matrix meth-
ods and should interest students who have taken Mathematics 3. 

Detailed outlines for the probability and statistics courses 
have not been presented on the assumption that the choice of texts, 
which is difficult to anticipate, will tend to determine the order 
of presentation and the emphasis in a satisfactory fashion. It may 
be remarked that most statistics texts at this level begin with a 
portion which can be used for the probability course. 

To avoid a formal, dull statistics course and to provide suf-
ficient insight into practice, we recommend that meaningful cross-
reference between theoretical models and real-world problems be 
made throughout the course. Use of the computer will help to ac-
complish this goal. Three reports that are valuable in appraising 
the potential role of computers in statistics courses are: 

Development of Materials and Techniques for the Instructional 
Use of Computers in Statistics Courses. University of North 
Carolina, Chapel Hill, North Carolina, 1971. 

Proceedings of a Conference on Computers in the Undergraduate 
Curricula. The University of Iowa, Iowa City, Iowa, 1970. 

Proceedings of the Second Annual Conference on Computers in 
the Undergraduate Curricula. Dartmouth College, Hanover, New 
Hampshire, 1971. 
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Mathematics 8. Introduction to Numerical Analysis. (3 semester 
hours) [Prerequisites: Mathematics 1, 2, 3, 4] 

1. Introduction. (1 hour) Number representation on a com-

puter, discussion of the various types of errors in numerical pro-

cesses, the idea of stability in numerical processes. 

2. Solution of a single nonlinear equation. (7 hours) Exist-

ence of a fixed point; contraction theorem and some consequences; 

Ostrowski�s point-of-attraction theorem; the rate of convergence for 

successive approximations; Newton�s method: local convergence and 

rate of convergence, convergence theorem in the convex case; secant 

methods, including regula falsi; roots of polynomials: Newton-

Raphson method, Sturm sequences, discussion of ill-conditioning. 

3. Linear systems of equations. (7 hours) Gaussian elimina-

tion with pivoting, the factorization into upper and lower triangu-

lar matrices, inversion of matrices, discussion of ill-conditioning, 

vector and matrix norms, condition numbers, discussion of error 

bounds, iterative improvement, Gaussian elimination for symmetric 

positive-definitive matrices. 

4. Interpolation and approximation. (6 hours) Lagrange 

interpolating polynomial; Newton interpolating polynomial; error 

formula for the interpolating polynomial; Chebychev polynomial approx-

imation; least squares approximation: numerical problem associated 

with the normal equations, the use of orthogonal polynomials. 

5. Numerical integration and differentiation. (6 hours) 

Quadrature based on interpolatory polynomials, error in approximate 

integration, integration over large intervals, Romberg integration 

including development of the even-powered error expansion, error in 

differentiating the interpolating polynomial, differentiation by 

extrapolation to the limit. 

6. Initial value problems in ordinary differential equations. 

(9 hours) Taylor�s series expansion technique; Euler�s method with 

convergence theorem; Runge-Kutta methods; predictor-corrector methods: 

convergence of the corrector as an iteration, local error bound for 

predictor-corrector of same order; general discussion of stability 

using the model problem y� = Ay, consistency and convergence; re-

duction of higher-order problems to a system of first-order problems. 
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Mathematics 9. Geometry. (3 semester hours) (Reprint of Founda-
tions of Euclidean Geometry from the 1971 report Recommendations on 
Course Content for the Training of Teachers of Mathematics) 

The purpose of this course is two-fold. On the one hand it 
presents an adequate axiomatic basis for Euclidean geometry, includ-
ing the one commonly taught in secondary schools, while on the other 
hand it provides insight into the interdependence of the various 
theorems and axioms. It is this latter aspect that is of the greater 
importance for it shows the prospective teacher that there is no one 
royal road to the classical theorems. This deeper appreciation of 
geometry will better prepare the teacher to assess the virtues of 
alternative approaches and to be receptive to the changes in the 
secondary school geometry program that loom on the horizon. 

Courses similar to this have now become commonplace. As a con-
sequence, no great detail should be necessary in this guide. There 
is a greater abundance of appropriate topics than can be covered in 
one course, so some selection will always need to be made. 

Although enough consideration should be given to 3-space to 
build spatial intuition, the major emphasis should be on the plane, 
since it is in 2-space that the serious and subtle difficulties 
first become apparent. The principal defects in Euclid�s Elements 
relate to the order and separation properties and to the complete-
ness of the line. Emphasis should be directed to clarifying these 
subtle matters with an indication of some of the ways by which they 
can be circumvented. The prospective teacher must be aware of these 
matters and have enough mathematical sophistication to proceed to 
new topics with only an indication of how they are resolved. 

The course consists of six parts, after a brief historical in-
troduction and a critique of Euclid�s Elements. The allotment of 
times that have been assigned for these parts are but suggestions to 
be used as a guide, because emphasis will vary with the background 
of the students, the text used, and the tastes of the instructor. 
Prerequisites for the course are a modest familiarity with rigorous 
deduction from axioms, for example as encountered in algebra, and 
the completeness of the real number system. 

1. Incidence and order properties. (8 lessons) In this part 

of the course, after a brief treatment of incidence properties, the 

inherent difficulties of betweenness and separation are discussed. 

The easiest, and suggested, way to proceed is in terms of distance. 

The popular method today is to use the Birkhoff axioms or a modifi-

cation such as given by the School Mathematics Study Group. In addi-

tion, one should give some indication of a synthetic foundation for 

betweenness such as that of Hilbert. A brief experience with a 

synthetic treatment of betweenness is enough to convince the student 
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of the power of the metric apparatus. 

Alternatively, one can begin with a synthetic treatment of 

betweenness and then introduce the metric apparatus. With this 

approach, metric betweenness is a welcome simplification. 

2. Congruence of triangles and inequalities in triangles. 

(8 lessons) It is recommended that angle congruence be based on 

angle measure (the Birkhoff axioms). Yet here too some remarks on 

a synthetic approach are desirable. 

The order of presentation of the congruence theorems can de-

pend on the underlying axiom system used. What is perhaps more 

important is to observe their interrelations. At this point a global 

view of transformations of the plane should receive attention. Ruler 

and compass constructions should be deferred, as the treatment is 

simpler and more elegant after the parallel axiom has been intro-

duced. The triangle inequality and the exterior angle theorem occur 

here. 

3. Absolute and non-Euclidean geometry. (6 lessons) Up to 

this point there has been no mention of the parallel postulate. It 

is desirable to explore some of the attempts to prove it. One should 

prove a few theorems in absolute geometry, in particular ones about 

Saccheri quadrilaterals. Then some theorems in hyperbolic geometry 

can be given, among which the angle-sum theorem for angles in a tri-

angle is most important. A model, without proof, for hyperbolic 

geometry is natural here. 

This part of the course can also be taught after Part 4 when 

Euclid�s parallel axiom and consequences of it have been covered. 

4. The parallel postulate. (8 lessons) There are many 

topics, of central importance in high school, that need to be dis-

cussed in this part of the course. It is desirable to give here, as 

well as in Part 3, considerable attention to the history of the par-

allel axiom. Due to time limitations, it will probably be necessary 

to omit some topics. Nevertheless, some attention should be given 

to: parallelograms, existence of rectangles, Pythagorean theorem, 

angle-sum theorem for triangles, similarity, ruler and compass con-

struction, and an introduction to the notion of area. 

5. The real numbers and geometry. (8 lessons) This part is 
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devoted to matters in which the completeness of the real number 

system plays a role. Some attention must be given to the complete-

ness of the line and the consequences thereof. Archimedes� axiom 

arises naturally here. Important topics are: similarity of tri-

angles for the incommensurable case; circumference; area in general 

and, in particular, area of circles; and, finally, a coordinate 

model of Euclidean geometry. It is possible to give a coordinate 

model of a non-Archimedean geometry at this time. 

6. Recapitulation. (3 lessons) This part is intended to 

give perspective on the preceding sections. It should have a strong 

historical flavor and might well include lectures with outside read-

ing or a short essay. 

Mathematics 9a. Geometry. (Reprint of Vector Geometry from the 
1971 report Recommendations on Course Content for the Training of 
Teachers of Mathematics) 

There are approaches to geometry other than the classical syn-
thetic Euclidean approach, and several of these are being suggested 
for use in both the high school and college curricula. Moreover, 
exposure to different foundations for geometry yields deeper in-
sights into geometry and can serve to relate Euclidean geometry to 
the mainstream of current mathematical interest. It is this latter 
reason which underlies much of the discussion about geometry that is 
now prevalent. There are at least three approaches that merit con-
sideration. 

I. The classical approach of Felix Klein, wherein one begins 
with projective spaces and, by considering successively smaller sub-
groups of the group acting on the space, one eventually arrives at 
Euclidean geometry. A course of this nature might be called projec-
tive geometry, but it should proceed as rapidly as possible to Euclid-
ean geometry. Besides books on projective geometry, other references 
are: 

Artin, Emil. Geometric Algebra. New York, John Wiley and 
Sons, Inc.,� 1957. 

Gans, David. Transformations and Geometries. New York, 
Appleton-Century-Crofts, 1968. 

Klein, Felix. Vorlesungen uber Nicht-Euklidische Geometrie. 
New York, Chelsea Publishing Company, Inc., 1959. 
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Schreier, Otto and Sperner, Emanuel. Projective Geometry of 
� Dimensions. New York, Chelsea Publishing Company, Inc., 
1961. 

(Throughout this outline, references are given because of their con-
tent, with no implication that the level of presentation is appropri-
ate. Indeed, adjustments will normally be necessary.) 

II. The transformation approach, which in some ways is a vari-
ant of Klein�s, uses the Euclidean group to define congruence and 
other familiar concepts. As a further variant of this, one finds 
books which begin with synthetic Euclidean geometry and proceed to 
the Euclidean group. References are: 

Bachmann, F, Aufbau der Geometrie aus dem Spiegelungsbegriff. 
Berlin, Springer-Verlag, 1959. 

Choquet, Gustave. Geometry in a Modern Setting. Boston, 
Massachusetts, Houghton Mifflin Company, 1969. 

Coxford, A. F. and Usiskin, Z. P. Geometry, A Transformation 
Approach, vol. I, II. River Forest, Illinois, Laid law 
Brothers, 1970. 

Eccles, Frank. An Introduction to Transformational Geometry. 
Reading, Massachusetts, Addison-Wesley Publishing Company, 
Inc., 1971. 

III. The vector space approach, the one suggested for this 
course, uses vector spaces as an axiomatic foundation for the inves-
tigation of affine and Euclidean geometry. Through the use of vector 
spaces, classical geometry is brought within the scope of the central 
topics of modern mathematics and, at the same time, is illuminated by 
fresh views of familiar theorems. Some of the references below con-
tain isolated chapters which are relevant to this approach; in such 
cases these chapters are indicated. 

Artin, Emil. Geometric Algebra. New York, John Wiley and 
Sons, Inc., 1957. 

Artzy, Rafael. Linear Geometry. Reading, Massachusetts, 
Addison-Wesley Publishing Company,*Inc., 1965. 

Dieudonne, Jean. Linear Algebra and Geometry. Boston, 
Massachusetts, Houghton Mifflin Company, 1969. 

Gruenberg, K, W. and Weir, A. J. Linear Geometry. New York, 
Van Nostrand Reinhold Company, 1967. 

MacLane, Saunders and Birkhoff, Garrett. Algebra. New York, 
The Macmillan Company, 1967. (Chapters VII, XI, XII) 
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Mostow, George; Sampson, Joseph; Meyer, Jean-Pierre. 
Fundamental Structures of Algebra. New York, McGraw-Hill Book 
Company, 1963. (Chapters 8, 9, 14) 

Murtha, J. A. and Willard, E. R. Linear Algebra and Geometry. 
New York, Holt, Rinehart and Winston, Inc., 1969. 

Snapper, Ernst and Troyer, Robert. Metric Affine Geometry. 
New York, Academic Press, Inc., 1971. 

The course outlined below has as prerequisite an elementary 
course in linear algebra (Mathematics 3). The main topics are: 

1. Affine geometry and affine transformations 

2. Euclidean geometry and Euclidean transformations 

3. Non-Euclidean geometries 

Because of the relative unfamiliarity of this approach to geometry, 
more details such as definitions and typical results will be includ-
ed. Also, a brief justification is given. 

In Euclidean geometry one considers the notion of a transla-
tion of the space into itself. These translations form a real vector 
space under the operation (addition) of function composition and 
multiplication by a real number. Thus the "vector space of transla-
tions" acts on the set of points of Euclidean space and satisfies 
the following two properties: 

A. If (x,y) is an ordered pair of points, there is a trans-

lation � such that T(x) = y. Moreover, this transla-

tion is unique. 

B. If T^ and are translations and � is a point, then 

the definition of "vector addition" as function composi-

tion is indicated by the formula 

(�� + T2)(x) = � �(� 2(�)). 

With this intuitive background, the details of the course outline are 
now given. The definitions and propositions are stated for dimension 
� since this causes no complication, but the emphasis will be on 
dimensions 2 and 3. 

1. Affine geometry and affine transformations. One defines 

real �-dimensional affine space as the triple (�,�,�) where V is 

a real vector space of dimension � (the vector space of the trans-

lations), X is the set of points of the geometry, and �: V � X -» X 
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defined by �(�,�) = T(x) is the action of V on X which satis-

fies properties A and � above. For convenience, the affine space 

(�,�,�) is usually denoted simply by X. 

Affine subspaces of X are defined as follows. Let � £ X 

and let U be a linear subspace of V (a subspace of translations). 

The affine subspace determined by � and U is denoted by S(U,x) 

and consists of the set of points 

{T(x):T � U}, 

i.e., S(U,x) consists of all translates of � by a translation be-

longing to U. The dimension of S(U,x) is defined to be the dimen-

sion of U. Then 1-dimensional affine subspaces are called lines, 

2-dimensional affine subspaces are called planes, and (n-1)-

dimensional affine subspaces are called hyperplanes (n = dimension 

of V). 

Two affine subspaces S and S� are called parallel (S || S�) 

if there exists a translation � such that T(S) C S� or T(S�) C S. 

Parallelism and incidence are investigated, with special emphasis on 

dimensions two and three. Results such as the following are obtained. 

a. Lines £ and m in the plane are parallel if and only if 

t = m or i �  � = O . 

b. A line �, and a plane � in 3-space are parallel if and 

only if £ c �� or l � � = � . If I jf �, then t i l l 

is a point. 

c. There exist skew lines in 3-space. 

d. Planes � �  and � � � in 3-space are parallel if and only 

if � = ��� or � � ��� = � . If � ̂  ��, then � � �� 

is a line. 

A coordinate system for the affine space X consists of a 

point c g X and an ordered basis for V. A point � G X is assigned 

the coordinates (�^,.,.,�^) if � is the unique translation such 

that T(c) = � and � has coordinates (�^,,.,,�^) with respect 

to the given ordered basis for V. Using these notions, one can 

study analytic geometry, e.g., the parametric equations for lines, 

the linear equations for hyperplanes, the relationship between the 

linear equations of parallel hyperplanes, incidence in terms of 

89 



coordinate representations, etc. 

For each point c 6 X, there is a natural way to make X 

into a vector space which is isomorphic to V. Namely, if r is 

a real number, x, y £ X, and T^, are the unique translations 

satisfying T^(c) = � and T^Cc) = y, then one defines 

� + y = T ^ T ^ c ) ) and rx = (rT^fx). 

The vector space X £ with origin c is the tangent space of 

classical differential geometry. (Affine space is often defined as 

the vector space V itself; this approach to affine geometry is 

based on the isomorphism between X c and V.) 

An affine transformation is a function f: X -» X with the 

following properties: 

a. f is one-to-one and onto. 

b. If -t and V are parallel lines, then f(-t) and 

f (.£,�) are parallel lines. 

The affine transformations form a group called the affine group 

which contains the translation group as a commutative subgroup. 

For each point c � X, the set of affine transformations which 

leave c fixed form a subgroup of the affine group; moreover, this 

subgroup is the general linear group of the vector space X^ and 

is therefore isomorphic to the general linear group of V. Finally, 

properties of affine transformations are investigated. 

Other topics of affine geometry which are studied include 

orientation, betweenness, independence of points, affine subspace 

spanned by points, and simplexes. 

2. Euclidean geometry and Euclidean transformations. 

Euclidean space is defined as the affine space (� ,�,�), where V 

has been given the additional structure of a positive-definite inner 
2 

product. Thus for each � £ V, � is a nonnegative real number. 

A distance function is introduced on X by defining the distance 

between an ordered pair (x,y) of points of X to be where 

� is the unique translation such that T(x) = y. A Euclidean 

transformation (rigid motion, isometry) of X is a mapping of X 

which preserves distance. 

The Euclidean transformations form a subgroup of the affine 
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group. For each c � X, the Euclidean transformations which leave 

c fixed form a subgroup of the Euclidean group. In fact, this is 

the orthogonal group of the vector space X c (with the inner prod-

uct induced on it from V through the given isomorphism) and there-

fore is isomorphic to the orthogonal group of V. 

Rotations and reflections are first defined for the Euclidean 

plane and then for �-dimensional space. The Cartan-Dieudonne 

theorem becomes an important tool in the investigation of the 

Euclidean group. It states that every Euclidean transformation of 

�-space is the product of at most � + 1 reflections in hyper-

planes. It follows immediately that there are four kinds of Euclid-

ean transformations of the Euclidean plane: translations, rotations, 

reflections, and glide reflections. 

Rotations and reflections of Euclidean 3-space are investi-

gated. From the Cartan-Dieudonne theorem it follows that every 

rotation of 3-space has a line of fixed points (the axis of rota-

tion). The set of all rotations with a given line I, as axis is 

a subgroup of the rotation group of 3-space. Moreover, this rota-

tion group with axis is isomorphic to the rotation group of the 

Euclidean plane, thus giving the classical result that every rota-

tion of 3-space is determined by an axis and a given "angle of 

rotation." 

One now defines a figure to be a subset of X and calls two 

figures congruent if there is a Euclidean transformation which maps 

one figure onto the other. Using these concepts, one proceeds to 

proofs of the classical congruence theorems of plane geometry 

(S.S.S., S.A.S., A.S.A, H.S.). 

Finally, orthogonality and similarity are investigated. 

3. Non-Euclidean geometries. The classical method of obtain-

ing a non-Euclidean plane geometry is to replace the parallel postu-

late by another postulate on parallel lines and thus obtain hyper-

bolic geometry. Here the approach is different. The positive-

definite inner product is replaced by other (nonsingular) inner prod-

ucts. The geometry obtained is non-Euclidean, but the parallel 

postulate is still valid! This startling result is true because the 

underlying space is the affine plane (in which the parallel 
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postulate is valid) and the change of inner product does not dis-

turb the affine structure. 

Actually, the investigation of non-Euclidean geometries can be 

made concurrently with that of Euclidean geometry. For example, the 

Lorentz plane and the negative Euclidean plane can be defined and 

investigated at the same time as the Euclidean plane. "Circles" in 

the Lorentz plane are related to hyperbolas of the Euclidean plane, 

etc. 

One of the major results is Sylvester�s theorem, from which 

one concludes that there are precisely n + 1 distinct nonsingular 

geometries which can be placed on �-dimensional affine space. 

Mathematics 10. Applied Mathematics. 

Applied mathematics is a mathematical science distinguished 
from other branches of mathematics in that it actively employs the 
scientific method. A working applied mathematician is usually con-
fronted with a real situation whose mathematical aspects are not 
clearly defined. He must identify specific questions whose answers 
will shed light on the situation, and he must construct a mathemati-
cal model which will aid in his study of these questions. Using the 
model he translates the questions from the original terms into 
mathematical terms. He then uses mathematical ideas and techniques 
to study the problem. He must decide upon methods of approximation 
and computation which will enable him to determine relevant numbers. 
Finally, he must interpret the results of his mathematical work in 
the setting of the original situation. 

Mathematics 10 was designed to introduce the student to applied 
mathematics and, in particular, to model building. Courses concen-
trating primarily on mathematical techniques which are useful in 
applications do not satisfy the goals set here for Mathematics 10. 
Rather, it is intended that the student participate in the total 
experience of applied mathematics from formulating precise questions 
to interpreting the results of the mathematical analysis in terms of 
the original situation, and that particular emphasis be given to 
model building. A number of courses involving different mathematical 
topics can be constructed which fulfill these goals. In construct-
ing such a course the instructor should have the following recom-
mendations in mind. 

First, the role of model building must be made clear and should 
be amply illustrated. The student should have considerable exper-
ience in building models, in noting their strengths and weaknesses, 
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and in modifying them to fit the situation more accurately. Also, 
he must realize that often there is more than one approach to a 
situation and that different approaches may lead to different 
models. He should be trained to be critical of the models he con-
structs so that he will know what kind of information to expect 
from the model and what kind not to expect. 

Second, the situations investigated must be realistic. 
Throughout the course the student should be working on significant 
problems which are interesting and real to him. 

Third, the mathematical topics which arise in the course 
should be worthwhile and should have applicability beyond the 
specific problem being discussed. The mathematical topics and the 
depth of treatment should be appropriate for the level at which the 
course is offered. 

Fourth, the mathematical results should always be interpreted 
in the original setting. Stopping short of this gives the impres-
sion that the manipulation of symbols, methods of approximation, 
techniques of computation, or other mathematical points are the 
primary concerns of the course, whereas they are only intermediate 
steps, essential though they are, in the study of a real situation. 

Finally, the course should avoid the extremes of (1) a course 
about mathematical methods whose reference to the real world con-
sists mainly of assigning appropriate names to problems already 
completely formulated in mathematical terms and (2) a kind of survey 
of mathematical models in which only trivial mathematical develop-
ment of the models is carried out. 

The 1972 report of the Panel on Applied Mathematics, Applied 
Mathematics in the Undergraduate Curriculum, offers three outlines 
as aids to constructing courses of the type recommended here. [See 
page 705.] 

Mathematics 11-12. Introductory Real Variable Theory. (6 semester 
hours) (Reprinted from the 1965 GCMC report) 

FIRST SEMESTER - 39 lessons 

1. Real numbers. (6 lessons) The integers; induction. The 

rational numbers; order structure, Dedekind cuts. The reals defined 

as a Dedekind-complete field. Outline of the Dedekind construction. 

Least upper bound property. Nested interval property. Denseness of 

the rationale. Archimedean property. Inequalities. The extended 

real number system. 
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2. Complex numbers. (3 lessons) The complex numbers intro-

duced as ordered pairs of reals; their arithmetic and geometry. 

Statement of algebraic completeness. Schwarz inequality. 

3. Set theory. (4 lessons) Basic notation and terminology: 

membership, inclusion, union and intersection, cartesian product, 

relation, function, sequence, equivalence relation, etc.; arbitrary 

unions and intersections. Countability of the rationals; uncount-

ability of the reals. 

4. Metric spaces. (6 lessons) Basic definitions: metric, 

ball, boundedness, neighborhood, open set, closed set, interior, 

boundary, accumulation point, etc. Unions and intersections of open 

or closed sets. Subspaces. Compactness. Connectedness. Convergent 

sequence, subsequences, uniqueness of limit. A point of accumulation 

of a set is a limit of a sequence of points of the set. Cauchy se-

quence. Completeness. 

5. Euclidean spaces. (6 lessons) R n as a normed vector space 

over R. Completeness. Countable base for the topology. Bolzano-

Weierstrass and Heine-Borel-Lebesgue theorems. Topology of the line. 

The open sets; the connected sets. The Cantor set. Outline of the 

Cauchy construction of R. Infinite decimals. 

6. Continuity. (8 lessons) (Functions into a metric space:) 

Limit at a point, continuity at a point. Continuity; inverses of 

open sets, inverses of closed sets. Continuous images of compact 

sets are compact. Continuous images of connected sets are connected. 

Uniform continuity; a continuous function on a compact set is uni-

formly continuous. (Functions into R:) Algebra of continuous func-

tions. A continuous function on a compact set attains its maximum. 

Intermediate Value Theorem. Kinds of discontinuities. 

7. Differentiation. (6 lessons) (Functions into R:) The 

derivative. Algebra of differentiable functions. Chain rule. Sign 

of the derivative. Mean Value Theorems. The Intermediate Value 

Theorem for derivatives. L�HOpital�s rule. Taylor�s theorem with 

remainder. One-sided derivatives; infinite derivatives. (This 

material will be relatively familiar to the student from his calculus 

course, so it can be covered rather quickly.) 
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SECOND SEMESTER - 39 lessons 

8. The Riemann-Stleltjes integral. (11 lessons) [Alternative: 

the Riemann integral] Upper and lower Riemann integrals. [Exist-

ence of the Riemann integral: for f continuous, for f monotonic] 

Monotonic functions and functions of bounded variation. Riemann-

a of bounded variation. Reduction to the Riemann integral in case 

a has a continuous derivative. Linearity of the integral. The 

integral as a limit of sums. Integration by parts. Change of vari-

able. Mean Value Theorems. The integral as a function of its upper 

limit. The Fundamental Theorem of Calculus. Improper integrals. 

The gamma function. 

9. Series of numbers. (11 lessons) (Complex:) Convergent 

series. Tests for convergence (root, ratio, integral, Dirichlet, 

Abel). Absolute and conditional convergence. Multiplication of 

series. (Real:) Monotone sequences; 11m sup and lim inf of a se-

quence. Series of positive terms; the number e. Stirling�s for-

mula, Euler�s constant. 

10. Series of functions. (7 lessons) (Complex:) Uniform 

convergence; continuity of uniform limit of continuous functions. 

Equicontinuity; equicontinuity on compact sets. (Real:) Integra-

tion term-by-term. Differentiation term-by-term. Weierstrass 

approximation theorem. Nowhere-differentiable continuous functions. 

11. Series expansions. (10 lessons) Power series, interval 

of convergence, real analytic functions, Taylor�s theorem. Taylor 

expansions for exponential, logarithmic, and trigonometric functions. 

Fourier series: orthonormal systems, mean square approximation, 

Bessel�s inequality, Dirichlet kernel, Fejer kernel, localization 

theorem, Fejer�s theorem. Parseval�s theorem. 

Stieltjes integrals. Existence of 
a 

for f continuous and 
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Mathematics 11. Introductory Real Variable Theory. (3 semester 
hours) (One-semester version) (Reprinted from the 1965 GCMC report) 

1 . Real numbers. (3 lessons) Describe various ways of con-

structing the real numbers but omit details. Least upper bound 

property, nested interval property, denseness of the rationals. 

2. Set theory. (4 lessons) Basic notation and terminology: 

membership, inclusion, union and intersection, cartesian product, 

relation, function, sequence, equivalence relation, etc; arbitrary 

unions and intersections. Countability of the rationals; uncount-

ability of the reals. 

3. Metric spaces. (4 lessons) Material of topic 4 in Mathe-

matics 11-12, condensed. 

4. Euclidean spaces. (4 lessons) R n as a normed vector 

space over R. Completeness. Bolzano-Weierstrass and Heine-Borel-

Lebesgue theorems. Topology of the line. Outline of the Cauchy 

construction of R. Infinite decimals. 

5. Continuity. (5 lessons) (Functions into a metric space:) 

Limit at a point, continuity at a point, inverses of open or closed 

sets. Uniform continuity. (Functions into R:) A continuous func-

tion on a compact set attains its maximum. Intermediate Value 

Theorem. 

6. Differentiation. (3 lessons) Review of previous informa-

tion, including sign of the derivative, Mean Value Theorem, 

L�Hopital�s rule, Taylor�s theorem with remainder. 

7. Riemann-Stieltjes or Riemann integration. (5 lessons) 

Functions of bounded variation (if the Riemann-Stieltjes integral is 

covered), basic properties of the integral, the Fundamental Theorem 

of Calculus. 

8. Series of numbers. (8 lessons) Tests for convergence, 

absolute and conditional convergence. Monotone sequences, lim sup, 

series of positive terms. 

9. Series of functions. (3 lessons) Uniform convergence, 

continuity of uniform limit of continuous functions, integration 

and differentiation term-by-term. 
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Mathematics 13. Complex Analysis. (3 semester hours) (Reprinted 
from the 1965 GCMC report) 

This course is suitable for students who have completed work 
at the level of vector analysis and ordinary differential equations. 
The development of skills in this area is very important in the 
sciences, and the course must exhibit many examples which illus-
trate the influence of singularities and which require varieties of 
techniques for finding conformal maps, for evaluating contour in-
tegrals (especially those with multivalued integrands), and for 
using integral transforms. 

1. Introduction. (4 lessons) The algebra and geometry of 

complex numbers. Definitions and properties of elementary func-
z . 1 tions, e.g., e , sin z, log z. 

2. Analytic functions. (2 lessons) Limits, derivatives, 

Cauchy-Riemann equations. 

3. Integration. (6 lessons) Integrals, functions defined by 

integrals. Cauchy�s theorem and formula, integral representation of 

derivatives of all orders. Maximum modulus, Liouville�s theorem, 

Fundamental Theorem of Algebra. 

4. Series. (5 lessons) Taylor and Laurent series. Uniform 

convergence, term-by-term differentiation, uniform convergence in 

general. Domain of convergence and classification of singularities. 

5. Contour integration. (3 lessons) The residue theorem. 

Evaluation of integrals involving single-valued functions. 

6. Analytic continuation and multivalued functions. (6 les-

sons) Analytic continuation, multivalued functions, and branch 

points. Technique for contour integrals involving multivalued func-

tions. 

7. Conformal mapping. (6 lessons) Conformal mapping. Bi-

linear and Schwarz-Christoffel transformations, use of mapping in 

contour integral evaluation. Some mention should be made of the 

general Riemann mapping theorem. 

8. Boundary value problems. (3 lessons) Laplace�s equation 

in two dimensions and the solution of some of its boundary value 

problems, using conformal mappings. 

9. Integral transforms. (4 lessons) The Fourier and Laplace 

transforms, their inversion identities, and their use in boundary 

value problems. 
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