
Mathematical Sciences 

In 1981 the Committee on the Undergraduate Pro- 
gram i n  Mathematics (CUPM) published a major report 
entitled RECOMMENDATIONS FOR A GENERAL MATH- 
EMATICAL SCIENCES P R O G R A M .  This report comprises 
siz chapters that are reprinted here, with minor editing, 
as the first siz chapters of the present volume. Alan 
Tucker, Chairman of the CUPM Panel that wrote the 
1981 report, has written a new Preface to introduce this 
reprinting. 

1989 Preface 

In the eight years since the CUPM Recommendations 
on a General Mathematical Science Program appeared, 
issues in mathematics curriculum, such as calculus re- 
form and discrete mathematics, have become hot topics 
in the mathematics community and have even received 
extensive coverage in the popular press. The CUPM 
Panel on a General Mathematical Sciences Program had 
the luxury of working in comparative anonymity, al- 
though ten panel discussions at national and regional 
mathematics meetings gave the panel some professional 
visibility. The Panel’s basic goal was to  give long-term, 
general objectives for undergraduate training in math- 
emat ics. 

The 1960’s and 1970’s had seen a variety of spe- 
cialized appeals made to  college students interested in 
mathematics. For example, the discipline of computer 
science emerged as an exciting career for mathematics 
students. The earliest CUPM recommendations for the 
mathematics major were aimed at preparing students 
for doctoral work in mathematics. By the late 1970’~~ 
there was a sense that the mathematics major had lost 
its way, with upper-division enrollments in traditional 
core courses like analysis and number theory down by 
60% from their levels five years earlier and with indus- 
trial employers showing little interest in hiring mathe- 
matics majors. 

To put these recent events in perspective, the Panel 
obtained a historical briefing from Bill Duren (the 
founding chairman of CUPM). He recounted over a cen- 
tury of swings of the pendulum between the theoretical 
and the practical in American collegiate mathematics 
education, and between training for careers of the fu- 
ture and training in classical, old-fashioned methods. 

The Mathematical Sciences Panel sought to  find 
a common ground for the mathematics major which 

taught abstraction and application, emerging new prob- 
lem areas and time-tested old ones. The Panel sought 
to  persuade mathematicians that the curriculum in the 
mathematics major should be shared among the various 
intellectual and societal constituencies of mathematics. 
The challenge was to  be diverse without being superfi- 
cial. 

The most concrete consequence of the Panel’s work 
was its name, Panel on a General Mathematical Sci- 
ences Program. It asked that the mathematics major 
be renamed the mathematical sciences major-a change 
explicitly adopted by hundreds of colleges and univer- 
sities and implicitly adopted by the vast majority of 
institutions. The Panel recommended that first courses 
in most subjects should have a good dose of motivating 
applications, particularly linear algebra and statistics, 
and that one advanced course should have a mathemat- 
ical modeling project. This recommendation also seems 
to  have wide acceptance. There were several panel rec- 
ommendations that reflected trends already occurring 
but being resisted by some mathematicians: requiring 
an introductory course in computer science; not requir- 
ing linear algebra as a prerequisite for inultivariable cal- 
culus; encouraging weaker students to  delay core ab- 
stract courses until the senior year; and not requiring 
every mathematics major to take courses in real analysis 
and abstract algebra (i.e., other mathematics courses a t  
comparable levels of abstraction could1 be substituted). 

Although it was unhappy with calcxlus, the Mathe- 
matical Sciences Panel consciously avoided recommend- 
ing changes in calculus for fear that  the inevitable con- 
troversy and the complexity of such an undertaking 
would undermine acceptance of its basic recommenda- 
tions about the structure of a mathematics major. The 
Panel touched only lightly on the issue of discrete ver- 
sus continuous mathematics, recommending exposure 
to  “more combinatorially-oriented mathematics associ- 
ated with computer and decision sciences” (Tony Ral- 
ston’s provocative essays about discrete mathematics 
had not yet appeared). 

It was gratifying to  the Mathematical Sciences Panel 
that its report was well-accepted: all two-thousand 
copies printed have been sold (another two-thousand 
copies had been sent gratis to  department heads). In re- 
viewing the report for this reprinting, the only changes 
have been to add a few additional references On the 
other hand, there was one panel suggestion that has 
been ignored thus far and which merits consideration. 
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It concerns the “modest” version of abstract algebra 
(in Section 111) in which time would be spent sensitiz- 
ing students to  recognize how algebraic systems arise 
naturally in many situations in other areas of mathe- 
matics and outside mathematics (to keep algebra alive 
in their minds after they leave college). 

ALAN TUCKER 
SUNY at  Stony Brook 
March, 1989 

1981 Preface 

This report of the CUPM Panel on a General Mathe- 
matical Sciences Program (MSP) presents recommenda- 
tions for a mathematical sciences major. The panel has 
concentrated its efforts on general curricular themes and 
guiding pedagogical principles for a mathematical sci- 
ences major. It has tried to  frame its recommendations 
in general terms that will permit a variety of implemen- 
tations, tailored to  the needs of individual institutions. 
A prime objective of the original 1960’s CUPM cur- 
riculum recommendations for upper-level mathematics 
courses was easing the trauma of a student’s first year of 
graduate study in mathematics. This report refocuses 
the upper-level courses on the traditional objectives of 
general training in mathematical reasoning and mas- 
tery of mathematical tools needed for a life-long series 
of different jobs and continuing education. 

The MSP panel has tried to avoid highly innovative 
approaches to  the mathematics curriculum. The em- 
phasis, instead, has been on using historically rooted 
principles to  organize and unify the mathematical sci- 
ences curriculum. The MSP panel believes that the 
primary goal of a mathematical sciences major should 
be to develop rigorous mathematical reasoning. The 
word ‘rigorous’ is used here in the sense of ‘intellec- 
tually demanding’ and ‘in-depth.’ Such reasoning is 
taught through a combination of problem solving and 
abstract theory. Most topics should initially be devel- 
oped with a problem-solving approach. When theory is 
introduced, it usually should be theory for a purpose, 
theory to  simplify, unify, and explain questions of inter- 
est to  the students. 

CUPM now believes that the undergraduate major 
offered by a mathematics department at most Ameri- 
can colleges and universities should be called a Mathe- 
matical Sciences major. Enrollment data show that for 
several years less than half the courses, after calculus, in 
a typical mathematics major have been in pure math- 
ematics. Furthermore, applied mathematics, probabil- 
ity and statistics, computer science, and operations re- 

search are important subjects which should be incorpo- 
rated in undergraduate training in the general area of 
mathematics. 

Computer science has become such a large, multi- 
faceted field, with ties to  engineering and decision sci- 
ences, that it no longer can be categorized as a math- 
ematical science (at the National Science Foundation, 
computer science and mathematical sciences are dif- 
ferent research categories). A mathematical sciences 
major must involve coursework in computer science be- 
cause of the usefulness of computing and because of 
computer science’s close ties to mathematics. Under- 
graduate majors in mathematical sciences and in com- 
puter science should complement each other. 

The new course recommendations presented in this 
report do not, in most instances, replace past CUPM 
syllabi. They describe different approaches to  courses; 
for example, a one-semester combined probability and 
statistics course, or a multivariate calculus course with- 
out a linear algebra prerequisite. 

The work of the CUPM Panel on a General Math- 
ematical Sciences Program was supported by a grant 
from the Sloan Foundation. The chairmen of CUPM 
during this project, Donald Bushaw and William Lu- 
cas, deserve special thanks for their assistance. 

For information about other CUPM documents 
and related MAA mathematics education publications, 
write to: Director of Publications, The Mathematical 
Association of America, 1529 Eighteenth Street, N.W., 
Washington, D.C. 20036. 

ALAN TUCKER 
SUNY at Stony Brook 

Panel Background 

The CUPM Panel on a General Mathematical Sci- 
ences Program (MSP) was constituted in June, 1977 a t  
a CUPM conference in Berkeley. CUPM members de- 
cided that a major re-examination of the mathematics 
major was needed. The CUPM model for the math- 
ematics major contained in the 1965 CUPM reports 
on Pregraduate Training in Mathematics and a Gen- 
eral Curriculum in Mathematics in Colleges (revised in 
1972) was felt to be out of date. Following a six-month 
study, MSP reported to  CUPM that the CUPM mathe- 
matics major curriculum should be substantially revised 
and broadened to  define a mathematical sciences major. 
MSP was charged then with developing mathematical 
sciences recommendations. 

Five subpanels were created to  develop course rec- 
ommendations in: 
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The calculus sequence, 
Computer science, 
Modeling and operations research, 
Statistics, and 
Upper-level core mathematics. 

The MSP project has had the cooperation of curriculum 
groups in the American Statistical Association, the As- 
sociation for Computing Machinery, the Operations Re- 
search Society of America, and the Society for Industrial 
and Applied Mathematics. Graduate programs in the 
subjects covered by those societies draw heavily on un- 
dergraduate mathematics students, and except for com- 
puter science, undergraduate courses in these subjects 
are usually taught by mathematicians. Hence these cur- 
riculum groups had a major interest in the design of a 
mathematical sciences major. 

The MSP panel coordinated its work with the Na- 
tional Research Council’s Panel on Training in Applied 
Mathematics (chaired by P. Hilton, a member of MSP). 
The Hilton panel had a much broader mandate than 
the MSP panel. Its report addresses the unification 
of the mathematical sciences, the attitudes of math- 
ematicians, academic-industrial linkages, and society’s 
image of the mathematical sciences, as well as curric- 
ula. The Hilton report presented a limited number 
of general curriculum principles with the expectation 
that the MSP panel would develop fuller curriculum 
recommendations. The MSP panel recommendations 
have incorporated these principles (although the Hilton 
panel’s stress on differential equations has been dimin- 
ished). The MSP panel strongly endorses the Hilton 
report’s emphasis on the importance within mathemat- 
ics departments of proper attitudes towards the uses 
and users of mathematics and of a unified view that 
respects the content and teaching of pure and applied 
mathematics equally. 

While CUPM and the Hilton panel have been rec- 
ommending changes in the collegiate mathematics pro- 
gram, the National Council of Teachers of Mathemat- 
ics has been assessing priorities in school mathematics. 
The 1980 NCTM booklet, A n  Agenda for Action, rec- 
ommends “that problem solving be the focus of school 
mathematics in the 1980s . . . that  basic skills in math- 
ematics be defined to  encompass more than computa- 
tional facility.” Recent nation-wide mathematics tests 
administered to  students in several grades showed uni- 
formly poor performance on questions of a problem 
solving or application nature. Inevitably these mathe- 
matical weaknesses will become more of a problem with 
college students. 

The tentative MSP ideas for curriculum revision were 
discussed by panel members at sectional and national 

MAA meetings, a t  the PRIME 80 Conference, and indi- 
vidually with dozens of mathematics department chair- 
persons. The helpful criticisms received on these occa- 
sions played a vital role in shaping the panel’s thinking. 
It should be noted that several people: warned that a 
mathematical sciences major was unworkable because 
of the diversity of techniques and modes of reasoning 
in the mathematical sciences today. Others stated that 
student course preferences had already “redefined” the 
mathematics major along the lines being proposed by 
the MSP panel. 

Curriculum Background 
Many students today start mathematics in college at  

a lower level and yet have specific (but uninformed) ca- 
reer goals that require a broad scope of new topics of 
varying mathematical sophistication. Student changes 
are reflected in recent upper-level enrollment shifts and 
the explosion of new theory and applications in all 
the mathematical sciences. Uncertainties in curricu- 
lum produced by these developments have led the MSP 
panel to look for guidance from past CUPM curricu- 
lum development experiences and, farther back, from 
the traditional goals of the mathematics major before 
CUPM’s creation. No matter how great, the advances in 
the past generation, the traditional intellectual objec- 
tives of training in mathematics, defined over scores of 
years, should be the basis of any mathematical sciences 
program. 

Until the 19509, mathematics departments were pri- 
marily service departments, teaching necessary skills to 
science and engineering students and teaching mathe- 
matics to most students solely for its liberal-arts role as 
a valuable intellectual training of the mind. The average 
student majoring in mathematics at a better college in 
the 1930s took courses in trigonometry, analytic geome- 
try, and college algebra (including calciulus preparatory 
work on series and limits) in the freshman year followed 
by two years of calculus. While this program may today 
seem to have unnecessarily delayed calcdus, and subse- 
quent courses based on calculus, it did provide students 
with a background that permitted calculus to be taught 
in a more rigorous (i.e., more demanding) fashion than 
it is today. 

The mathematics major was filled out with five or 
six electives in subjects such as differential equations 
(a second course), projective geometry, theory of equa- 
tions, vector analysis, mathematics of finance, history of 
mathematics, probability and statistics, complex anal- 
ysis, and advanced calculus. Most mathematics majors 
also took a substantial amount of physics. Training of 
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secondary school mathematics teachers rarely included 
more than a year of calculus. In the early 19508, twenty 
years later, the situation had changed only a little; top 
schools did now offer modern algebra and abstract anal- 
ysis. 

In 1953, amid reports of widespread dissatisfac- 
tion with the undergraduate program, the Mathemati- 
cal Association of America formed the Committee on 
Undergraduate Program (CUP, later to be renamed 
CUPM). CUPM concentrated initially on a unified in- 
troductory mathematics sequence Universal Mathemat- 
ics, consisting of a first semester analysis/college alge- 
bra course (finishing with some calculus) followed by a 
semester of “mathematics of sets” (discrete mathemat- 
ics). CUPM hoped its Universal Mathematics would 
“halt the pessimistic retreat to remedial mathematics 
. . . (and) . . . modernize and upgrade the curriculum.” 

The first comprehensive curriculum report of CUPM, 
entitled Pregraduate Training for Research Mathemati- 
cians (1963), outlined a model program designed to pre- 
pare outstanding undergraduates for Ph.D. studies in 
mathematics. Emphasis on Ph.D. preparation repre- 
sented a major departure from the traditional mathe- 
matics program and was the source of continuing con- 
troversy. A more standard mathematics major curricu- 
lum was published in 1965 (revised in 1972), but many 
colleges also found it to be too ambitious for their stu- 
dents. 

For a fuller history of CUPM, see the article of W. 
Duren (founder of CUPM), “CUPM, The History of an 
Idea,” Amer. Math. Monthly 74 (1967), pp. 22-35. 

Current Issues 
In 1970, 23,000 mathematics majors were graduated. 

The numbers of Bachelors, Masters, and Doctoral grad- 
uates in mathematics had been doubling about every six 
years since the late 1950s. The 1970 CBMS estimate for 
the number of Bachelors graduates in mathematics in 
1975 was 50,000, but by the late 1970s only 12,000 were 
graduating annually. Enrollments in many upper-level 
pure mathematics courses declined even more dramat- 
ically in the 1970s as students turned to applied and 
computer-related courses. 

Yet while the number of mathematics majors is de- 
creasing, the demand for broadly-trained mathemat- 
ics graduates is increasing in government and indus- 
try. Mathematical problems inherent in projects to 
optimize the use of scarce resources and, more gener- 
ally, to make industry and government operations more 
efficient guarantee a strong future demand for mathe- 
maticians. These problems require people who, fore- 

most, are trained in disciplined logical reasoning and, 
secondarily, are versed in basic techniques and models of 
the mathematical sciences. In Warren Weaver’s words, 
these are problems of “organized complexity” as well as 
well-structured applied mathematics of the physical sci- 
ences. If mathematics departments do not train these 
quantitative problem-solvers, then departments in en- 
gineering and decision sciences will. 

The unprecedented growth of computer science as 
a major new college subject parallels the theoretical 
growth of the discipline and its ever-expanding im- 
pact on business and day-to-day living. The number of 
computer science majors now substantially exceeds the 
number of mathematics majors at most schools offering 
programs in both subjects. However, computer science 
has not “taken” students from mathematics, any more 
than science and engineering take students from mathe- 
matics. Rather, computers have generated the need for 
more quantitative problem-solvers, as noted above. 

The shortage of secondary school mathematics teach- 
ers nation wide has become worse than ever before. 
This shortage appears to be due in large measure to 
the greater attractiveness of computing careers to col- 
lege mathematics students (indeed high-paying com- 
puter jobs are currently luring many teachers out of the 
classroom). Although the training of future teachers 
should include course work in computing and applica- 
tions, such course work heightens the probability that 
these students will switch to careers in computing. 

On another front, pre-calculus enrollments have 
soared as the mathematical skills of incoming freshmen 
have been declining (a problem that concerned CUP in 
its first year). The mathematics curriculum may soon 
need to allow for majors who do not begin calculus until 
their sophomore year, as was common a generation ago. 

At universities, the decline in graduate enrollments 
has frequently over-shadowed the decline in undergrad- 
uate majors. Faced with heavy precalculus workloads, 
shrinking graduate programs, and competition from 
other mathematical sciences departments, university 
mathematics departments appear less able to broaden 
and restructure the mathematics major than most 
liberal-arts college mathematics departments. Many 
university mathematicians prefer to retain their current 
pure mathematics major for a small number of talented 
students. 

There are also several encouraging developments. A 
natural evolution in the mathematics major is occurring 
at many schools. Students and faculty have developed 
an informal “contract” for a major that includes tradi- 
tional core courses in algebra and analysis along with 
electives weighted in computing and applied mathemat- 
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ics (a formal "contract" major at one school is discussed 
below). 

Another important development is the emphasis on 
sys tem design, as opposed to mathematical computa- 
tion, in current computer science curricula. The Associ- 
ation for Computing Machinery Curriculum 78 Report 
delegates the responsibility for teaching numerical anal- 
ysis, discrete structures, and computational modeling 
to mathematics departments. This ACM curriculum 
implicitly encourages students interested in computer- 
based mathematical problem solving to be mathemat- 
ical sciences majors. The MSP panel has been careful 
to coordinate its work with computer science curricu- 
lum groups in order t o  minimize potential conflicts and 
maximize compatibility between computer science and 
mathematical sciences programs. 

Curricular Principles 

The goal of this panel was to produce a flexible set 
of recommendations for a mathematical sciences ma- 
jor, a major with a broad, historically rooted founda- 
tion for dealing with current and future changes in the 
mathematical sciences. The panel sought a unifying 
philosophy for diverse course work in analysis, algebra, 
computer science, applied mathematics, statistics, and 
operations research. 

Program Philosophy 

I. The curriculum should have a primary goal 
of developing attitudes of mind and analyti- 
cal skills required for efficient use and under- 
standing of mathematics. The development of 
rigorous mathematical reasoning and abstrac- 
tion from the particular to the general are two 
themes that should unify the curriculum. 

11. The mathematical sciences curriculum should 
be designed around the abilities and academic 
needs of the average mathematical sciences stu- 
dent (with supplementary work to attract and 
challenge talented students). 

111. A mathematical sciences program should use 
interactive classroom teaching to involve stu- 
dents actively in the development of new ma- 
terial. Whenever possible, the teacher should 
guide students to discover new mathematics for 
themselves rather than present students with 
concisely sculptured theories. 

IV. Applications should be used to illustrate and 
motivate material in abstract and applied 
courses. The development of most topics should 

involve an interplay of applications, mathemati- 
cal problem-solving, and theory. Theory should 
be seen as useful and enlightening for all math- 
ematical sciences. 

V. First courses in a subject should be designed to 
appeal to as broad an audience as is academ- 
ically reasonable. Many mat:hematics majors 
do not enter college planning to be mathemat- 
ics majors, but rather are attracted by begin- 
ning mathematics courses. Broad introductory 
courses are important for a mathematical sci- 
ences minor. 

Course Work 

VI. The first two years of the curriculum should 
be broadened to cover more than the tradi- 
tional four semesters of calculus-linear algebra- 
differential equations. Calculus courses should 
include more numerical methods and non- 
physical-sciences applications. Also, other 
mathematical sciences courses, such as com- 
puter science and applied probarbility and statis- 
tics, should be an integral part of the first two 
years of study. 

VII. All mathematical sciences students should take 
a sequence of two upper-division courses leading 
to the study of some subject(s) in depth. Rigor- 
ous, proof-like arguments are used throughout 
the mathematical sciences, and so all students 
should have some proof-orienled course work. 
Real analysis or algebra are natural choices 
but need not be the only possibilities. Proofs 
and abstraction can equally well be developed 
through other courses such as applied algebra, 
differential equations, probability, or combina- 
torics. 

VIII. Every mathematical sciences student should 
have some course work in the less theoretically 
structured, more combinatorially oriented math- 
ematics associated with computer and decision 
sciences. 

IX. Students should have an opportunity to un- 
dertake "real-world" mathematical modeling 
projects, either as term projects in an opera- 
tions research or modeling course, as indepen- 
dent study, or as an internship in industry. 

X. Students should have a minor in a discipline us- 
ing mathematics, such as physics, computer sci- 
ence, or economics. In addition, there should be 
sensible breadth in physical and social sciences. 
For example, a student interested in statistics 
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might minor in psychology but also take begin- 
ning courses in, say, economics or engineering 

might be: 

(heavy users of statistics). 
statiltics Applied / ] ‘ c u y v  Computer T i n g  

Probability Theory < Advanced fu\ ,Equ/ Differential 
Numerical Analysis 

REAL ANALYSIS 

Building Mathematical Maturity 

As noted in Principle I, a major in mathematical sci- 
ences should emphasize general mathematical reasoning 
as much as mastery of various subject matter. Implicit 
in this principle is that less material would be covered 
in many courses but that students would be expected to 
demonstrate a better understanding of what is taught, 
e.g., by solving problems that require careful mathe- 
matical analysis. 

This mathematical sciences curriculum would model 
the historical evolution of mathematical subjects: some 
problems are introduced, formulas and techniques are 
developed for solving problems (usually with heuristic 
explanations), then common aspects of the problems 
are examined and abstracted with the purpose of bet- 
ter understanding “what is really going on.” The dif- 
ference in this scheme between beginning calculus and 
upper-division probability theory would be primarily a 
matter of the difficulty of the problems and techniques 
and the speed with which the material is covered and 
generalized, i.e., a matter of the mathematical matu- 
rity of the audience. In the course of two or three years 
of such course work, there would be a steady increase 
in sophistication of the material and more importantly, 
an increase in the student’s ability to learn and orga- 
nize the ideas of a new mathematical subject. Students 
should be able to read and learn mathematics on their 
own from texts. The MSP panel feels that such matu- 
rity is a function of how a subject is learned as much as 
what is learned. 

All courses should have some proofs in class and, as 
the maturity of students increases, occasional proofs as 
homework exercises. In particular, students should ac- 
quire facility with induction arguments, a basic method 
of proof in the mathematical sciences. After review- 
ing performances of current students and programs of 
mathematics students 30 years ago, the MSP panel has 
concluded that many able students do not now have, 
nor were they previously expected to have, the mathe- 
matical maturity to take theoretical courses before their 
senior year. On the other hand, by the senior year, 
all students should be ready for some proof-oriented 
courses that show the power of mathematical abstrac- 
tion in analyzing concepts that underlie a variety of 
concrete problems. For example, part of a flowchart 
of courses leading to  a senior-year real analysis course 

Core Requirements 

The panel has found the question of whether to re- 
quire courses in algebra and analysis its most contro- 
versial problem. In light of the strongly differing opin- 
ions received on this subject, the MSP panel is making 
only a minimal recommendation (Principle VII) that it 
feels is reasonable for all students. Possible two course 
sequences besides a year of analysis or of algebra are: 
analysis and proof-oriented probability theory, analysis 
and differential equations, abstract algebra and (proof- 
oriented) combinatorics, applied algebra and theory of 
computation, or analysis and a topics-in-analysis semi- 
nar. While not a sequence, one course in analysis and 
one course in algebra also fulfill the spirit of this require- 
ment. Some departments will want to make stronger 
requirements. The issue of theory requirements is dis- 
cussed more fully below. 

Students should not be required to study a subject 
with an approach whose rationale depends on material 
in later courses nor should they be required to memorize 
(blindly) proofs or formulas. Some upper-level elective 
courses should always be taught as mathematics-for-its- 
own-sake, but an instructor should be very careful not 
to skip the historical motivation and application of a 
subject in order to delve further into its modern theory. 

The recommendation for interactive teaching (Prin- 
ciple 111) seeks to encourage student participation in 
developing new mathematical ideas. It constrains an 
instructor to teach at a level that students can reason- 
ably follow. Interactive teaching implicitly says that 
mathematics is learned by actively doing mathemat- 
ics, not by passively studying lecture notes and mim- 
icking methods in a book. Without needlessly slowing 
progress in class, an instructor should discuss how one 
can learn much from wrong approaches suggested by 
students. New mathematical theories are not divined 
with textbook-like compact proofs but rather involve a 
long train of trial-and-error creativity. 

Henry Pollak expressed this need in the Conference 
Board of Mathematical Sciences book, The Role of Az- 



MATHEMATICAL SCIENCES 7 

iomatics and Problem Solving in Mathematics (Ginn, 
1966): 

A carefully organized course in mathematics is 
sometimes too muchlike a hiking trip in the mountains 
that never leaves the well-constructed trails. The tour 
manages to visit a steady sequence of the high spots 
in the natural scenery. It carefully avoids all false 
starts, dead ends and impossible barriers and arrives 
by five o’clock every afternoon at a well-stocked cabin. 
. . .However, you miss the excitement of occasionally 
camping out or helping to find a trail and of making 
your way cross-country with only a good intuition and 
a compass as a guide. “Cross country” mathematics 
is a necessary ingredient of a good education. 

Further details about the course work recommenda- 
tions in Principles VI, VIII, and IX appear in later 
chapters of this report. Discussion of courses in dis- 
crete methods, applied algebra, and numerical analysis 
appears in the last section of this chapter. 

Teaching Mat hematical Reasoning 
Because a mathematical sciences major must include 

a broader range of courses than a standard (pure) math- 
ematics major, many mathematicians have expressed 
concern that it will be harder to  teach the average 
mathematics student rigorous mathematical reasoning 
in a mathematical sciences major. They believe that 
the major will develop problem-solving skills but that 
without more abstract pure mathematics, students will 
never develop a true sense of rigorous mathematical 
reasoning. The MSP panel thinks that a mathemati- 
cal sciences major with a strong emphasis on problem- 
solving is in keeping with time-tested ways of developing 
“mathematical reasoning.” The question of whether to  
require “core” pure mathematics courses, such as ab- 
stract algebra and real analysis, in any mathematical 
sciences major is discussed in the next section. 

Historically (before 1940), the main thrust of the 
mathematics major a t  most colleges was problem- 
solving. Most courses in the major could be classed 
as mathematics for the physical sciences: trigonometry, 
analytic geometry, calculus (first-year and advanced), 
differential equations, and vector analysis. Proofs in 
advanced calculus were symbolic computations. Proofs 
in number theory were, and still are, usually combi- 
natorial problems. The one abstract “pure” course in 
the curriculum was logic. A “rigorous” course did not 
mean an abstract course, “mathematics done right.” A 
rigorous course used to  mean a demanding, more in- 
depth treatment tbat required more skill and ingenuity 
from the student. The past curriculum surely had some 
faults, but its problem-solving and close ties to physics 

came from traditions that go back to  the roots of math- 
ematics. 

While problem solving may traditionally be the pri- 
mary way of teaching mathematical reasoning to un- 
dergraduates, the complexity and breadth of modern 
mathematics and mathematical scienceis require theory 
to help organize and simplify learning. Rigorous prob- 
lem solving should lead students to  appreciate theory 
and formal proofs. In a mathematical sciences major, 
theory should be primarily theory for a purpose, theory 
born from necessity (of course, this is also the historical 
motivation of most theory). Students may find theory 
difficult, but they should never find it irrelevant. 

Most courses in a mathematical sciences major 
should be case studies in the pedagogical paradigm 
of real world questions leading to  matlhematical prob- 
lem solving of increasing difficulty that forces some ab- 
straction and theory. As mentioned earlier, lower-level 
courses would concentrate on problem solving to build 
technical skills with occasional statements of needed 
theorems, while typical upper-level courses would con- 
centrate on problem solving to  build technical skills 
with occasional statements of needed ,theorems, while 
typical upper-level courses would emphasize the transi- 
tion from harder problem-solving to  theory. 

Instructors should resist pressures to  survey fully 
fields such as numerical analysis, probability, statistics, 
combinatorics, or operations research in the one cmrse 
a department may offer in the field. The instructor 
of such a course should give students a sense of the 
problems and modes of reasoning in the field, but after 
that, should be guided by the pedagogical model given 
above. All syllabi produced by MSP siubpanels should 
be viewed in this light. Most instructors will cover most 
of a suggested syllabus, but general pedagogical goals 
should always take precedence over the demands of in- 
dividual course syllabi. 

The MSP panel believes that for generations math- 
ematics instructors have used the paraldigm mentioned 
above to develop rigorous mathematical reasoning. Im- 
plicit in this paradigm is a unity of purpose between 
students and instructor. Most students like to start 
with concrete real-world examples as a basis for mathe- 
matical problem solving. They expect the problems to 
get harder and require more skill and insight. And they 
certainly appreciate theory when it  makes their work 
easier (although understanding formal proofs of useful 
theory requires maturity). Interactive t,eaching also be- 
comes natural: students are interested in participating 
in a class that  is developing a subject in a way that they 
can appreciate. 
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How Much Theory? 

This section summarizes arguments for and against 
requiring upper-level analysis and algebra courses of all 
mathematical sciences majors, and why the MSP panel 
made its "compromise" decision. 

Expecting controversy on several issues, the MSP 
panel organized sessions a t  national and regional MAA 
meetings to get input from the mathematics community. 
The main area of contention was how many courses to  
require in specific areas. The panel heard complaints 
that some areas were being neglected or that only one 
course in a certain area would be so superficial as to be 
worse than no course. However, most constituencies 
came to accept the need for compromise recommen- 
dations of limited exposure to several areas with stu- 
dents left to  choose for themselves an area to  study in 
greater depth. On the other hand, one important issue 
emerged on which a compromise position seemed to an- 
tagonize at least as many people as it pleased. This was 
the question of whether to  require an analysis and/or 
an abstract algebra course and, more generally, how 
much proof-oriented course work should be required in 
a mathematical sciences major. 

In the early 1970'~~ a majority of mathematics pro- 
grams required a t  least these two upper-level "core 
mathematics" courses for all students. Recently, de- 
clining enrollments in these courses and student prefer- 
ence for more applied or computing courses have forced 
many departments either to relax this requirement or 
to introduce a new applied track which does not require 
these two courses. People favoring the requirement of 
analysis and algebra argue that: 

0 Not requiring them would speed an already dan- 
gerous deterioration in the intellectual basis of the 
mathematics major; 
A major without a t  least analysis and algebra would 
be a superficial potpourri of courses-a major of no 
real value to  anyone, e.g., graduate study in statis- 
tics requires analysis and (linear) algebra; 
One cannot understand "what mathematics is 
about" without these two courses-a major with- 
out these two courses simply should not be offered 
by a mathematics department. 

People in favor of not requiring analysis and algebra 

With a more applied emphasis the mathematical 
sciences major will attract more good students, 
whereas requiring these courses would mean no 
change (except for new applied electives) from the 
1960s type of mathematics major that today at- 
tracts only a marginal number of students; 

argue that: 

Analysis and algebra are fine for some students 
but demand a mathematical maturity that many 
other undergraduates lack-these students memo- 
rize proofs blindly to  pass examinations and never 
take the follow-on courses needed to  appreciate the 
structure and elegance of these subjects; and 
Proofs and abstraction can equally well be devel- 
oped through other courses such as applied algebra, 
probability, differential equations, or combinatorics. 

Mathematicians must face the reality of a general 
change in the attitude of college students towards math- 
ematics. The popularity of science and mathematics in 
the 1960s drew more of the brightest students to mathe- 
matics and also motivated all students to work harder a t  
mathematics in high school. So the average mathemat- 
ics student was capable of handling a more theoretical 
mathematics program. 

Today, mathematics appears to  be getting no more 
than its traditional (smaller) share of bright students, 
and high school study habits are less good. However, al- 
most all of today's mathematics students still find a few 
subjects, pure or applied, particularly interesting and 
want to  study this material in some depth. Also by the 
senior year, the MSP panel believes that mathematics 
majors do have the mathematical maturity to  appre- 
ciate, say, a moderately abstract real analysis course. 
Examples of new approaches to  teaching analysis and 
other core mathematics courses appear in subsequent 
chapters. 

Since there was agreement on the importance of some 
theoretical depth, the MSP panel proposed the compro- 
mise of Principle VII, recommending "a sequence of two 
upper-division courses leading to  the study of some sub- 
ject in depth." Because of the lack of consensus on the 
analysis-algebra question, the MSP panel expects this 
issue to  be debated and modified at individual institu- 
tions. The faculty should not require courses that most 
students strongly dislike, nor should faculty shy away 
from any theory requirements for fear of losing majors. 
The faculty rather must motivate students to appreciate 
the value of some theoretical course work. 

Sample Majors 

This section presents two 12 semester-course math- 
ematical sciences majors. Many other sample majors 
could be given. The MSP panel believes that most ma- 
jors should be a "convexcombination" of the two majors 
given here. Major A contains much of a standard math- 
ematics major, while Major B is a broader program de- 
signed for students interested in problem solving. Both 
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majors should be accompanied by a minor in a related 
subject. 

The common core of all majors would be three 
semesters of calculus, one course in linear algebra, one 
course in computer science plus either a second com- 
puter course or extensive use of computing in several 
other courses, one course in probability and statistics, 
the equivalent of a course in discrete methods, modeling 
experience, and two theoretical courses of continuing 
depth. 

Mathematical Sciences Major A 
Three semesters of calculus 

* Linear algebra 
Probability and statistics 
Discrete methods 
Differential equations (with computing) 
Abstract algebra (one-half linear algebra) 
Two semesters of advanced calculus/real analysis 

* One course from the following set: abstract algebra 
(second course), applied algebra, geometry, topol- 
ogy, complex analysis, mathematical methods in 
physics 
Mathematical modeling 
Plus related course work: two semesters of computer 
science and two semesters of physics, to be taken in 
the first two years. 

Mathematical Sciences Major 

Three semesters of calculus 

B 

* Linear algebra 
Introduction to computer science 
Numerical analysis or second course in computer 

* Probability and statistics 
Advanced calculus or abstract algebra 
Discrete methods or differential equations 
Mathematical modeling or operations research 
Two electives continuing a subject with theoretical 

Subsequent sections in this report contain recom- 
mendations for discrete methods, applied algebra, and 
numerical analysis courses; for calculus, linear algebra, 
and differential equations courses; for upper-level core 
mathematics; for computer science; for modeling and 
operations research; and for probability and statistics. 

Major A is meant to  be close to the spirit of the major 
suggested by the NRC Panel on na in ing  in Applied 
Mathematics. That panel viewed differential equations 
as a unifying theme in the major. The proper mixture of 
Majors A and B (with appropriate electives) would also 

science 

depth. 

allow students to make statistics or operations research 
a unifying theme. 

The MSP panel feels that a set of courses similar to 
either of the above two majors, or a mixture thereof, 
would be reasonable for most mathematical sciences 
students. Some departments could offer several tracks 
for the mathematical sciences major. Special areas of 
faculty strength or student interest should obviously be 
reflected in the curriculum. 

Computing assignments should be used in most 
courses. When a liberal arts college mathematics de- 
partment teaches computer science, :such computing 
course work must frequently be counted within the col- 
lege limit of 12 or 13 courses permitted in one depart- 
ment. This regulation is assumed in Major B. However, 
the MSP panel believes that counting computer courses 
this way unfairly restricts a mathematical sciences ma- 
jor. One alternative is to list computer courses through 
the Computing Center. 

The one fundamental new course in these sample 
majors is discrete methods. As mentioned in Princi- 
ple VIII, the MSP panel feels that the central role of 
combinatorial reasoning in computer and decision sci- 
ences requires that some combinatorial problem solving 
should be taught in light of the three semesters devoted 
to analysis-related problem solving in the calculus se- 
quence. To this end, the modeling course should be 
heavily combinatorial if students have not taken a for- 
mal discrete methods course. 

Major A would be good preparation for graduate 
study in mathematics, applied mathematics, statistics, 
or operations research as well as many industrial posi- 
tions as a mathematical analyst or programmer. Ma- 
jor B would be good preparation for most industrial 
positions and for graduate study in applied mathemat- 
ics, statistics, or operations research (for such graduate 
study, both advanced calculus and upper-level linear al- 
gebra are usually needed). Representatives from many 
good mathematics graduate programs have stated that 
they would accept strong students with Major B-type 
training. 

Many computer science graduate programs would ac- 
cept Major B if the two electives were in computer sci- 
ence (although some other undergraduate computer sci- 
ence course deficiencies may still have to be made up in 
the first year of graduate study). In a computer science 
concentration within a mathematical sciences major, 
modern algebra might be replaced by applied algebra 
(see below for more details). Major B with an elec- 
tive in the theory of interest and a second probability- 
statistics course would be excellent preparation for ac- 
tuarial careers. Students interested in physical sciences- 
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related applied mathematics could modify either sam- 
ple major to get a good program. Both majors provide 
preparation for secondary school mathematics teach- 
ing, when supplemented with teaching methodology 
and practicum courses (theory courses must include al- 
gebra and geometry). 

Many smaller schools are being forced to offer a pro- 
gram in the spirit of Major B because almost all of 
B's courses have the needed enrollment base of students 
drawn from outside mathematics. 

The courses involving numerical analysis, probabil- 
ity and statistics, discrete methods, and modeling all 
can be designed as lower-level or upper-level courses. A 
large amount of flexibility is possible in "repackaging" 
the mathematical sciences material. For example, a 
Computational Models course (see the 1971 CUPM Re- 
port on Computational Mathematics) could cover some 
numerical analysis along with a little applied probabil- 
ity and statistics to be used in simulation modeling. 
A quarter system institution would have even greater 
flexibility in implementing this major. 

Mathematical Sciences Minor 
Just as a mathematical sciences major should be ac- 

companied by a minor in a related subject, so also do 
many other disciplines encourage their students to have 
a minor, or double major, in mathematics. At some col- 
leges, as many as half the mathematics majors have an- 
other major. Unfortunately, while mathematical meth- 
ods are playing an increasingly critical role in social 
and biological sciences and in business administration, 
students are generally ignorant or misinformed in high 
school and early college years about the importance of 
mathematics in these areas. 

The result is that many students either do not realize 
the value of further course work in the mathematical sci- 
ences until their junior or senior year, or their poor high 
school preparation forces them to  take a year of reme- 
dial mathematics before they can begin to learn any of 
the college mathematics they need. For such students, 
a traditional six to eight course minor in mathematics, 
starting with (at least) three semesters of calculus, is 
not feasible. When students in the social and biolog- 
ical sciences come to realize the value of mathematics 
in the junior year, they have frequently had only one 
semester of calculus, or perhaps a year of calculus with 
probability. 

The MSP panel believes that these students would be 
well served by a six to eight course mathematical sci- 
ences minor consisting of two semesters of calculus, one 
semester of (calculus-based) probability and statistics, 

one semester of introductory computer science, plus two 
to four electives chosen from courses such as numerical 
analysis, discrete methods, linear algebra, differential 
equations, linear programming, mathematical model- 
ing, and additional courses in calculus, probability or 
statistics, and computer science. Such a minor could 
easily be completed in three semesters. It has little 
prerequisite structure so that students can immediately 
pick courses based on personal interests rather than ini- 
tially "mark time" waiting to complete the calculus se- 
quence. 

Such a minor has several important points in its fa- 
vor. First of all, this minor is a collection of useful 
mathematical sciences courses which present concepts 
and techniques that arise frequently in the social and 
biological sciences. While this minor lacks the math- 
ematical depth of the traditional type of mathematics 
minor, it nonetheless introduces students to important 
modes of mathematical reasoning. Second, such a mi- 
nor will be attractive to students because it enhances 
employment opportunities and prospects for admission 
to graduate or professional schools. Third, after the 
exposure to interesting mathematical sciences topics, 
some students will want to study these subjects further 
in graduate school, either in a mathematical sciences 
graduate program or as electives in other graduate pro- 
grams. Fourth, this minor will bring more students into 
mathematical sciences courses, making it possible to of- 
fer these courses more frequently. Conversely, offering 
more mathematical sciences courses each semester will 
make a mathematical sciences minor, as well as the reg- 
ular mathematical sciences major, more attractive to 
students. In addition, when more students are taking 
mathematical sciences courses and finding out how use- 
ful mathematics is, the campus-wide student awareness 
of the value of mathematics will increase. 

Examples of Successful Programs 
Proper curriculum is the heart of a mathematical 

sciences program, but there are many non-academic as- 
pects that also must be considered. A wide variety of 
course offerings is not as important as the spirit with 
which the general program is offered. This section dis- 
cusses salient features of some successful mathematics 
programs. "Successful" means attracting a large num- 
ber of students into a program that develops rigorous 
mathematical thinking and also offers a spectrum of 
(well taught) courses in pure and applied mathemat- 
ics. Successful programs typically produce 5% to 8% of 
their college's graduates, although nation wide, mathe- 
matics majors constitute only about 1% of college grad- 
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uates. Faculty and student morale is uniformly high in 
these programs. As one would expect, teaching and re- 
lated student-oriented activities consume most of the 
faculty’s time in such successful programs, and there 
is little faculty research. The professors’ pride in good 
teaching and in the successes of their students leaves 
them with few regrets about not publishing. The set of 
programs mentioned here is only a sampling of success- 
ful programs that have come to the attention of this 
CUPM panel. More detailed information about these 
mathematics programs is available from individual col- 
leges. 

Saint Olaf College, a 2800-student liberal arts college 
in Northfield, Minnesota, has a contract mathematics 
major. Each mathematics student presents a proposed 
contract to  the Mathematics Department. The contract 
consists of at least nine courses (college regulations limit 
the maximum number of courses that can be taken in 
one department to  14). The department normally will 
not accept a contract without a t  least one upper-level 
applied and one upper-level pure mathematics course, 
a computing course or evidence of computing skills, 
and some sort of independent study (research program, 
problem-solving proseminar, colloquium participation, 
or work-study ). 

Frequently a student and an advisor will negotiate a 
proposed contract. For example, a faculty member will 
try to persuade a student interested in scientific com- 
puting and statistics that some real analysis and upper- 
level linear algebra should be included in the contract by 
showing that this material is needed for graduate study 
in applied areas, and in any case a liberal arts education 
entails a more broadly based mathematics major. Con- 
versely, a student proposing a pure mathematics con- 
tract would be confronted with arguments about not 
being able to appreciate theory without knowledge of 
its uses. In the end, the student and the faculty mem- 
ber understand and respect each other’s point of view. 

This understanding of each other’s interests natu- 
rally carries into the classroom. Also, the contract ne- 
gotiations “break the ice” and make students more at  
ease in talking to faculty (and encourage constructive 
criticism). The Mathematics Department offers minors 
in computing and statistics, but the attractiveness of 
a contract major in mathematics leads most students 
interested in these areas eventually to become mathe- 
matics majors. 

Lebanon Valley College, a small (1000-student) lib- 
eral arts college in Pennsylvania, has only five math- 
ematics faculty but its Department of Mathematical 
Sciences offers majors in Mathematics, Actuarial Sci- 

ence, Computer Science, and Operatioris Research. The 
course work in the mathematics graduate preparation 
track involves a problem seminar, Putnam team ses- 
sions, and formal and informal topics courses (because 
of the limited demand in this area). All mathematical 
sciences majors must take a rigorous 25 semester-hour 
core of calculus, differential equations, linear algebra, 
foundations, and computer science. Most courses are 
peppered with applications and computing assignments. 

The mathematics faculty are heavily involved in re- 
cruiting students by attending College Fairs and College 
Nights and by visiting regional high schools to explain 
to students and counselors the many diverse and at- 
tractive careers in the mathematical nciences, and the 
importance of mathematics in other professions. As a 
result of this effort, 10% of the incoming Lebanon Val- 
ley freshmen plan majors in the mathlematical sciences 
(the national average is 1%), and 7% of Lebanon Valley 
graduates are mathematical sciences majors. Many stu- 
dents are initially attracted by the major in actuarial 
science (an historically established profession) and then 
move into other areas of applied and pure mathematics, 
but this pattern may change with the newly established 
computer science major. 

Once the faculty have the “students’ attention,” they 
work the students hard. The students respond posi- 
tively to the demands of the faculty for three reasons. 
First, known rewards await those who do well in math- 
ematics (besides the obvious long-term rewards, the de- 
partment awards outstanding students with member- 
ship in various professional societies in the mathemat- 
ical sciences). Second, a personal sense of intellectual 
achievement is carefully nurtured starting in the fresh- 
man year with honors calculus for mathematics majors. 
Finally, as at  St. Olaf, a continuing (dialogue between 
students and faculty allows students l,o help shape the 
mathematics program. In fact, students interview can- 
didates for faculty positions and their irecommendations 
carry great weight. The department keeps in close touch 
with alumni by sending each one a personal letter every 
other year with news about the department and fellow 
alumni. 

Nearby Gettysburg College has a special vitality in 
its mathematics program that comes from an interdis- 
ciplinary emphasis. The department :has held joint de- 
partmental faculty meetings with each natural and so- 
cial science department at Gettysbyg to discuss com- 
mon curriculum and research interests. Several inter- 
disciplinary team-taught courses havc been developed, 
such as a course on symmetry taught jointly by a math- 
ematician and a chemist. An interdepartmental group 
organized two recent summer workshops in statistics 
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which drew faculty from eight departments. Mathe- 
matics faculty have audited a variety of basic and ad- 
vanced courses in related sciences to learn to  talk the 
language of mathematics users. Mathematics faculty 
bring this interdisciplinary point of view into every 
course they teach, giving interesting applications and 
showing, say, how a physicist would approach a certain 
problem. Needless to  say, a large number of mathemat- 
ics majors a t  Gettysburg are double majors. 

Frequently a separate computer science department 
with its own major spells disaster for the mathematics 
major a t  a college. But Potsdam State College (in the 
economically depressed northeast corner of New York) 
has possibly the greatest percentage of mathematics 
graduates of any public institution in the country-close 
to  lo%-despite competition from a popular computer 
science major. The most striking feature to  a visitor 
to  the Potsdam State Mathematics Department is the 
great enthusiasm among the students and the sense of 
pride students have in their ability to think mathemat- 
ically. (While it is hard to  measure objectively these 
students’ mathematical development, leading techno- 
logical companies, such as Bell Labs, IBM, and General 
Dynamics, annually hire several dozen Potsdam math- 
ematics graduates.) 

Classes have a limited amount of formal lectures. 
Most time is spent discussing work of the students. The 
emphasis on giving students a sense of achievement is 
due in large part to  experiences of the Potsdam chair- 
man when he taught in a Black southern institution. 
By instilling self confidence, he had helped able but ill- 
prepared students excel in calculus and even saw some 
go on to  good mathematics graduate programs. The de- 
partment has various awards for top students, a very ac- 
tive Pi Mu Epsilon chapter, publications about careers 
in mathematics and successes of former students, and 
a large student-alumni newsletter. Upper-class mathe- 
matics students are used to tutor (and encourage) be- 
ginning students. They also communicate their enthu- 
siasm about mathematics to  friends and teachers back 
home. As a result, half the incoming Potsdam freshmen 
sign up for calculus (although few departments require 
it). 

The computer science major a t  Potsdam State is 
viewed by the mathematics faculty as a great asset to  
the Mathematics Department. The computer science 
major helps attract good students to  Potsdam who of- 
ten decide to  switch to, or double major with, mathe- 
matics. Also the computer science program offers career 
skills and needed mathematical breadth. Numerical 
analysis, operations research, and modeling are taught 
in computer science (the Mathematics Department has 

had to limit severely their upper-level electives in or- 
der to  keep class size down and preserve small group 
seminars). 

As noted at the start of this section, the preced- 
ing mathematics programs represent only a small sam- 
pling of the excellent programs in this country. Sev- 
eral women’s colleges offer fine programs worth noting. 
For example, the Goucher College Mathematics Depart- 
ment has integrated computing in almost all courses and 
has a broad curriculum in pure and applied mathemat- 
ics; and the Mills College Mathematics Department has 
successfully promoted the critical role of mathematics 
for careers in science and engineering. The cornerstone 
of Ohio Wesleyan’s excellent mathematics program is 
an innovative calculus sequence (with computing, prob- 
ability, and diverse mathematical modeling). Georgia 
State University, an urban public institution with a 
highly vocational orientation, has a Mathematics De- 
partment that has broken out of the typical low-level 
service function mode to  offer a fine, well-populated 
mathematical sciences major. While research and grad- 
uate programs often dominate concerns about the un- 
dergraduate mathematics major at universities, math- 
ematics faculty at many universities work closely with 
undergraduate majors in excellent unified mathematical 
sciences programs. Three such institutions are Clemson 
University, Lamar University (Texas), and Rensselaer 
Polytechnical Institute. 

Most universities today have separate departments 
in computing and mathematical sciences. To counter 
this division, the University of Iowa and Oregon State 
University have developed unified inter-departmental 
mathematical sciences majors. The MSP panel strongly 
endorses such inter-departmental majors. At some uni- 
versities, most of the mathematical sciences, outside 
of pure mathematics, have been housed in one depart- 
ment. Although the MSP panel prefers a unified mathe- 
matical sciences major (ideally in one department), sev- 
eral of these non-pure mathematical sciences depart- 
ments have good undergraduate programs that may 
be of interest to  other institutions: the Mathemati- 
cal Sciences Department at Johns Hopkins University, 
the Mathematical Sciences Department at Rice Univer- 
sity, and the Department of Applied Mathematics and 
Statistics at the State University of New York a t  Stony 
Brook. 

Departmental Self-study and Publicity 

The MSP panel urges all mathematics departments 
to engage in serious self-study to  identify one or more 
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major themes to  emphasize in their mathematical sci- 
ences programs: an interdisciplinary focus in cooper- 
ation with other departments; an innovative calculus 
sequence (integrating computing, applications, etc.); a 
work-study program or other individualized learning 
experience; special strength in one area of the math- 
ematical sciences (pure or applied); or a track directed 
towards employment in a regional industry (such as 
aerospace, automative, insurance). Some colleges have 
successfully developed a multi-option major, but usu- 
ally such programs are the outgrowth of successful one- 
theme programs that slowly added new options (for ex- 
ample, the multiple-major mathematical sciences pro- 
gram at Lebanon Valley College, mentioned in the pre- 
ceding section, started with just an Actuarial Science 
option). The MSP panel’s advice is first to  do one thing 
well. 

A departmental emphasis should be consistent with 
the general educational purposes of the whole institu- 
tion and the academic interests of the high school gradu- 
ates who have historically gone to  that institution. It is 
very risky to  design a mathematical sciences program 
about a theme that the mathematics faculty find at- 
tractive and then to  try to  recruit a new group of high 
school students to  come to  the institution for this pro- 
gram. Note that a thematic emphasis does not mean 
that basic parts of the mathematical sciences program 
discussed earlier in this chapter can be neglected. 

Following a departmental self-study and implemen- 
tation of its recommendations for new courses or de- 
velopment of industrial work-study contacts, etc., it is 
next necessary to  publicize the mathematics depart- 
ment’s program with brochures and visits to regional 
high schools and College Fairs. Virtually all mathemat- 
ics departments with large programs (where mathemat- 
ical sciences majors constitute over 4% of the school’s 
graduates) have extensive publicity programs. Such 
publicity should emphasize the general usefulness of 
mathematics in the modern world, whether a student 
is a prospective mathematical sciences major or minor 
or an undecided liberal arts student. 

High school guidance counselors often do not realize 
that there are other attractive mathematics-related ca- 
reers outside straight computing. Counselors tend to  be 
afraid of mathematics because of their own personal dif- 
ficulties with the subject. Some counselors have been 
known to discourage students from taking more than 
the minimum required amount of high school mathe- 
matics with the warning that students risk getting poor 
grades in (hard) mathematics courses and thus hurting 
their chances of college admission. 

College faculty trying to  publicize the value of math- 

ematics and its study at their institution should seek the 
cooperation of local associations of the National Coun- 
cil of Teachers of Mathematics, which have long been 
working to  promote interest in mathematics in the high 
schools. 

New Course Descriptions 
Finite structures are used throughout the mathemat- 

ical sciences today. Two new basic courses about finite 
structures belong in the mathematical sciences curricu- 
lum, one addressing combinatorial aspects and one ad- 
dressing algebraic aspects. Another topic, numerical 
analysis, has become more important with the growth 
of computer science. This section describes a numeri- 
cal analysis course that is more applied and a t  a lower 
level than the previous CUPM numerical analysis rec- 
ommendations (Course 8 in the CUPM report A Gen- 
eral Curriculum for Mathematics in Colleges.) 

Discrete Methods Course 
This course introduces the basic techniques and 

modes of reasoning of combinatorial problem solving 
in the same spirit that calculus introduces continuous 
problem solving. The growing importance of computer 
science and mathematical sciences such as operations 
research that depend heavily on combinatorial methods 
justifies at least one semester of combinatorial problem 
solving to  balance calculus’ three semlesters of analysis 
problem solving. 

Unlike calculus, combinatorics is not largely re- 
ducible to  a limited set of formulas and operations. 
Combinatorial problems are solved primarily through 
a careful logical analysis of possibilities. Simple ad 
hoc models, often unique to  each different problem, are 
needed to  count or analyze the possiblle outcomes. This 
need to  constantly invent original solutions, different 
from class examples, is what makes the discrete meth- 
ods course so valuable for students. 

Like calculus, combinatorics is a subject which has a 
wide variety of applications. Many of them are related 
to  computers and to  operations research, but others re- 
late to  such diverse fields as genetics, organic chemistry, 
electrical engineering, political science, transportation, 
and health science. The basic discrete methods course 
should contain a variety of applicatiolns and use them 
both to  motivate topics and to  illustrate techniques. 

The course has an enumeration part and a graph 
theory part. These parts can be covered in either or- 
der. While texts traditionally do enumeration first, the 
graph material is more intuitive and hence it seems nat- 
ural to  do graph theory first (as suggested below). 



14 RESHAPING COLLEGE MATHEMATICS 

With the right point-of-view, many combinatorial 
problems have quite simple solutions. However, the 
object of this course is not to show students simple 
answers. It is to teach students how to discover such 
simple answers (as well as not so simple answers). The 
means for achieving solutions are of more concern than 
the ends. Learning how to solve problems requires an 
interactive teaching style. I t  requires extensive discus- 
sion of the logical faults in wrong analyses as much as 
presenting correct analyses. 

Since the course should emphasize general combina- 
torial reasoning rather than techniques, a large degree 
of flexibility is possible in the choice of topics. The 
course outline given below contains many optional top- 
ics. Some of the core topics, such as the inclusion- 
exclusion formula, might also be skipped to allow the 
course to be tailored to the interests of students. 

COURSE OUTLINE 

I. Graph Theory 
A. Graphs as models. Stress many applications. 
B. Basic properties of graphs and digraphs. Chains, 

paths, and connectednesq isomorphism; pla- 
narity. 

C. Trees. Basic properties; applications in search- 
ing; breadth-first and depth-first search; span- 
ning trees and simple algorithms using spanning 
trees. Optional: branch and bound methods; 
tree-based analysis of sorting procedures. 

Chromatic number; coloring 
applications; map coloring. Optional: related 
graphical parameters such as independent num- 
bers. 

E. Eulerian and Hamiltonian circuits. Euler cir- 
cuit theorem and extensions; existence and non- 
existence of Hamiltonian circuits; applications 
to scheduling, coding, and genetics. 

D. Graph coloring. 

F. Optional topics: 
a. Tournaments 
b. Network flows and matching 
c. Intersection graphs 
d. Connectivity 
e. Coverings 
f. Graph-based games 

11. Combinatorics 
A. Motivating problems and applications. 
B. Elementary counting principles. Tree diagrams; 

sum and product role; solving problems that 
must be decomposed into several subcases. Op- 
tional: applications to complexity of computa- 
tion, coding, genetic codes. 

C. Permutations and combinations. Definitions 
and simple counting; sets and subsets; binomial 
coefficients; Pascal’s triangle; multinomial coef- 
ficients; elementary probability notions and ap- 
plications of counting. Optional: algorithms for 
enumerating arrangements and combinations; 
binomial identities; combinations with repeti- 
tion and distributions; constrained repetition; 
equivalence of distribution problems, graph ap- 
plications. 

D. Inclusion/ezclusion principle. Modeling with 
inclusion/exclusion; derangements; graph color- 
ing. Optional: rook polynomials. 

E. Recurrence relations. Recurrence relation mod- 
els; solution of homogeneous linear recurrence 
relations; Fibonacci numbers and their applica- 
tions. 

F. Optional topics: 
a. Generating functions 
b. Polya’s enumeration formula 
c. Experimental design 
d. Coding 

The preceding course outline is for either a one- 
semester or a two-quarter course. A two-quarter course 
has a natural structure, covering enumerative material 
in one quarter and graph theory plus designs in another 
quarter. There are several books available for part or 
all of the discrete methods course. It is anticipated that 
as this discrete methods course becomes more widely 
taught, many more books will become available and the 
exact nature of the syllabus will evolve. 

There are several obvious places where a computer 
can be used in this course: ways of representing graphs 
in a computer and performing simple tests (e.g., connec- 
tivity); asymptotic calculations in enumeration prob- 
lems; network flow algorithm; and algorithms for enu- 
merating permutations and combinations. The peda- 
gogical problem is that computer programming takes 
time away from problem-solving exercises, possibly too 
much time if a school’s computer operation runs in a 
batch processing mode. 

A more advanced second course in combinatorics 
may also be considered. This course can treat core top- 
ics in the discrete methods course in greater depth, and 
some of the optional topics. Other important topics are 
Ramsey theory, matroids, and graph algorithms. The 
course could concentrate on combinatorics or on graph 
theory, or could be a topics course which varies from 
year to year. Some of the texts listed below would be 
suitable for this second combinatorics course. 
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COMBINATORICS & GRAPH THEORY TEXTS 
1. Bogart, Kenneth, Introductory Combinatorics, Pit- 

2 .  Brualdi, Richard, Introductory Combinatorics, Else- 

3. Cohen, Daniel, Basic Techniques of Combinatorial 

4. Liu, C.L., Introduction to Combinatorial Mathemat- 

5. Roberts, Fred, Applied Combinatorics, Prentice- 

6. Tucker, Alan, Applied Combinatorics, J. Wiley lz 

GRAPH THEORY TEXTS 

man, Boston, 1983. 

vier-North Holland, New York, 1977. 

Theory, J. Wiley & Sons, New York, 1978. 

ics, McGraw Hill, New York, 1968. 

Hall, Englewood Cliffs, New Jers., 1984. 

Sons, New York, 1980. 

1. Bondy, J. and Murty, V.S.R., Graph Theory with 
Applications, American Elsevier, New York, 1976. 

2.  Chartrand, Gary, Graphs as Mathematical Models, 
Prindle, Weber, and Schmidt, Boston, 1977. 

3. Ore, Oystein, Graphs and Their Uses, Math. Assoc. 
of America, Washington, D.C., 1963. 

4. Roberts, Fred, Discrete Mathematical Models, Pren- 
tice-Hall, Englewood Cliffs, New Jersey, 1976. 

5. Trudeau, Robert, Dots and Lines, Kent State Press, 
Kent, Ohio, 1976. 

C o MB IN AT o RIC s TEXTS 
1. Berman, Gerald and Fryer, Kenneth, Introduction 

to Combinatorics, Academic Press, New York, 1969. 
2.  Eisen, Martin, Elementary Combinatorial Analysis, 

Gordon-Breach, New York, 1969. 
3. Vilenkin, N., Combinatorics, Academic Press, New 

York, 1971. 
4. Street, A. and Wallis, W., Combinatorial Theory: 

A n  Introduction, Charles Babbage, 1975. 

Applied Algebra Course 
(Editorial Note in 1989 reprinting: This course is 

now called Discrete Structures and is usually now 
taught a t  the freshman level. The course discussed here 
is more advanced and intended for the sophomore-junior 
level.) 

A traditional time for an applied algebra course is 
in the junior year-when students would be ready for a 
modern algebra course. However, as noted above, many 
students will not be ready for algebraic abstraction un- 
til senior year. The course builds on experiences in be- 
ginning computer science courses that have implicitly 
imparted to  students a sense of the underlying algebra 
of computer science structures, and formally presents 
topics like Boolean algebra, partial orders, finite-state 
machines, and formal languages that will be used in 

later computer science courses. At thle same time, this 
course can also be very rewarding to  regular mathe- 
matics majors who should appreciate ithe new algebraic 
structures such as formal languages and finite state ma- 
chines that are so different from the structures in the 
regular abstract algebra course. Substantial class time 
should be spent on proofs with special emphasis on in- 
duction arguments. This course is just as mathemati- 
cally sophisticated and capable of developing abstract 
reasoning as abstract algebra, but the topics stress set- 
relation systems rather than binary-operation systems. 
Indeed the abstract complexity of the basic structures 
is much greater in applied algebra, but this complexity 
precludes the construction of logical pyramids built of 
simple algebraic inferences common to many areas of 
abstract algebra. 

This course is an advanced version of the lower- 
division B3 Discrete Structures course in ACM Cur- 
riculum 68. The B3 course was the source of much 
dissatisfaction because it contained ii huge amount of 
material, and it required too great mathematical matu- 
rity for a lower-division course. The recent ACM Cur- 
riculum 78 recommends that the B3 course be treated 
as a more advanced course and that it, should be taught 
in mathematics departments rather than computer sci- 
ence departments. The B3 course was the subject of 
several papers a t  meetings of the ACM Special Inter- 
est Group in Computer Science Education (SIGCSE); 
see the February issues (Proceedings of SIGCSE annual 
meeting) of the SIGCSE Bulletin in 1973, 1974, 1975, 
1976. 

The B3 course contained both applied algebra and 
discrete methods. The MSP panel recommends that a 
separate full course be devoted to  discrete methods (see 
the discrete methods course description earlier in this 
Section). Because some computer science courses may 
devote a substantial amount of time introducing some 
of the topics in the above applied algebra syllabus, the 
exact content of this course will vary substantially from 
college to college. For this reason the syllabus outline 
was kept brief. At some colleges, applied algebra will 
still have to be combined with discrete methods in one 
course (the computer science major may not have the 
time for two separate courses). The applied algebra 
part of such a combined course would, in most cases, 
concentrate on topics 1, 2,  3, 4, 6 in the syllabus. Many 
of the discrete structures texts listed below cover both 
applied algebra and discrete methods. 

COURSE TOPICS 

A. Sets, binary relations, set functions, induction, basic 
graph terminology. 
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B. Partially ordered sets, order-preserving maps, weak 

C. Boolean algebra, relation to  switching circuits. 
D. Finite state machines, state diagrams, machine ho- 

E. Formal languages, context-free languages, recogni- 

F. Groups, semigroups, monoids, permutations and 

G. Modular arithmetic, Euclidean algorithm. 
H. Optional topics: linear machines, Turing machines 

and related automata; Polya’s enumeration theo- 
rem; finite fields, Latin squares and block design; 
computational complexity. 

orders. 

momorphism. 

tion by machine. 

sorting, representations by machines, group codes. 

APPLIED ALGEBRA TEXTS 

1. Dornhoff, Lawrence and Hohn, Frantz, Applied 
Modern Algebra, Macmillan, New York, 1978. 

2. Fisher, James, Application- Oriented Algebra, T. 
Crowell Publishers, New York, 1977. 

3. Johnsonbaugh, Richard, Discrete Mathematics, 
Macmillan, New York, 1984. 

4. Korfhage, Robert , Discrete Computational Struc- 
tures, Academic Press, New York, 1974. 

5. Liu, C.L., Elements of Discrete Mathematics, Mc- 
Graw Hill, New York, 1977. 

6. Preparata, Franco and Yeh, Robert, Introduction 
to Discrete Structures, Addison-Wesley, Reading, 
Mass., 1973. 

7. Prather, Robert, Discrete Mathematical Structures 
for Computer Sciences, Houghton Mifflin, Boston, 
1976. 

8. Stone, Harold, Discrete Mathematical Structures 
and Their Applications, Science Research Asso- 
ciates, Chicago, 1973. 

9. Tremblay, J. and Manohar, R., Discrete Mathemat- 
ical Structures with Applications in Computer Sci- 
ences, McGraw Hill, New York, 1975. 

Numerical Analysis Course 

In any elementary numerical analysis course a bal- 
ance must be maintained between the theoretical and 
the application portion of the subject. Normally, such 
a course is designed for sophomore and junior students 
in engineering, mathematics, science, and computer sci- 
ence. Students should be introduced to  a wide selection 
of numerical procedures. The emphasis should be more 
on demonstrations than on rigorous proofs (however, 
this is not meant to  slight necessary theoretical aspects 
of error analysis). At least one or two applied problems 
from each of the major topics should be included so that 

students have a good understanding of how the art of 
numerical analysis comes into play. 

The course outline below presents a good selection of 
topics for a one-semester course. Error analysis should 
be continuously discussed throughout the duration of 
the course so as to  stress the effectiveness and efficiency 
of the methods. Alternative methods should be con- 
trasted and compared from the standpoint of the com- 
putational effort required to  attain desired accuracy. 

An optional approach to  this course would emphasize 
a full discussion (with computer usage) of one procedure 
for each course topic (after the computer arithmetic in- 
troduction). A sample of five such procedures is: 
1. The Dekker-Brent algorithm (see UMAP module 

2. A good linear equation solver involving LU-de- 

3. Cubic spline interpolation. 
4. An adaptive quadrature code. 
5. The Runge-Kutta-Fehlberg code RKF4 with adap- 

Weekly assignments should include some computer 
usage; in total, four or five computer exercises for each 
major topic. Students should do computer work for 
larger applied programs in small groups. However, 
the concept of utilizing %armed" programs with mi- 
nor modifications should be stressed. Such an approach 
nicely brings out the strong interdependence between 
computers and numerical analysis yet does not over- 
emphasize the efforts necessary to  program a problem. 
An interactive computer system using video terminals 
is ideal for this course. Microcomputers and even hand- 
held calculators can also be used effectively. One or two 
applied homework problems from each of the main top- 
ics keep students aware of the balance that is necessary 
between the art and the science of numerical analysis. 
Prerequisites for this course should be a year of calculus 
including some basic elementary differential equations 
and a computer science course. 

For schools on a quarter system, two quarters should 
be a minimal requirement and the above material would 
be more than ample. One should spend the first quar- 
ter on numerical solutions of algebraic equations and 
systems of algebraic equations and the last quarter on 
the other topics. 

COURSE OUTLINE 

A. Computer arithmetic. Discretization and round-off 
error; nested multiplication. 

B. Solution of 4 single algebraic equation. Initial dis- 
cussion of convergence problems with emphasis on 
meaning of convergence and order of convergence; 

No. 264). 

composition. 

tive step determination. 



Newton’s method, Bairstow’s method; interpola- 
tion. 

C. Solution systems of equations. Elementary matrix 
algebra; Gaussian methods, LU decomposition, it- 
erative methods, matrix inversion; stability of algo- 
rithms (examples of unstable algorithms), errors in 
conditioned numbers. 

D. Interpolating polynomials. Lagrange interpolation 
to  demonstrate existence and uniqueness of interpo- 
lating polynomials and for calculation of truncation 
error terms; splines, least squares, inverse interpo- 
lation; truncation, inherent errors and their propa- 
gation. 

E. Numerical integration. Gaussian quadrature, 
method of undetermined coefficients, Romberg and 
Richardson extrapolation (for both integration and 
differentiation), Newton-Cotes formulas, interpolat- 
ing polynomials, local and global error analysis. 

F. Numerical solution of ordinary differential equa- 
tions. Both initial value and boundary value 
problems; Euler’s method, Taylor series method, 
Runge-Kutta, predictor-corrector methods, multi- 
step methods; convergence and accuracy criteria; 
systems of equations and higher order equations. 

If this course has an enrollment of under 25 students, 
non-standard testing can be considered, such as a take- 
home midterm. At the end of the term, instead of the 
traditional three hour examination, each student can 
write an expository paper exploring in greater depth 
one of the topics introduced in class or investigating 
a subject not included in the work of the course, ei- 
ther approach to include computational examples with 
analysis of errors. (Since most of the students will not 
have had previous experience in writing a paper, topics 
may be suggested by the instructor or must be approved 
if student devised; scheduled conferences and prelimi- 
nary critical reading of papers guard against disastrous 
attempts or procrastination.) Some examples of final 
projects are: spline approximations; relaxation meth- 

ods; method of undetermined coefficients in differen- 
tiation and integration; least squares approximations; 
parabolic (or elliptic or hyperbolic) partial differential 
equations; numerical methods for multi-dimensional in- 
tegrals; multi-step predictor-corrector methods. 

NUMERICAL ANALYSIS TEXTS 
1. Cheney, Ward and Kincaid, David, Numerical 

Mathematics and Computing, Brooks/Cole, Mon- 
terey, Calif., 1980. 

2. Conte, S. and DeBoor, C., Elemmtary Numerical 
Analysis, McGraw Hill, New York, 1978. 

3. Gerald, Curtis F., Applied Numerical Analysis, 2nd 
Edition, Addison-Wesley, Reading, Mass., 1978. 

4. Forsythe, G.E. and Moler, C.B., Computer Solu- 
tions of Linear Algebraic System,s, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1967. 

5. Hamming, R.W., Numerical Methods for Scientists 
and Engineers, 2nd Edition, McGraw Hill, New 
York, 1973. 

6. James, M.L.; Smith, G.M.; Wolford, J.C., Ap- 
plied Numerical Methods for Digital Computation, 
Harper & Row, New York, 1985. 

7. Ralston, Anthony and Rabinowitz, Philip, First 
Course in Numerical Analysis, McGraw Hill, New 
York, 1978. 

Panel Members 

ALAN TUCKER, CHAIR, SUNY, Stony Brook. 
RICHARD ALO, Lamar University. 
WINIFRED ASPREY , Vassar College. 
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DON KREIDER, Dartmouth College. 
WILLIAM LUCAS, Cornell University. 
FRED ROBERTS, Rutgers University. 
GAIL YOUNG, Case Western Reserve. 

tute. 





Calculus 

This chapter contains the report of the Subpanel on 
Calculus of the CUPM Panel on a General Mathemat- 
ical Sciences Progmm, reprinted with minor changes 
from Chapter 11 of the 1981 CUPM report entitled 

SCIENCES PROGRAM. 
RECOMMENDATIONS FOR A GENERAL MATHEMATICAL 

Rationale 

The Calculus Subpanel was charged with examining 
the traditional calculus sequence of the first two years 
of college mathematics: two semesters of single-variable 
calculus; one semester of linear algebra; one semester 
of multivariable calculus. In approaching this task, the 
subpanel considered syllabi through which this sequence 
is implemented at various colleges and universities, the 
syllabus for the Advanced Placement Program in Calcu- 
lus, and alternatives to  calculus as the entry-level course 
in the mathematical sciences, for example, finite math- 
ematics or discrete methods. 

The subpanel eventually came to  the conclusion that 
the rationale for certain parts of the traditional calcu- 
lus sequence remains valid, although some restructuring 
and increased flexibility are warranted to reflect the dif- 
fering mathematical requirements of the social and bi- 
ological sciences and, increasingly, of computer science. 
The general recommendations of the subpanel are thus: 
1. To make no substantive changes in the first semester 

of calculus; 
2. To restructure the second semester around model- 

ing and computation, although leaving it basically 
a calculus course; 

3. To branch to three independent courses in the sec- 
ond year: 
a. Applied Linear Algebra, 
b. Multivariable Calculus (in dimensions 2 and 3), 
c. Discrete Methods. 

Descriptions of the first and second semesters of calcu- 
lus, applied linear algebra, and multivariable calculus 
are given below. The discrete methods course is dis- 
cussed in the first chapter, “Mathematical Sciences.” 

The subpanel views its recommendations as conser- 
vative. Tony Ralston has argued, for example, that 
calculus need not be the entry-level course in the math- 
ematical sciences and that a course in discrete methods 
is a reasonable alternative, better serving some areas 

such as computer science (see “The Twilight of the Cal- 
culus,” which appeared under the title “Computer Sci- 
ence, Mathematics, and the Undergraduate Curricula 
in Both” in the American Mathematical Monthly, 88:7 
(1981) 472-485). In his view, to  ignore discrete meth- 
ods, even in the first two years of college mathematics, 
would be absurd in this day. 

The subpanel does not disagree with the general 
sense of this position. On the other hand, the sub- 
panel feels that the language, spirit, and methods of 
traditional calculus still permeate matlhematics and the 
natural and social sciences. To quote Ralston himself, 
“The calculus is one of man’s great intlellectual achieve- 
ments; no educated man or woman should be wholly 
ignorant of its elements.” Perhaps the time is not far 
off when calculus will be displaced as the entry-level 
course, but it has not arrived yet. 

The place for rigor. The subpanel believes 
strongly that, in the first two years, theorems should 
be used rather than proved. Certainly correct state- 
ments of theorems such as the Mean Value Theorem 
or 1’HGpital’s Rule should be given; but motivation, as 
long as it is recognized as such, and usage are more im- 
portant than proofs. The place for theoretical rigor is in 
later upper-level courses. In this rega.rd, the subpanel 
agrees with the program philosophy outlined in the first 
chapter, “Mathematical Sciences.” 

First Semester Calculus 
The first semester of calculus, especially, contains a 

consensus on essential ideas that are important for mod- 
eling dynamic events. This course has evolved through 
considerable effort in the mathematical community to 
present a unified treatment of differential and integral 
calculus, and it serves well both general education and 
professional needs. It is historically rich, is filled with 
significant mathematical ideas, is tempered through its 
demonstrably important applications, and is philosoph- 
ically complete. Most syllabi for its teaching cover the 
usual topics: 
A. Limits and continuity. 
B. Differentiation rules. 
C .  Meaning of the derivative. Applications to curve 

sketching, maximum-minimum problems, related 
rates, position-velocity-acceleration problems. 

D. Antidifferentiatwn. 
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E. The definite integral and the Fundamental Theorem 
of Calculus. 

F. Trigonometric functions. 
G. Jogarithmic and ezponential functions. Including a 

brief exposure to first-order, separable differential 
equations (with emphasis on y' = ky). 

The first (and second) calculus courses should be 4- 
or 5-credit hour courses. If less time is available, top- 
ics will have to be pushed later into the calculus se- 
quence, with some multivariate calculus material left 
for an analysis/advanced calculus course. Mathemat- 
ics courses should not rush trying to  cover unrealistic 
syllabi. 

It might be desirable to add more non-physical sci- 
ences examples to C (e.g., a discussion of the use of 
the word "marginal" in economics), although serious 
modeling examples should be postponed to the second 
semester. Integration as an averaging process can be in- 
cluded in El but applications and techniques (numerical 
or algebraic) of integration are better left to the second 
semester. Exponential growth and decay are important 
concepts that must be emphasized in G. 

Second Semester Calculus 
There does not appear to be much slack or fat in the 

first semester of calculus. I t  is in the second semester, 
therefore, when numerical techniques, models, and com- 
puter applications can be introduced. Unlike the first 
semester of calculus, the second semester does not en- 
joy the same consensus on either its central theme or its 
content. I t  tends to be a grab bag of "further calculus 
topics"-further techniques of integration, more appli- 
cations of integration, some extension of techniques to 
the plane (parametric equations), sequences and infi- 
nite series, and more differential equations. Each of 
these topics is, in isolation, important at some stage in 
the training of scientists and mathematicians. But it is 
less clear that packaging them in this way and having 
them occupy this critical spot in the curriculum is justi- 
fied today, given the pressing needs of computer science 
and the non-physical sciences. 

From time to time it has been urged that multi- 
variable calculus should be started during the second 
semester. But few institutions have implemented this 
suggestion. And the subpanel believes that, in the 
meantime, higher priorities for the second course have 
materialized in the form of applications and computing. 

The subpanel considered recommending branching in 
the curriculum after the first semester of calculus, with 
students advised to take courses more directly relevant 
to their career goals. But it finally concluded that there 

are still substantial reasons for keeping students in one 
"track" through the first two courses. In most Ameri- 
can colleges, a "choice" in the second course would re- 
quire most students to  be thinking seriously about ca- 
reer goals within a few weeks of arriving on campus as 
freshmen. This does not strike us as realistic nor in the 
best interests of liberal education. Moreover, we con- 
tinue to  feel that many of the ideas and technical skills 
arising in the second calculus course are reasonable to 
include a t  this point in the curriculum. Thus, the final 
conclusion is that a restructuring and change of empha- 
sis in the second semester calculus course is preferable 
to its replacement. 

The Calculus Subpanel recommends the following 
changes in the second calculus course: 
A. 

B. 

C. 

D. 

E. 

An early introduction of numerical methods. Imple- 
mented through simple computer programs. Solv- 
ing one (or a system of two) first-order differential 
equation( s ) .  
Techniques of integration. General methods such as 
integration by parts, use of tables, and techniques 
that extend the use of tables such as substitutions 
and (simple) partial fraction expansions; less em- 
phasis should be placed on the codification of special 
substitutions. 
Numerical methods of integration. Examples where 
numerical and "formal" methods complement each 
other, e.g., evaluating improper integrals where sub- 
stitutions or integration-by-parts make the integral 
amenable to efficient numerical evaluation. 
Applications of integration. Illustrate the "setting 
up" of integrals as Riemann sums. The emphasis 
should be on the modeling process rather than on 
"visiting" all possible applications of the definite in- 
tegral. 
Sequences and series. These topics should have sub- 
stantially changed emphasis: 
1. Sequences should be elevated to independent 

status, defined not only through %lased formu- 
las" but also via recursion formulas and other 
iterative algorithms. Estimation of error and 
analysis of the rate of convergence should ac- 
company some of the examples. 

2. Series should appear as a further important ex- 
ample of the idea of a sequence. Power series, as 
a bridge from polynomials to special functions, 
should figure prominently. Specialized conver- 
gence tests for series of constants can be de- 
emphasized. 

3. Approximation of functions via Taylor series, 
and estimation of error, accompanied by im- 



plementation of such approximations on a com- 
puter. 

F. Differential equations. Should be treated with less 
(but not zero) emphasis on special methods for solv- 
ing first-order equations and constant coefficient 
linear equations (especially the non-homogeneous 
case). More valuable would be: vector field inter- 
pretation for first-order equations, numerical meth- 
ods of solution, and power series methods for solv- 
ing certain equations. Applications should arise in 
mathematical modeling contexts and both “closed 
form” and “numerical” solutions should be illus- 
trated. 

The new second course in calculus does not differ rad- 
ically in content from the traditional second semester 
course. It is a conservative restructuring that can be 
taught from existing textbooks and based on modest 
modifications of many existing syllabi. But the intended 
change in “flavor” and emphasis should be more dra- 
matic. About twelve lectures (of the usual 40 lectures) 
must be modified substantially to  achieve the desired 
computer emphasis. Numerical algorithms will thus 
figure prominently, along with the formal techniques 
of calculus. Concepts not usually in a calculus course 
such as error estimation, truncation error, round-off er- 
ror, rate of convergence, and bisection algorithms will 
be included. The theme for the course will be “calcu- 
lus models.” Consideration of even a few UMAP-type 
models would be enough to  change the nature of the 
course significantly and to provide the intended “tying 
together” of the traditional calculus topics that are in- 
cluded in the course. 

A syllabus for the course could be constructed by 
starting with the second calculus course described in the 
CUPM report, A General Curriculum for Mathematics 
in Colleges (revised 1972), or with the Advanced Place- 
ment BC Calculus Syllabus. Topics to  be diminished or 
omitted include: emphasis on special substitutions in 
integrals, l’H6pital’s rule except as it arises naturally in 
connection with Taylor series, polar coordinates, vector 
methods, complex numbers, non-homogeneous differen- 
tial equations and the general treatment of constant- 
coefficient homogeneous linear differential equations. 
Many of these topics will appear in examples but will 
not be emphasized in themselves. 

Intermediate Mat hematics Courses 
Although the Calculus Subpanel recommends retain- 

ing a single track for students during their first year, it 
just as strongly recommends that three different courses 

be available from which students choose (with advis- 
ing) their intermediate mathematics courses. Two of 
these courses, whose descriptions follaow, are Applied 
Linear Algebra and Multivariable Calcdus. The third, 
Discrete Mathematics, is described in the first chapter, 
‘Mathematical Sciences.” 

Applied Linear Algebra 
For a large part of modern applied mathematics, lin- 

ear algebra is at least as fundamental as calculus. It is 
the prerequisite for linear programming and operations 
research, for statistics, for mathematic,al economics and 
Leontief theory, for systems theory, for eigenvalue prob- 
lems and matrix methods in structures, and for all of 
numerical analysis, including the solution of differential 
equations. The attractive aspect about these applica- 
tions is that they make direct use of wh,at can be taught 
in a semester of linear algebra. The course can have a 
sense of purpose, and the examples can reinforce this 
purpose while they illustrate the theory. 

A number of major texts have arrived a t  a reasonable 
consensus for a course outline. Their outlines are well 
matched with the needs of both theory and application. 
Applications can include such topics ars systems of lin- 
ear differential equations, projections and least squares. 
But the subpanel strongly recommends that more sub- 
stantial applications to linear models should be a cen- 
tral part of the construction of the course. Many differ- 
ent applications of this kind are accessible and can be 
found in the texts mentioned. Thus, no  rigid outline is 
required. The development of the suhject moves nat- 
urally from dimension 2 to  3 to  n, and although that 
is an easy and familiar step, it nevertheless represents 
mathematics a t  its best. The combination of impor- 
tance and simplicity is almost unique ‘to linear algebra. 
Linear programming is an excellent final topic in the 
course. It brings the theory and applications together. 

The changes in this course are ones of emphasis that 
recognize that the course must be more than an in- 
troduction to  abstract algebra. Abstraction remains a 
valuable purpose, and linearity permits more success 
with proofs than the epsilon-delta arguments of calcu- 
lus. However, the main goal is to  emphasize applica- 
tions and computational methods, opening the course 
to the large group of students who nleed to use linear 
algebra. 

TEXTS 
1. Hill, Richard, Elementary Lineo.r Algebra, Aca- 

2. Kolman, Bernard, Introductory Linear Algebra with 
demic Press, New York, 1986. 

Applications, Macmillan, New York, 1979. 
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3. Rorres, Chris and Anton, Howard, Applications of 
Linear Algebra, John Wiley & Sons, New York, 1979 
(paperback supplementary text). 

4. Strang, Gil, Linear Algebra and Its -Applications, 
3rd Edition, Harcourt Brace Jovanovich, San Diego, 
1988. 

5. Tucker, Alan, A Unified Introduction to  Linear Al- 
gebra, Macmillan, New York, 1988. 

6. Williams, Gareth, Linear Algebra with Applications, 
Allyn and Bacon, Boston, 1984. 

Multivariable Calculus 
This is the traditional multivariable calculus course 

a t  many colleges and universities. It is not a new course, 
but for many schools it would represent a movement in 
the direction of “concrete” treatment of multivariable 
calculus rather than the more recent elegant treatments 
making heavy use of linear transformations and couched 
in general (high dimensional) terms. The course be- 
gins with an introduction to  vectors and matrix alge- 
bra. Topics include Euclidean geometry, linear equa- 
tions, and determinants. The remainder of the course 
is an introduction to multivariable calculus, including 
the analytic geometry of functions of several variables, 
definitions of limits and partial derivatives, multiple and 
iterated integrals, non-rectangular coordinates, change 
of variables, line integrals, and Green’s theorem in the 
plane. 

Differential Equations 
The Calculus Subpanel has considered the place of 

differential equations in the curriculum. It recommends 
that the topic be treated at two levels: 
1. Through methods and examples involving differ- 

ential equations, spiraled through the calculus se- 
quence, and 

2. Through a substantial course in differential equa- 
tions, available to  students upon completion of the 
first-year calculus sequence and applied linear alge- 
bra. 

We note here topics in differential equations that are 
part of the preceding courses: 

Solutions of y‘ = ky occur in the first semester of 
calculus. Exponential growth and decay are dis- 
cussed. 

# Solution of second order linear differential equa- 
tions are included in the second semester of calcu- 
lus. Oscillating solutions occur as examples. In ad- 
dition, geometrical interpretations (direction field), 
numerical solutions and power series solutions are 
included. 

Applied Linear Algebra includes the solution of lin- 
ear constant coefficient systems of differential equa- 
tions using eigenvalue methods. 

Although the Calculus Subpanel has not recom- 
mended a full course in differential equations in the cal- 
culus sequence of the first two years, it has suggestions 
for a subsequent course. Such a course should not be 
a compendium of techniques for solving in closed form 
various kinds of differential equations. Libraries are full 
of cookbooks; one hardly needs a course to use them. 
What is important is to  develop carefully the models 
from which differential equations spring. Modeling ob- 
viously means more than an application such as: 

According to  physics, the displacement z ( t )  of a 
weight attached to  a spring satisfies 2”-bz’+kz  = 
0 .  Solve for z ( t )  given that b = 2, k = 3, z(0) = 

For a more serious approach to  applications, we refer to 
the art  forgery problem a t  the beginning of Braun (see 
below) or indeed almost any of the models discussed in 
the suggested texts. 

The meaning of the word “solution” must be scru- 
tinized. Different viewpoints must be introduced- 
numerical, geometric, qualitative, linear algebraic and 
discrete. 

A possible syllabus for a differential equations course 
is: 
A. First-order equations. Models; exact equations; ex- 

istence and uniqueness and Picard iteration; numer- 
ical methods. 

B. Higher-order linear equations. Models; the linear al- 
gebra of the solution set; constant coefficient homo- 
geneous and non-homogeneous; initial value prob- 
lems and the Laplace transform; series solutions. 

C. Systems of equations and qualitative analysis. Mod- 
els; the linear algebra of linear systems and their so- 
lutions; existence and uniqueness; phase plane; non- 
linear systems; stability. 

Since some of these topics will have already been 
introduced in courses from the calculus sequence, there 
may be time for a brief discussion of partial differential 
equations and Fourier series. Existence and uniqueness 
theorems are included here only because of the light 
they or their proofs might shed on methods of solution 
(e.g., Picard iteration). 

TEXTS 

1, z’(0) = 0. 

The course can be taught using any of the many 
reasonable differential equations texts with a modest 
amount of applications, supplemented by: 

Braun, Martin, Differential Equations and Their 
Applications, Second Edition, Springer-Verlag, New 



York, 1978. 

Braun remains the only text to  build extensively on 
applications, but i t  has the serious drawback that it 
is based on single-variable calculus and avoids linear 
algebra. 

A somewhat radical alternative is a theoretical course 
involving more qualitative or topological analysis em- 
phasizing systems of equations. The subpanel does not 
suggest a syllabus, but refers instead to  V.I. Arnold, Or- 
dinary Differential Equations, MIT Press, Cambridge 
(paperback), 1978. 

This course would have applied linear algebra and 

multivariable calculus as prerequisites1 and could be 
taken a8 early as the second semester of the sophomore 
year if the two prerequisites were taken concurrently the 
previous semester. 

Subpanel Members 

DON KREIDER, CHAIR, Dartmouth Colllege. 
ROSS FINNEY , Educational Development Center. 
JOHN KENELLY, Clemson University. 
GIL STRANG, MIT. 
TOM TUCKER, Colgate University. 





Core Mathematics 

This chapter contains the report of the Subpanel on 
Core Mathematics of the CUPM Panel on 0 General 
Mathematical Sciences Program, reprinted with minor 
changes from Chapter 111 of the 1981 CUPM report en- 
titled RECOMMENDATIONS FOR A GENERAL MATHE- 
MATICAL SCIENCES P R O G R A M .  

New Roles for Core Mathematics 
In the 1960’s CUPM extensively examined curricu- 

lum in core mathematics-upper division subjects that 
comprise the trunk from which the other specialized 
branches and applications of mathematics emerge. It 
reviewed and revised its recommendations in 1972. 
See the Compendium of CUPM Recommendations pub- 
lished by the Mathematical Association of America, es- 
pecially the 1972 revision of the General Curriculum 
for Mathematics in  Colleges. With the current restruc- 
turing of the mathematics major into a mathematical 
sciences major, new questions have been raised about 
core mathematics curriculum. These questions concern 
the role of core mathematics in a mathematical sciences 
major as much as syllabi of individual courses. This 
chapter focuses on four questions that were addressed 
to  the Core Mathematics Subpanel by the parent Panel 
on a General Mathematical Sciences Program. 

The members of this subpanel represent a variety 
of institutions, public and private, liberal-arts colleges, 
and research-oriented universities. All the members 
have seen at their institutions a divergence of the math- 
ematics major from its form during their own under- 
graduate training, as career opportunities for mathe- 
matics majors have changed. In part, the members 
lament the passing of the mathematics program that 
nurtured their love of mathematics. At the same time 
they acknowledge the challenge of the diversity of the 
present and future. They realize that it is not now 
realistic for CUPM to recommend a core set of pure 
mathematics courses to  be taken by all mathematical 
sciences majors in every institution. 

While the mathematics major has generally broad- 
ened towards a mathematical sciences major, it is still 
possible for an institution, large or small, to elect to re- 
tain a traditional pure mathematics major, alone or in 
conjunction with an  applied mathematics major. But 
it is clearly more appropriate to work within current 
realities to  fashion a unified mathematical sciences ma- 
jor with diminished pure content, a major incorporating 

both breadth and selective depth. (If size warrants, the 
unified major can have several tracks, one for prepa- 
ration for graduate study in mathemakics.) This sub- 
panel is concerned with the role in a mathematical sci- 
ences major of upper-level core mathematics courses, 
and more generally with appreciation of the depth and 
power of mathematics. 

A prime attribute of a person educated in mathemat- 
ical sciences is his or her ability to  respond when con- 
fronted with a mathematical problem, whether in pure 
mathematics, applied mathematics, 01’ one which uses 
mathematics that the person has not seen before. Our 
students should be prepared to function as profession- 
als in areas needing mathematics not by having learned 
stock routines for stock classes of probl.ems but by hav- 
ing developed their ability in problem solving, modeling 
and creativity. This general pedagogical theme, that 
was stressed throughout the first chapter “Mathemati- 
cal Sciences,” guided the thinking of t,he Core Mathe- 
matics Subpanel. 

The report of the Core Mathematics Subpanel is 
meant to be supportive rather than directive. What 
an individual department does should reflect its con- 
stituency of students, their needs, their numbers, and 
the goals, character and size of the institution. 

Four Questions 
QUESTION 1: Is there a minimal Jiet of upper-level 

core mathematics (algebra, analysis, topology, geom- 
etry) that every mathematical sciences major should 
study? 

ANSWER: No. There is no longer a common body 
of pure mathematical information that every student 
should know. Rather, a department’s program must be 
tailored according to its perception of its role and the 
needs of its students. Whether pure mathematics is re- 
quired of all in some substantial way; whether it is used 
as an introduction to  advanced work of applied nature 
or as a completion to  an applied program; or whether 
pure mathematics is simply one track in a collection of 
programs in a large department will be an institutional 
option. Departments must recognize this fact, establish 
their programs with a clear understanding of objectives 
that are being met, and be prepared to share and ex- 
plain these perceptions with their students. The limited 
resources of smaller departments must be exploited with 
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great efficiency and wisdom. Such departments may 
face a difficult decision of whether to  abandon certain 
traditional branches of mathematics entirely in order to 
offer courses and tracks best suited to their students. 

The underlying problem is that  students enter college 
with much less mathematics than they used to, but they 
expect to leave with more. There is a wide span of 
preparation among entering college students, they want 
an education that is specific to  chosen career goals, and 
the levels of mathematical and computational skills and 
sophistication that accompany these goals have risen. 
Core courses such as abstract algebra and analysis are 
valuable for continuing study in many fields, but they 
are not essential for all careers. 

The Core Mathematics Subpanel and the parent 
Mathematical Sciences Panel jointly recommend that 
all mathematical sciences students take a sequence of 
two courses leading to the study of some subject in 
depth (see the first chapter, “Mathematical Sciences”). 

QUESTION 2: Should there be major changes in the 
content or mode of instruction of upper-level core math- 
ematics courses? 

ANSWER: While there will continue to  be some stu- 
dents who plan to  move toward a doctorate in pure, 
or applied, mathematics and an academic career, the 
mathematical sciences major is seen by most students as 
preparation for immediate employment or for Masters- 
level graduate training in areas outside of mathemat- 
ics (but where mathematical tools are needed). Thus 
mathematics departments can no longer view their 
upper-division courses as a collection of courses that 
faculty wish they had had prior to  admission to gradu- 
ate school. Rather, departments must offer pure math- 
ematics courses that are compatible with the overall 
goals of a mathematical sciences major, courses that 
are intellectually and pedagogically complete in them- 
selves, courses that are both the beginning and the end 
of most students’ study of the subject. The main objec- 
tive in such courses now is developing a deeper sense of 
mathematical analysis and associated abstract problem- 
solving abilities. In these courses students learn how to 
learn mathematics. 

There is always a continuing need to re-examine the 
nature and content of any course. Some courses carry 
baggage that may be there largely for historical reasons. 
A frequent example of this is the traditional course in 
differential equations which is populated by isolated dis- 
coveries of the Bernoulli clan (and lacking in discussion 
of numerical methods). Instructors are slow to discard 
topics that have a strong aesthetic appeal (for the in- 
structors) but are no longer important building blocks 

in the field. Syllabi and approaches in pure matheniat- 
ics courses must be adapted to  changing constituencies 
with a careful balance of learning new concepts and 
modes of reasoning and of using these constructs, a 
balance of “listening” and “doing.” Students should 
emerge from a course feeling that they have become 
junior experts in some topics: they should know facts 
and relationships, know some of the “whys” behind this 
mathematics. 

It would be desirable for courses to  be structured 
with review stages that require reflection by students of 
what analysis to  use to  solve a problem. The courses 
need to  contain assignments that ask for short proofs of 
results and for application of concepts and techniques 
from one problem to another (apparently unrelated) 
problem. Proper judgment in the selection of a method 
of analysis is the key both to constructing mathematical 
proofs and to  problem solving in applied mathematics; 
nurturing this ability is the critical challenge to  instruc- 
tors. Students should be required to  present material 
both orally and in writing on a regular basis. Since 
students do not have to know a standard body of theo- 
rems for graduate study, the course content in algebra, 
analysis, topology and geometry can vary according; to 
faculty interests and possible ties with stronger quanti- 
tative areas of an institution (e.g., physics or biology). 

The density of proofs in an upper-level course is al- 
ways a controversial issue. It is traditional to  feel tlhat 
one objective of such a course is to  teach students how to 
construct proofs. However, this skill comes slowly and 
seldom arouses the same pleasure in students as it does 
in instructors. Some proofs are needed in any upper- 
level mathematics course to knit together the enlire 
structure that is being presented, but one should priob- 
ably aim at piecewise rigor rather than a Landauesque 
totality. Students’ mathematical maturity will develop 
as much, and it will be far less painful. 

The preceding pedagogical goals in core mathemiat- 
ics must accommodate the reality that courses such as 
abstract algebra may only be offered in alternate years 
and that two-semester sequences or courses with core 
mathematics prerequisites will be difficult to schedule. 
With a broad mixture of students in infrequently-offered 
courses, instructors must be sensitive to  the discourage- 
ment some students may feel in the presence of more 
sophisticated seniors. 

QUESTION 3: How can the full scope of mathemaiics 
be conveyed to students? Should this be done b y  one- 
semester survey courses that cover a range of fields? 

Students pursuing specific career goals 
in mathematical sciences and those taking upper-level 

ANSWER: 
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mathematical “servicen courses need to be made aware 
of the depth and breadth of mathematics and the 
greater mathematical maturity that their subsequent 
careers may demand. Mathematical survey courses do 
not appear to  be the answer. They will not be able to  
move beyond vocabulary and notation to give any sense 
of global structure in any of the fields covered. 

Physicists seem to  have been remarkably successful 
in communicating some understanding about the “big 
picture” to  their students and laymen through exposi- 
tory articles that treat highly technical subjects by pre- 
senting only a projection or shadow of the true struc- 
ture, but doing so in a way that does not seem to offend 
their consciences. Similar approaches should be possi- 
ble in mathematics using expository American Mathe- 
matical Monthly, Mathematics Magazine, or Scientific 
American articles. Following the reading of such an 
article, a (once-a-week) class would discuss concepts, 
technicalities and applications in the article plus addi- 
tional examples. Natural topic areas are complex analy- 
sis and two-dimensional hydrodynamics; number theory 
and public key cryptography; calculus of variations and 
soap films; queueing theory and, say, toll road design. 

More traditional ways of projecting the wide-ranging 
nature of mathematics are by rotation of courses and by 
providing seminars, extracurricular mathematical ac- 
tivities, summer work opportunities, and by reference 
and linkages to  mathematics in courses in other depart- 
ments. This breadth should also give a sense of the 
rapidly changing nature of uses of mathematics and of 
the need of learning how to learn mathematics. 

QUESTION 4: Should pure mathematics courses be 
postponed for most students until the senior year to fol- 
low and abstract from more applied courses earlier in 
the curriculum? 

ANSWER: Many mathematical sciences students who 
prefer problem solving to theory appear to have con- 
siderable difficulty in their sophomore or junior years 
with abstract core mathematics. For these students, 
core mathematics may better wait until a senior year 
“capstone” course(s) that  builds on maturity developed 
in earlier problem solving courses. This course (prefer- 
ably year-long if only one such course is required) in 
a subject such as analysis or abstract algebra would 
build a student’s capacity (and appetite) for abstraction 
and proof and for solving complex problems involving a 
combination of analytical techniques. The course would 
seek depth rather than breadth. The course should link 
abstract concepts with their concrete uses in previous 
courses, such as integration concepts used in limiting 
probability distributions. It should illustrate in several 

ways the power and usefulness of mathematical abstrac- 
tion and generalization. 

There are two important provisos about senior-year 
courses. First, when core courses cannot be offered ev- 
ery year, they obviously must be accessible to most 
juniors. Second, the mathematicalby gifted student 
(whether a mathematics major or not) must be able 
to  take such senior core courses in the sophomore year 
without needing applied prerequisites that other stu- 
dents naturally take before the core course. Such gifted 
students today are often directed towards popular ca- 
reers such as engineering or medicine and by their se- 
nior year would be too immersed in professional training 
to take the pure mathematics course that would reveal 
their mathematical research potential. 

It is worthwhile recalling that before 1950 few col- 
leges offered regular courses in abstract algebra, topol- 
ogy, or up-to-date advanced calculus. The 1950’s and 
1960’s were memorable in mathematics education, but 
today’s students must be viewed as in the historical 
mainstream rather than as slow in learning to  handle 
abstractions. 

Individual institutions will differ greatly in the de- 
sign of such senior courses. As noted in the discussion 
of Question 2, these courses should require oral and 
written student presentations. The spirit of this recom- 
mendation could be achieved with a year-long course in 
a subject such as differential equations or combinatorics 
that begins with applications and lealds to  abstraction 
or a course that begins with abstraction and leads to 
applications. 

Sample Course Outlines 
In this section we discuss two approaches to  the fun- 

damental upper-level core subjects of abstract algebra 
and analysis. We suggest an ideal treatment and then 
a more modest version that is appropriate for most cur- 
rent mathematical sciences students. The descriptions 
are stated in terms of student objectives. 

The philosophy behind each of the course descrip- 
tions is that the student needs a working understanding 
of the subject far more than a detailed intensive and 
critical knowledge. The instructor’s central goal is to 
teach the student how to learn mathematics, expecting 
that students will correctly retain only a tiny portion 
of what was taught, but that when they need to  refresh 
their knowledge, they will be far better able to  do so 
than if they had never taken the course. Proofs are not 
of major importance, but in both approaches students 
should be able to understand what the hypotheses of 
a theorem mean and how to check them. They should 
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also be able to  detect when seemingly plausible state- 
ments are false (and should be shown counterexamples 
to  such statements; e.g., integrals that should converge 
but do not). 

Abstract Algebra I (Ideal) 

B. Study the class of continuous maps from a region in 
Rn into Rm, and the special properties of maps in 
class C’ and C”. 

C .  Study integration of continuous and piecewise ‘con- 
tinuous functions over appropriately chosen sets, 
bounded and unbounded, and then extend this to 

A. 

B. 

C. 

D. 

E. 

Give the student a guided tour through the algebraic 
“zoo,” so that he or she knows what it means to 
be a group, a ring, a field, an  associative algebra, 
etc. Include associated concepts such as category, 
morphism, isomorphism, coset, ideal, etc. 
Show the student useful ways for generating one al- 
gebraic structure out of another, such as automor- 
phism groups, quotient groups, algebras of transfor- 
mations, etc. 
Give the student an understanding of the basic 
structure theorems for each of the algebraic sys- 
tems discussed, as well as an  understanding of their 
proofs. 
Give the student experience in using the preceding 
ideas and constructions and seeing how these ideas 
arise in other branches of mathematics (analysis, 
number theory, geometry, etc.). 
Show the student how algebra is used in fields out- 
side of mathematics, such as physics, genetics, in- 
formation theory, etc. 

Abstract Algebra I1 (Modest) 
A. Combine parts of A and B of Course I by show- 

ing students a t  least two different types of algebraic 
structures and several instances in which such an 
algebraic structure evolved or is constructed out of 
another mathematical structure. The goal is for a 
student t o  be able to  recognize when a situation has 
aspects that lend themselves to an algebraic formu- 
lation; e.g., rings out of polynomials. 

B. Describe part of the theory for one of the structures 
introduced in A and illustrate several of the deduc- 
tive steps in the theory. Students should see the 
nature of tight logical reasoning and the usefulness 
of algebraic concepts, as well as come to appreciate 
the cleverness of the theory’s discoverers. 

C. Discuss a t  least one application of algebra outside 
of mathematics. 

D. Assign students a variety of problems which re- 
quire recognition of algebraic structures in unfamil- 
iar forms, proof of small deductive steps, and use of 
theory in B. 

Analysis I (Ideal) 
A. Give the student a working knowledge of point set 

topology in Rn and analogous concepts for a metric 
space. 

integration with respect to set functions. 
D. Extend to the theory of differential forms and de- 

velop a relationship between differentiation of forms 
and the boundary operator, via Stokes’ theorem. 

Analysis I1 (Modest) 
A. Give the student a glossary of terms in point set 

topology, appropriate also to  a metric space and ap- 
plied to R”, and practice in their meanings. (Do not 
prove inter-relations, but state them clearly.) 

B. Introduce the class of C” maps from Rn into .Rm, 
and discuss a few problems involving such functions, 
each motivated by a concrete “real” situation. Solve 
each of the problems by stating and illustrating the 
appropriate general theorems, and in a few cases, 
sketching part of the proofs. 

C. Discuss integration in terms of measurement ,and 
averaging, extend this to  Rn, and explain briefly 
techniques of numerical integration. At all stages 
give attention to improper integrals. 

D. Extend the notion of function to differential forms, 
illustrated with physical and geometric examples. 
Motivate Stokes’ theorem as the analogue of the 
fundamental theorem of calculus, and arrive art a 
correct formulation of i t  without proof. Illustrate 
the theorem with examples, including some invdv- 
ing the geometric topology of surfaces; if students’ 
background is appropriate, examples in physics (hy- 
drodynamics or electromagnetism) should be given. 

An analysis course can also be given an “advanced 
calculus” emphasis including topics such as Fourier se- 
ries and transforms, special functions, and fixed-point 
theorems, with applications of these topics to differen- 
tial equations. For further discussion of this approach, 
see versions one and three of Mathematics 5 in the 
CUPM recommendations for a Genera2 CurricuZum in 
Mathematics for Colleges (revised 1972). 

Subpanel Members 

PAUL CAMPBELL, CHAIR, Beloit College. 
LIDA BARRETT , Northern Illinois University. 
R. CREIGHTON BUCK, University of Wisconsin. 
MARGARET HUTCHINSON , University of St. Thomas. 



Computer Science 

This chapter contains the report of the Subpanel on 
Computer Science of the CUPM Panel on a General 
Mathematical Sciences Program, reprinted with minor 
changes from Chapter I V  of the 1981 CUPM report en- 

MATICAL SCIENCES PROGRAM. 
titled RECOMMENDATIONS FOR A GENERAL MATHE- 

A Growing Discipline 
Computer Science is a new and rapidly growing sci- 

entific discipline. It is distinct from Mathematics and 
Electrical Engineering. The subject was once closely 
identified in mathematicians' minds with writing com- 
puter programs. In the beginning, however, computer 
scientists concentrated on the discipline's mathemati- 
cal theories of numerical analysis, automata, and re- 
cursive functions, as well as on programming. In the 
past decade, theories developed to understand problems 
in software design (compilers, operation systems, struc- 
tured programs, etc.) have blossomed. These theories 
involve the analysis of complex finite structures, and in 
this sense have a strong mathematical bond with the 
finite structures common in operations research and di- 
verse areas of applied mathematics. 

More importantly, these computer science theories 
are needed by analysts who design algorithms for com- 
plex problems in the mathematical sciences. For this 
reason, all mathematical sciences students must be 
given an introduction to  the basic concepts of computer 
science. Further, facility in computer programming is 
required of all mathematical sciences students so that 
they can perform practical computations in mathemat- 
ical sciences courses and in subsequent mathematical 
sciences careers. 

Although only one-third of the country's colleges 
and universities now have computer science depart- 
ments, the number of students currently majoring in 
computer science taught in a computer science depart- 
ment (approximately 50,000 students) is greater than 
the number of all majors in mathematics, mathemati- 
cal sciences, and applied mathematics. The computer 
science recommendations in this chapter are designed 
for institutions where computer science is taught in a 
mathematical sciences department or in a mathemat- 
ics department. When a separate computer science 
department exists, that  department's diversity of com- 
puter science offerings will enhance a mathematical sci- 

ences major. A mathematical sciences undergraduate 
program and a computer science undergraduate pro- 
gram should complement one another to the advantage 
of both departments and their students (for example, 
see the description of the interaction at Potsdam State 
in Chapter I, "A General Mathematical Science Pro- 
gram"). 

Introductory Courses 

The foundation for a computer science component in 
a mathematics department is a one-year introductory 
sequence. Courses CS1 and CS2, prolposed in the As- 
sociation of Computing Machinery Curriculum 78 (see 
last section of this chapter), are excellent models for 
this year sequence. The Subpanel on Computer Science 
endorses the objectives of these two courses, and rec- 
ommends that all mathematical sciences majors should 
be required to  take the first course and strongly encour- 
aged to  take the second course in this sequence. If the 
second course is not required, substantial use of com- 
puters should be an integral part of other mathematical 
sciences courses. 

The primary emphasis in the first 'course should be 
on: 

Problem solving methods and algorithmic design 

Implementing problem solutions in a widely used 

* Techniques of good programming i~tyle, and 
Proper documentation. 

and analysis, 

higher-level programming language, 

Lectures should include brief surveys of the history of 
computing, hardware and architecture, and operating 
systems. 

The second course should include at least one major 
project. The course should cover topics such as recur- 
sive programming, pointers, stacks, queues, linked lists, 
string processing, searching and sorting techniques. 
The concepts of data  abstraction and algorithmic com- 
plexity should be introduced. Proofs of correctness may 
also be discussed. 

Good design and style in programming should be em- 
phasized throughout both courses: the use of identi- 
fiers to indicate scope, modularity, appropriate choice 
of identifiers, good error recovery procedures, checks 
for integrity of input, and appropriate commentary and 
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documentation. Of course, efficient algorithms and cod- 
ing should also be stressed. There is a strong tendency 
among students to  worry only about whether their pro- 
grams run correctly. Through class lectures and care- 
ful grading of programming assignments, the instructor 
must teach the students the importance of good design, 
style, and efficiency in programming. 

A source of useful commentary about introductory 
computer science courses is the SIGCSE (Special Inter- 
est Group on Computer Science Education) Bulletin. 
The bulletin is published quarterly, and issue #1 each 
year, which contains papers presented at the SIGCSE 
annual meeting, is especially valuable. 

Most introductory texts have many sample projects. 
In addition, the following three texts are good general 
sources of computer projects. 
1. Bennett, William R., Scientific and Engineering 

Problem-Solving with the Computer, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1976. 

2. Gruenberger, Fred and Jaffray, G., Problems for 
Computer Solution, John Wiley & Sons, New York, 
1965. 

3. Wetherall, Charles, Etudes for Programmers, Pren- 
tice-Hall, Englewood Cliffs, New Jersey, 1978. 

Mathematicians teaching introductory computer sci- 
ence often emphasize numerical computation in pro- 
gramming assignments. At the introductory level, the 
computer science issues involved in numerical computa- 
tion are quite simple, Assignments requiring symbolic 
manipulation and data  organization present more sub- 
stantive programming problems and, in general, require 
more thought. The following is a sample assignment 
that could be given late in the first course: 

Write a program which obtains a five-card 
poker hand from some source (terminal, input 
deck, or file), prints the hand in a reasonably 
well-formatted style, and determines whether or 
not the hand contains a pair, three of a kind, a 
straight, a full house, etc. 

Intermediate Courses 

Intermediate-level computer science courses building 
on CS1 and CS2 should address basic underlying issues 
in computer science. In describing computer science 
in the first two years, the ACM Curriculum 78 report 
states that the student should be given “a thorough 
grounding in the implementation of algorithms in pro- 
gramming languages which operate on data structures 
in the environment of hardware.” Thus these courses 
should develop general topics about algorithms, con- 

cepts in programming languages, data  structures, and 
computer hardware. 

The intermediate-level courses should be taught by 
a computer scientist, that  is, by an  individual who has 
significant graduate-level training in computer science 
(see below). 

The Subpanel on Computer Science, in concurrence 
with ACM curriculum groups, strongly rejects the idea 
of a set of courses that each address a specific pro- 
gramming language, e.g., a sequence of advanced FOR- 
TRAN, COBOL, RPG, and APL. The argument for 
such a sequence is usually based on the employability 
of students completing it. If indeed this argument is 
valid, and there is some question about that ,  it is a short 
range benefit. Students completing such a sequence will 
soon find that the lack of underlying concepts will put 
them at a severe disadvantage. However, i t  may be ac- 
ceptable, resources permitting, to  have one “vocational” 
elective course that studies a second higher-level lan- 
guage such as COBOL. Of course, it is also natural to 
discuss new programming languages in several interme- 
diate (and advanced) computer science courses. How- 
ever, the new language would not be the focus of the 
course, but rather a tool used in learning and illust,rat- 
ing fundamental concepts. 

The role of numerical and computational mathernat- 
ics in computer science has diminished in recent years. 
While the ACM Curriculum 68 treated numerical anal- 
ysis as part of core computer science, today numeirical 
mathematics is considered by most computer scientists 
to  be simply another mathematical sciences field that 
has overlap with computer science. Numerical math- 
ematics is very important in a mathematical sciences 
major, but it is not a part of the computer science com- 
ponent . 

Following the CS1 and CS2 courses, the ACM Cur- 
riculum 78 specifies six additional courses in core com- 
puter science. 

CS3 Introduction to  Computer Systems 
CS4 Introduction to Computer Organization 
CS5 Introduction to File Processing 
CS6 Operating Systems and Computer Architecture 
CS7 Data Structures and Algorithm Analysis 
CS8 Organization of Programming Languages 
The syllabi of these courses are given at the end of 

this chapter. Ideally, all six of these courses would be 
offered. A concentration or a minor in computer sci- 
ence would commonly consist of CS1 and CS2, followed 
by two of CS3, CS4, and CS5, and two of CS6, CS7, 
and CS8. For the purposes of a mathematical scieiices 
program, it may be justified to  place more emphasis on 
the software oriented areas. This would imply, if there 
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was difficulty in offering all six courses, that  CS3, CS5, 
CS7, and CS8 would be most useful. Then CS3, CS5, 
CS7, and CS8 would be offered once a year, and CS4 
and CS6 offered as topics courses every other year. 

At many schools, it may not be feasible to  offer at 
least four of these intermediate courses in computer sci- 
ence on a regular basis. Then one can combine parts of 
these intermediate courses to provide a significant offer- 
ing in two courses above CS1 and CS2. In this case, only 
two computer science courses, one elementary and one 
intermediate, would be offered each semester. One ap- 
proach would be to  combine topics from CS5 and CS7 
into one course, and topics from CS3, CS4, and CS6 
into the other. This would yield two courses with the 
following sort of syllabi (for more details about these 
topics, see the ACM Curriculum 78 syllabi a t  the end 
of this chapter): 
Al .  Algorithms for Data Manipulation 

1. Algorithm design and development illustrated in 
areas of sorting and research (25%) 

2. Data structure implementation (30%) 
3. Access methods (25%) 
4. Systems design (15%) 
5. Exams(5%) 

1. Basic logic design (15%) 
2. Number representation and arithmetic (10%) 
3 .  Assembly systems (35%) 
4. Program segmentation and linkage (15%) 
5. Memory management (10%) 
6. Computer systems structure (10%) 
7. Exams (5%) 

A2. Computer Structures 

This approach focuses on data  structures and soft- 
ware issues that relate to operating systems. An al- 
ternative approach could concentrate on programming 
languages and algorithms involved in computer systems 
performance. This theme could be realized by combin- 
ing topics in CS3, CS5, and CS8 into one course, and 
topics in CS4, CS6, and CS7 into the other course. This 
would yield two courses with the following syllabi: 
B l .  Language Types and Structures 

1. Assembly systems (25%) 
2 .  Program segmentation and linkage (15%) 
3. Language definition structure (10%) 
4. Data types and structures (15%) 
5. Control structures and data flow (20%) 
6. Access methods (10%) 
7. Exams (5%) 

1. Basic logic design (20%) 
2 .  Algorithm design and analysis (20%) 
3. Procedure activation algorithms (15%) 

B2. Algorithms for Computer Systems 

4. Memory management (15%) 
5. Process management (15%) 
6. Systems design (10%) 
7. Exams (5%) 

It is important to  note that an individual wishing to 
go on from these courses to  advanced .work in computer 
science may have to  make up, as deficiencies, areas in 
core computer science that are not represented in these 
condensed pairs of courses. 

Concentrations and Minors; 

A computer science concentration i n  a college mathe- 
matics department can be defined as an option within a 
mathematical sciences major or as a “stand-alone” mi- 
nor. A computer science minor should consist of about 
six courses, ACM Curriculum 78 couirses CS1 and CS2 
plus four intermediate courses. 

A computer science concentration within a mathe- 
matical sciences major has three components: 

A. Mathematics: 5-plus courses; 
B. Computer Science: 4-6 courses; 
C .  Applied Mathematics: 3-plus courses. 

A. The mathematics component would include 
the three semester freshman-sophomore “calculus se- 
quence” plus linear algebra. As recommended in Chap- 
ter I, “A General Mathematical Sciences Program,” any 
mathematical sciences major should contain upper-level 
course work of a theoretical nature, typically algebra or 
advanced calculus. In a major with a computer science 
concentration, algebra is the natural area. Specifically, 
the applied algebra course given in Chaper I would be 
excellent for the computer science concentration. The 
course’s syllabus incorporates most of the topics of the 
ACM 78 discrete mathematics course (required of com- 
puter science majors). A small department could offer 
applied algebra and standard abstract algebra courses 
in alternate years. Logic and automata theory are at- 
tractive electives in the mathematics component if a 
mathematics department wishes to focus on more the- 
oretical aspects of computer science. 

It should be noted that several computer science ed- 
ucators have questioned the reliance on calculus as the 
basic mathematics for future computer scientists; ACM 
Curriculum 78, for instance, requires a (freshman) year 
of calculus. They advocate a mathematics component 
based on discrete mathematics with only one semester 
of calculus (taught, say, in the junior year). See A. Ral- 
ston and M. Shaw, “Curriculum 78--Is Computer Sci- 
ence Really that Unmathematical?”, Commzlnications 
A C M 2 3  (1980), pp. 67-70. 
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B. The computer science component would include 
ACM Curriculum 78 courses CS1 and CS2 plus two to 
four intermediate courses, as described in the preceding 
section. The syllabi of ACM Curriculum 78 core courses 
are given at the end of this chapter. 

C .  The applied mathematics component should in- 
clude a course in numerical analysis and a course in 
probability and statistics. The third applied mathe- 
matics course would be discrete methods, which would 
cover the combinatorial material in the ACM Curricu- 
lum 78 discrete mathematics course in greater depth, in- 
cluding operations-research-related graph modeling (see 
Chapter I for a full description of this course). The 
CUPM Mathematical Sciences Program panel recom- 
mends that all mathematics departments should offer 
a discrete methods course. Other good courses for the 
applied mathematics component are ordinarily differen- 
tial equations, mathematical modeling, and operations 
research. The 1971 CUPM Report on Computational 
Mathematics describes courses in computational mod- 
els, in combinatorial computation, and in differential 
equations with numerical methods; these courses com- 
bine topics from a variety of mathematical sciences and 
computer science courses and hence are particularly at- 
tractive to  small departments. 

In either the computer science concentration or mi- 
nor, all six computer science courses are needed for 
future graduate study in computer science. Incoming 
graduate students with less preparation are commonly 
required to  make up undergraduate course deficiencies. 

Faculty Training 
For the foreseeable future, the dominant factor af- 

fecting computer science instruction a t  all institutions, 
but particularly at smaller colleges and universities, will 
be the extreme shortage of qualified computer scientists 
in academe. At smaller colleges and universities it may 
therefore be effectively impossible to  hire a computer 
scientist to teach core computer science courses. Among 
the possible solutions to  this problem are: 
1. Using adjunct faculty to  teach computer science 

2. Using existing (non-computer science) faculty to 

The first solution is acceptable for some courses. Al- 
though one cannot build a program with adjunct fac- 
ulty and although staffing courses with adjunct faculty 
is never as desirable as using full-time faculty (e.g., stu- 
dent advising is a particular problem), this is a feasi- 
ble way to  get computer science courses taught when 
such faculty exist in the local community. However, 

courses. 

teach computer science courses. 

since so many smaller colleges are located away firom 
the metropolitan areas where most technical and scien- 
tific employers of such adjunct faculty are found, this 
solution will not be useful to  most smaller institutions. 

A crucial point that must be emphasized when using 
existing non-computer science faculty (i.e., mathemati- 
cians) to  teach computer science courses is that com- 
puter science cannot be treated like most other new 
mathematics course topics which mathematicians will 
(quickly) learn as they teach it. Mathematicians un- 
trained in computer science are very likely to teach 
computer science badly, hurting both the students and 
the mathematics department’s reputation. Therefore, 
if a current mathematics faculty member is to  be used 
to  teach computer science, especially beyond the first 
course, he or she must first acquire some formal educa- 
tion in computer science. 

The most plausible approach to  such computer sci- 
ence training is through some program of released time. 
The pertinent questions about the training are: how 
long? where? and how financed? 

Assuming that the mathematician who is to be 
trained is, a t  most, familiar with programming in a 
high-level language, then full-time study for one year is 
the minimum period needed to acquire the background, 
knowledge, and experience necessary to  teach several 
of the intermediate-level core computer science courses. 
Since one year is also the maximum period which would 
be administratively or financially feasible, this shoiild 
be viewed as the canonical period for faculty training 
in computer science. Part-time study over a longer pe- 
riod or a succession of summers can also be considered. 
However, both because the needs to  train faculty in 
computer science are pressing and because intermittent 
study is almost always less effective than continuous 
study, at least one faculty member in a mathematics 
department should have completed a one-year program 
of full-time study in computer science. 

The most logical place at which to  study computer 
science for the purpose of becoming able to teach it is a t  
a university with undergraduate and graduate (prefer- 
ably Ph.D.) programs in computer science. Although 
there are exceptions, the current level of computer sci- 
ence instruction in American colleges and universities is 
so uneven that only a t  such institutions can one be rea- 
sonably assured of an atmosphere in which there will be 
the necessary broad understanding of the principles of 
computer science. Such an atmosphere is particularly 
important for an academic mathematician preparing to 
teach the subject. 

Another possibility which should be mentioned is for 
the faculty member to  spend one year a t  one of those 
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(relatively few) major industrial firms with good in- 
house training programs in computer science. An addi- 
tional attraction to  this idea is that it might be possible 
to  arrange an exchange in which a member of the firm 
taught at the college for a year. 

Methods of financing such a program of faculty train- 
ing in computer science are fairly obvious: 

Through released time at full pay from the mathe- 
matician’s home institution. 
Through grants from current, and hopefully new, 
federal programs; officials of both the MAA and 
ACM are currently pressing NSF to provide more 
funds for this purpose. 
Through grants from private foundations; individ- 
ual institutions and departments may be more ef- 
fective than professional associations in obtaining 
such private funds. 
Through corporate sponsorship of participation in 
in-house training programs or academic-corporate 
exchanges. 

Computer Facilities 

Facilities to  support computing in mathematical sci- 
ences instruction can be provided in a variety of ways, 
ranging from one large centrally administered system to 
many small personal computing devices. The suitabil- 
ity of a particular means depends not only upon its in- 
tended applications, but also upon factors such as cost, 
ease of use, and local politics. At present, computing 
services in most colleges and universities are provided 
by a large centralized facility, the Computing Center. 
Growing numbers of institutions, however, are begin- 
ning to  decentralize computing on campus. Three cur- 
rent modes of providing service are discussed below: 

Centralized facilities 
* Departmental computers 

Personal computers. 
There is a fourth mode that is primarily a form of access 
to  centralized or departmental computers: 

The second half of this section discusses the cost and 
ease of implementation of various applications with dif- 
ferent types of computing facilities. 

It should be noted that it is possible for an institu- 
tion to  form a consortium with nearby schools to op- 
erate a common central computing facility or to buy 
time (and services) from commercial computing centers. 
This option allows an institution to  have a mix of com- 
puting, using large computers for problems requiring 

Terminals 

great speed or memory size, such as “number crunch- 
ing,” and smaller computers for student programs and 
other instructional purposes. 

CENTRALIZED FACILITIES 

Historically, so-called “economies of scale” encour- 
aged the development of increasingly larger computers; 
and of increasingly larger organizations to  administer 
them. Such computer systems are caplable of providing 
a great variety of services with a low cost for each ser- 
vice. In addition, the organizations .which administer 
these systems can play an important, role in develop- 
ing and supporting instructional uses of computing on 
campus. 

On the other hand, the very size of such facilities 
and the organizations that administer them create cer- 
tain problems. First, large systems have a high unit 
cost, in the range of half a million to several million 
dollars; replacing or enhancing such i3 system involves 
a major administrative decision. Second, instructional 
users of such systems must often compete with other 
powerful and better-financed constituencies; either sep- 
arate facilities are needed to  reduce competition among 
instructional, research, and administrative uses of the 
computer, or policies are needed to  allocate the services 
provided by a single facility. And third, large organiza- 
tions can be bureaucratic and inflexible. 

DEPARTMENTAL COMPUTERS 

For the last ten years minicomputers have provided 
an alternative to  a large centralized facility. Lower unit 
costs (around $100,000 or less) and the possibility of 
local control have made it attractive for academic and 
administrative departments to  acquire facilities of their 
own. Such facilities can be tailored t.0 a department’s 
needs and can provide almost as many services as a 
large centralized system. 

Minicomputers, however, are not necessarily the an- 
swer to every department’s computiing needs. First, 
there is the question of which services they will provide. 
Second, there are hidden costs associated with admin- 
istering any computer facility: personnel are needed to 
operate and maintain the facility and to provide tech- 
nical assistance to  users. Small departments run the 
risk of diverting attention from their primary task of 
teaching mathematics to  the subsidiary task of manag- 
ing such an enterprise. One way to  deal with such hid- 
den costs is for departments to contract with a central 
campus organization to  manage their facilities. Third, 
there are inconveniences for students faced with using, 
and first learning to  use, several different departmental 
systems. Of course, this difficulty can be overcome by 
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requiring departments to purchase compatible systems 
and by interconnecting all systems. 

Many academic computing specialists expect inter- 
connected departmental computers to become the dom- 
inant means of academic computing in the next decade. 

PERSONAL COMPUTERS 

The recent development of personal microcomputers 
provides another alternative for instructional comput- 
ing. Very low unit costs (one or two thousand dollars) 
make computing possible for departments otherwise un- 
able to afford or gain authorization for large facilities. 
Microcomputer facilities suffer from many of the same 
problems as minicomputer facilities. In addition, mi- 
crocomputers are limited in the services they provide, 
are slower than their large competitors, and may not 
be designed for rugged use by large groups of students. 
Still they can prove quite adequate for elementary ap- 
plications. Further, by being less intimidating and more 
exciting than larger computers, they can play a role in 
overcoming a student’s ‘‘computer anxiety.” 

TERMINALS 
Terminals are used for remote, interactive access to 

large computers. Some have small memories and prim- 
itive editing capabilities. Departments often have a 
greater choice in selecting terminals to connect to  com- 
puter systems than they do in selecting the systems 
themselves. Cost, speed, and durability are primary 
factors influencing the selection of a terminal. By these 
criteria, video terminals are preferable. The availability 
of graphical output and local editing features are other 
factors to  consider when choosing terminals. Hard-copy 
(printing) terminals are more expensive and tend to be 
slower than video terminals, but they do provide users 
with a permanent record of their work, and so some 
printing terminals are necessary (medium or high speed 
printers can be used in conjunction with video termi- 
nals to provide this record). Video terminals may also 
be used in conjunction with television monitors to pro- 
vide classroom displays of computer output. For such 
output to be visible in a large classroom, either many 
monitors must be provided or the video terminals em- 
ployed must use larger, and hence fewer, characters in 
their display. 

Applications 

The suitability of a particular computing facility de- 
pends most upon its intended applications. The rest of 
this section discusses the most common academic uses 
of computers and how well different types of computing 
facilities serve these uses. 

INTRODUCTORY PROGRAMMING 

Any of the three types of facilities can serve as a vehi- 
cle for teaching beginners to  program and for introduc- 
ing computational examples into elementary mathemat- 
ics courses. Such uses typically involve large numbers of 
students writing relatively simple programs. Larger fa- 
cilities tend to  provide a greater choice of programming 
languages, although modern languages such as PAS- 
CAL and PL/I are becoming increasingly available even 
on microcomputers. Larger machines tend to  be faster 
also; even though use of such machines is shared, stu- 
dents will find that they process simple programs much 
faster than microcomputers. Costs, however, tend to be 
roughly equal for simple interactive computing on the 
three types of facilities-around $2.00 per hour. These 
costs can be reduced significantly by using larger ma- 
chines in a noninteractive, batch-processing mode. This 
mode of use, while predominant in the past, is becom- 
ing less popular as minicomputers and microcomputers 
make a more responsive computing environment avail- 
able and affordable. 

ADVANCED PROGRAMMING 

Advanced programming is more distinguished from 
introductory programming in its requirements for more 
sophisticated languages and for facilities to handle large 
programs. Microcomputers at present do not meet 
these requirements; the languages they provide are 
quite restrictive, and large programs exceed their ca- 
pacity. Execution times and costs for large programs 
tend to be lowest on large machines under batch pro- 
cessing, but minicomputers are becoming competitive 
both in price and speed. 

P R O G R A M  DEVELOPMENT A N D  M A I N T E N A N C E  

Program development is influenced heavily by the 
computing environment in which it occurs. Corive- 
nient interactive editing capabilities accelerate the task 
of writing and correcting a program; microcomputers, 
with almost instantaneous response, do a particularly 
good job of editing. Facilities for file storage enable 
program development to be spread over several ses- 
sions. Large machines provide less expensive storage 
and much faster retrieval of information; they also fa- 
cilitate sharing programs among users and provide cen- 
tralized backup. Microcomputer facilities can distribute 
the costs of file storage by requiring users to  purchase 
individual floppy disks, but unless a centralized store 
is provided through a network, sharing information can 
be difficult. 

GRAPHIC s 
One of the primary attractions of personal microcom- 
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puters is their ability to  generate graphic displays and 
to  enable users t o  interact with these displays. Larger 
systems, unless specifically tailored to graphic applica- 
tions, tend to  have primitive graphic facilities a t  best. 

APPLICATION PACKAGES 

Application packages available for various machines 
provide aids for numerical and symbolic computations. 
Typical areas of application include statistics, linear 
programming, numerical solution of differential equa- 
tions, and algebraic formula manipulation. Such pack- 
ages are more widely available on larger machines. 
Large computations often require an unacceptably long 
time on microcomputers (several hours) and may ex- 
ceed the memory size of small computers. 

MISCELLANEOUS APPLICATIONS 

Word processing systems facilitate production of 
course notes, research papers, and term papers. If good 
word processing facilities are available, they are likely 
to  quickly generate heavy faculty use. Simple word 
processing software is available for personal computers, 
but a minicomputer (or powerful $5,OOO-plus microcom- 
puter) is needed for good mathematically-oriented word 
processing software, such as the UNIX system. Large 
computers often have poor word processing capabilities. 

Data base systems are of more use in the social 
sciences than in the mathematical sciences, but can 
be used to  provide real data  for analysis in statistics 
courses. Such systems require a centralized file store on 
a larger computer. 

Real-time data  acquisition is of interest in the natural 
sciences. They can also be used to  provide real data for 
mathematical analysis. Dedicated microcomputers are 
better suited to  laboratory instrumentation than are 
shared machines. 

ACM Curriculum 78 
The following computer science course syllabi are re- 

produced from the ACM Curriculum 78 Report in Com- 
munications of ACM, March 1979, pp. 147-166. (Copy- 
right 1979, Association for Computing Machinery, Inc.) 
They provide eight core courses for a computer science 
major. 

CS1. Computer Programming I 

OBJECTIVES: 
To introduce problem solving methods and algo- 

To teach a high-level programming language that is 
rithm development; 

widely used; and 

To teach how to design, code, debug, and docu- 
ment programs using techniques of good program- 
ming style. 

COURSE OUTLINE: 
The material on a high-level programming language 

and on algorithm development can be taught best as an 
integrated whole. Thus the topics should not be cov- 
ered sequentially. The emphasis of the 'course is on the 
techniques of algorithm development and programming 
with style. Neither esoteric features of a programming 
language nor other aspects of computers should be al- 
lowed to  interfere with that purpose. 

TOPICS: 

A. Computer Organization. An overview identifying 
components and their functions, machine and as- 
sembly languages. (5%) 

B. Programming Language and Progrcrmming. Repre- 
sentation of integers, real, characters, instructions. 
Data types, constants, variables. Arithmetic ex- 
pression. Assignment statement. Logical expres- 
sion. Sequencing, alternation, and iteration. Ar- 
rays. Subprograms and parameters. Simple I/O. 
Programming projects utilizing concepts and em- 
phasizing good programming style. (45%) 

Techniques of problem 
solving. Flowcharting. Stepwise refiinement. Simple 
numerical examples. Algorithms foi: searching (e.g., 
linear, binary), sorting (e.g., exchitnge, insertion), 
merging of ordered lists. Examples taken from such 
areas as business applications involving data manip- 
ulation, and simulations involving games. (45%) 

C. Algorithm Development. 

D. Ezaminations. (5%) 

CS2. Computer Programming I1 

OBJECTIVES: 
* To continue the development of discipline in pro- 

gram design, in style and expression, in debugging 
and testing, especially for larger programs; 
To introduce algorithmic analysis; and 
To introduce basic aspects of string processing, re- 
cursion, internal search/sort methods and simple 
data structures. 

PREREQUISITE: CS 1. 

COURSE OUTLINE: 
The topics in this outline should be introduced as 

needed in the context of one or more projects involv- 
ing larger programs. The instructor may choose to be- 
gin with the statement of a sizable project, then utilize 
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structured programming techniques to develop a num- 
ber of small projects each of which involves string pro- 
cessing, recursion, searching and sorting, or data struc- 
tures. The emphasis on good programming style, ex- 
pression, and documentation, begun in CS1, should be 
continued. In order to  do this effectively, it may be 
necessary to  introduce a second language (especially if 
a language like Fortran is used in CS1). In that case, 
details of the language should be included in the outline. 
Analysis of algorithms should be introduced, but at  this 
level such analysis should be given by the instructor to 
the student. 

Consideration should be given to the implementa- 
tion of programming projects by organizing students 
into programming teams. This technique is essential 
in advanced level courses and should be attempted as 
early as possible in the curriculum. If large class size 
makes such an approach impractical, every effort should 
be made to have each student's programs read and cri- 
tiqued by another student. 

TOPICS: 
A. Review. Principles of good programming style, ex- 

pression, and documentation. Details of a second 
language if appropriate. (15%) 

Control flow. 
Invariant relation of a loop. Stepwise refinement of 
both statements and data structures, or topdown 
programming. (40%) 

B. Structured Programming Concepts. 

C. Debugging and Testing. (10%) 
D. String Processing. Concatenation. Substrings. 

Matching. (5%) 
E. Internal Searching and Sorting. Methods such as 

binary, radix, Shell, quicksort, merge sort. Hash 
coding. (10%) 

F. Data Structures. Linear allocation (e.g., stacks, 
queues, deques) and linked allocation (e.g., simple 
linked lists). (10%) 

G. Recursion. (5%) 
H. Ezaminations. (5%) 

CS3. Introduction to Computer Systems 

OBJECTIVES: 
To provide basic concepts of computer systems; 

a To introduce computer architecture; and 
To teach an assembly language. 

PREREQUISITE: CS 2. 

COURSE OUTLINE: 
The extent to which each topic is discussed and the 

ordering of topics depends on the facilities available 

and the nature and orientation of CS4 described below. 
Enough assembly language details should be covered 
and projects assigned so that the student gains expe- 
rience in programming a specific computer. However, 
concepts and techniques that apply to a broad range of 
computers should be emphasized. Programming meth- 
ods that are developed in CS1 and CS2 should also be 
utilized in this course. 

TOPICS: 
A. Computer Structure and Machine Language. Mem- 

ory, control, processing and 1/0 units. Registers, 
principal machine instruction types and their for- 
mats. Character representation. Program con- 
trol. Fetch-execute cycle. Timing. 1 / 0  Operations. 
(15%) 

B. Assembly Language. Mnemonic operations. S,ym- 
bolic addresses. Assembler concepts and instruction 
format. Data-word definition. Literals. Location 
counter. Error flags and messages. Implementation 
of high-level language constructs. (30%) 

C. Addressing Techniques. Indexing. Indirect Address- 
ing. Absolute and relative addressing. (5%) 

D. Macros. Definition. Call. Parameters. Expansion. 
Nesting. Conditional assembly. (10%) 

E. File I/O. Basic physical characteristics of 1/0 and 
auxiliary storage devices. File control system. K/O 
specification statements and device handlers. Data 
handling, including buffering and blocking. (5%) 

F. Program Segmentation and Linkage. Subroutines. 
Coroutines. Recursive and re-entrant routines. 

G. Assembler Construction. One-pass and two-pass as- 
semblers. Relocation. Relocatable loaders. (5%)1 

H. Interpretive Routines. Simulators. Trace. (5%) 

(20%) 

I. Ezaminations. (5%) 

CS4. Introduction to Computer Organization 

OBJECTIVES: 
To introduce the organization and structuring of the 
major hardware components of computers; 
To understand the mechanics of information trans- 
fer and control within a digital computer system; 
and 
To provide the fundamentals of logic design. 

PREREQUISITE: CS 2. 

COURSE OUTLINE: 
The three main categories in the outline, namely 

computer architecture, arithmetic, and basic logic 'de- 
sign, should be interwoven throughout the course rather 
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than taught sequentially. The first two of these areas 
may be covered, at least in part, in CS3 and the amount 
of material included in this course will depend on how 
the topics are divided between the two courses. The 
logic design part of the outline is specific and essential 
to  this course. The functional, logic design level is em- 
phasized rather than circuit details which are more ap- 
propriate in engineering curricula. The functional level 
provides the student with an understanding of the me- 
chanics of information transfer and control within the 
computer system. Although much of the course mate- 
rial can and should be presented in a form that is inde- 
pendent of any particular technology, it is recommended 
that an actual simple minicomputer or microcomputer 
system be studied. A supplemental laboratory is ap- 
propriate for that  purpose. 

TOPICS: 

A. 

B. 

C. 

D. 

E. 

Basic Logic Design. Representation of both data 
and control information by digital (binary) signals. 
Logic properties of elemental devices for processing 
(gates) and storing (flipflops) information. Descrip- 
tion by truth tables, Boolean functions and timing 
diagrams. Analysis and synthesis of combinatorial 
networks of commonly used gate types. Parallel and 
serial registers. Analysis and synthesis of simple 
synchronous control mechanisms; data and address 
buses; addressing and accessing methods; memory 
segmentation. Practical methods of timing pulse 
generation. (25%) 
Coding. Commonly used codes (e.g., BCD, ASCII). 
Parity generation and detection. Encoders, de- 
coders, code converters. (5%)  
Number Representation and Arithmetic. Binary 
number representation, unsigned addition and sub- 
traction. One’s and two’s complement, signed mag- 
nitude and excess radix number representations and 
their pros and cons for implementing elementary 
arithmetic for BCD and excess-3 representations. 

Computer Architecture. Functions of, and commu- 
nication between, large-scale components of a com- 
puter system. Hardware implementation and se- 
quencing of instruction fetch, address construction, 
and instruction execution. Data flow and control 
block diagrams of a simple processor. Concept of 
microprogram and analogy with software. Prop- 
erties of simple 1/0 devices and their controllers, 
synchronous control, interrupts. Modes of commu- 
nications with processors. (35%) 
Ezample. Study of an actual, simple minicomputer 
or microcomwter svstem. (20%) 

(10%) 

F. Ezaminations. (5%) 

CS5. In t roduc t ion  to File Process ing  

OBJECTIVES: 

To introduce concepts and techniques of structuring 

To provide experience in the use of bulk storage de- 

To provide the foundation for appllications of data 

data  on bulk storage devices; 

vices; and 

structures and file processing techniques. 

PREREQUISITE: CS 2. 

COURSE OUTLINE: 

The emphasis given to  topics in this outline will vary 
depending on the computer facilities available to stu- 
dents. Programming projects should be assigned to give 
students experience in file processing. Characteristics 
and utilization of a variety of storage devices should be 
covered even though some of the devices are not part of 
the computer system that is used. Algorithmic analysis 
and programming techniques developed in CS2 should 
be utilized. 

TOPICS: 
A. File Processing Environment. Definitions of record, 

file, blocking, compaction, database. Overview of 
database management system. (5%;) 

Physical characteristics of se- 
quential media (tape, cards, elk.). External 
sort/merge algorithms. File manipulation tech- 
niques for updating, deleting and inserting records 
in sequential files. (30%) 

C. Data Structures. Algorithms for manipulating 
linked lists. Binary, B-trees, B*-trees, and AVL 
trees. Algorithms for transversing and balancing 
trees. Basic concepts of networks (plex structures). 

Physical characteristics of disk, 
drum, and other bulk storage devices. Algorithms 
and techniques for implementing inverted lists, mul- 
tilist, indexed sequential, and hierarchical struc- 
tures. (35%) 

E. File I /O .  File control systems and utility routines, 
1/0 specification statements for allocating space 
and cataloging files. (5%) 

B. Sequential Access. 

(20%) 
D. Random Access. 

F. Ezaminations. (5%) 

CS6. Opera t ing  Sys t ems  & Corn],. Archi tec ture  

OBJECTIVES: 

To develop an understanding of the organiza- 
tion and architecture of comr>ute:r svstems a t  the 
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register-transfer and programming levels of system 
description; 
To introduce the major concept areas of operating 
systems principles; 
To teach the inter-relationships between the oper- 
ating system and the architecture of computer sys- 
tems. 

PREREQUISITES: CS3 AND CS4. 

COURSE OUTLINE: 

This course should emphasize concepts rather than 
case studies. Subtleties do exist, however, in operating 
systems that do not readily follow from concepts alone. 
It is recommended that a laboratory requiring hands-on 
experience be included with this course. 

The laboratory for the course would ideally use a 
small computer where students could actually imple- 
ment sections of operating systems and have them fail 
without serious consequences to other users. This sys- 
tem should have, a t  a minimum, a CPU, memory, disk 
or tape, and some terminal device such as a teletype of 
CRT. The second best choice for the laboratory experi- 
ence would be a simulated system running on a larger 
machine. 

The course material should be liberally sprinkled 
with examples of operating system segments imple- 
mented on particular computer system architectures. 
The interdependence of operating systems and archi- 
tecture should be clearly delineated. Integrating these 
subjects a t  an early stage in the curriculum is particu- 
larly important because the effects of computer archi- 
tecture on systems software has long been recognized. 
Also, modern systems combine the design of operating 
systems and the architecture. 

TOPICS: 

A. Review. Instruction sets. 1/0 and interrupt struc- 
ture. Addressing schemes. Microprogramming. 

B. Dynamic Procedure Activation. Procedure activa- 
tion and deactivation on a stack, including dynamic 
storage allocation, passing value and reference pa- 
rameters, establishing new local environments, ad- 
dressing mechanics for accessing parameters (e.g., 
displays, relative addressing in the stack). Imple- 
menting non-local references. Re-entrant programs. 
Implementation on register machines. (15%) 

Design methodologies such as 
level, abstract data  types, monitors, kernels, nuclei, 
networks of operating system modules. Proving cor- 
rectness. (10%) 

(10%) 

C. System Structure. 

D. Evaluation. Elementary queueing, network models 
of systems, bottlenecks, program behavior, and sta- 
tistical analysis. (15%) 

E. Memory Management. Characteristics of the hier- 
archy of storage media, virtual memory, paging, :peg- 
mentation. Policies and mechanisms for efficiency of 
mapping operations and storage utilization. Mem- 
ory protection. Multiprogramming. Problem of 
auxiliary memory. (20%) 

F. Process Management. Asynchronous processes. Us- 
ing interrupt hardware to  trigger software procedure 
calls. Process stateword and automatic SWITCH 
instructions. Semaphores. Ready lists. Implement- 
ing a simple scheduler. Examples of process con- 
trol problems such aa deadlock, product/consumers, 
readers/writers. (20%) 

G. Recovery Procedures. Techniques of automatic and 
manual recovery in the event of system failures. 

(5%) 
H. Ezaminations. (5%)  

CS7. Data Structures and Algorithm Analysis 

OBJECTIVES : 

To apply analysis and design techniques to  non- 
numeric algorithms which act on data structures; 
To utilize algorithmic analysis and design criteria 
in the selection of methods for data  manipulation in 
the environment of a database management system. 

PREREQU SITES : C S 5. 

COURSE OUTLINE: 
The material in this outline could be covered sequen- 

tially in a course. It is designed to  build on the founda- 
tion established in the elementary material, particularly 
on that material which involves algorithm development 
and data  structures and file processing. The practical 
approach in the earlier material should be made more 
rigorous in this course through the use of techniques 
for the analysis and design of efficient algorithms. The 
results of this more formal study should then be in- 
corporated into data management system design deci- 
sions. This involves differentiating between theoreti- 
cal or experimental results for individual methods and 
the results which might actually be achieved in systems 
which integrate a variety of methods and data struc- 
tures. Thus, database management systems provide 
the applications environment for topics discussed in ithe 
course. 

Projects and assignments should involve implemen- 
tation of theoretical results. This suggests an alterna- 
tive way of covering the material in the course; namely, 
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to treat concepts, algorithms, and analysis in class and 
deal with their impact on system design in assignments. 
Of course, some in-class discussions of this impact would 
occur, but at various times throughout the course rather 
than concentrated at the end. 

TOPICS: 
A. Review. Basic data structures such as stacks, 

queues, lists, trees. Algorithms for their implemen- 
tation. (10%) 

B. Graphs. Definition, terminology, and property (e.g., 
connectivity). Algorithms for finding paths and 
spanning trees. (15%) 

C. Algorithms Design and Analysis. Basic techniques 
of design and analysis of efficient algorithms for in- 
ternal and external sorting/merging/searching. In- 
tuitive notions of complexity (e.g., NP-hard prob- 
lems). (30%) 

D. Memory Management. Hashing. Algorithms for 
dynamic storage allocation (e.g., buddy system, 
boundary-tag) , garbage collection and compaction. 
(15%) 

Integration of data structures, 
sort/merge/search methods (internal and external) 
and memory media into a simple database manage- 
ment system. Accessing methods. Effects on run 
time, costs, efficiency. (25%) 

E. System Design. 

F. Ezaminations. (5%) 

C S8. Organization of Programming Languages 

OBJECTIVES: 
To develop an understanding of the organization of 
programming languages, especially the run-time be- 
havior of programs; 
To introduce the formal study of programming lan- 
guage specification and analysis; 
To continue the development of problem solution 
and programming skills introduced in the elemen- 
tary level material. 

PREREQUSITES: CS2; RECOMMENDED: CS3, CS5. 

COURSE OUTLINE: 
This is an applied course in programming language 

constructs emphasizing the run-time behavior of pro- 
grams. It should provide appropriate background for 
advanced level courses involving formal and theoretical 
aspects of programming languages and/or the compila- 
tion process. 

The material in this outline is not intended to be 
covered sequentially. Instead, programming languages 

could be specified and analyzed one at a time in terms 
of their features and limitations based on their run- 
time environments. Alternatively, desirable specifica- 
tion of programming languages could bc: discussed and 
then exemplified by citing their implementations in var- 
ious languages. In either case, programming exercises 
in each language should be assigned to emphasize the 
implementations of language features. 

TOPICS: 
A. Language Definition Structure. Formal language 

concepts including syntax and basic characteristics 
of grammars, especially finite state, context-free, 
and ambiguous. Backus-Naur Form. A language 
such as Algol as an example. (15%) 

B. Data Types and Structures. Review of basic data 
types, including lists and trees. Constructs for 
specifying and manipulating data types. Language 
features affecting static and dynamic data storage 
management. (10%) 

C. Control Structures and Data Flow. Programming 
language constructs for specifying program con- 
trol and data transfer, including DO . . . FOR, DO 
. . .WHILE, REPEAT . . .UNTIL, BREAK, subrou- 
tines, procedures, block structures, and interrupts. 
Decision tables, recursion. Relationship with good 
programming style should be emphasized. (15%) 

D. Run-time Consideration. The effects of run-time 
environment and binding time on various features 
of programming languages. (25%) 

E. Interpretative Languages. Compilartion vs. inter- 
pretation. String processing with language features 
such as those available in SNOBOL, 4. Vector pro- 
cessing with language features such as those avail- 
able in SPL. (20%) 

F. Lezical Analysis and Parsing. An introduction to 
lexical analysis including scanning, finite state ac- 
ceptors and symbol tables. An introduction to pars- 
ing and compilers including push-down acceptors, 
top-down and bottom-up parsing. (10%) 

G. Ezaminations. (5%) 

Subpanel Members 

ALAN TUCKER, CHAIR, SUNY-Stony Brook. 
GERALD ENGEL, Christopher Newport College. 
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Modeling and Operations Research 

This chapter contains the report of the Subpanel on 
Modeling and Operations Research of the CUPM Panel 
on a General Mathematical Sciences Program, reprinted 
with minor changes f rom Chapter V of the 1981 CUPM 
report entitled RECOMMENDATIONS FOR A GENERAL 
MATHEMATICAL SCIENCES PROGRAM. 

Experience in Applications 
This chapter is concerned with mathematical model- 

ing and associated interactive and experienceoriented 
approaches to teaching mathematical sciences. Math- 
ematical modeling attempts to involve students in the 
more creative and early design aspects of problem for- 
mulation, as well as provide them with a more complete 
exposure to how mathematics interfaces with other ac- 
tivities in solving problems arising outside of mathemat- 
ics itself. Model building is a major ingredient of opera- 
tions research and the contemporary uses of mathemat- 
ics in the social, life and decision sciences. In addition 
to being important in their own right, these newer uses 
of mathematics provide a rich source of suitable materi- 
als for interaction and modeling which complement the 
many modern and classical applications of mathematics 
in the physical sciences and engineering. 

This chapter is intended to assist mathematics fac- 
ulty in implementing the main panel's recommendation 
that mathematical sciences majors should have sub- 
stantial experience with mathematical modeling. Sub- 
sequent sections discuss the modeling process in some 
detail; provide specific suggestions for conducting stu- 
dent projects, applications-experience-related courses 
and other such programs, along with general recommen- 
dations concerning modeling courses at different lev- 
els; explain the field of operations research and the re- 
quirements for graduate study. The final two sections 
present outlines for four courses in operations research 
and modeling, and a compendium of resources and ref- 
erences for modeling courses. 

Learning and doing mathematics is a rather individ- 
ualized and personal activity. The typical classroom 
lecture in which students are passive spectators has ob- 
vious limitations. Students need supervised hands-on 
experience in problem solving and constructing rigor- 
ous proofs. A large variety of alternate teaching tech- 
niques and special programs have been developed in at- 
tempts to meet this need. These include problem solv- 

ing approaches using materials from pure and applied 
mathematics, such as the methods of G. P6lya and R.L. 
Moore. Problem solving teams for ccimpetitions such 
as the Putnam contest and special departmental prac- 
tica exist in many colleges. Special courses or seminars 
on modeling, case studies, and project-oriented activ- 
ity are becoming more common, as are mathematics 
clinics and consulting bureaus. Co-op and work-study 
programs, summer internships, and various other stu- 
dent exchanges have been successfully implemented at 
some inst it utions. 

The Modeling Subpanel believes that applications 
and modeling should be included in a nontrivial way in 
most college-level mathematical sciences courses. Con- 
cern with applications has been an important historical 
force and a major cultural ingredient in the develop- 
ment of all mathematics. Further, thie Modeling Sub- 
panel strongly recommends that all mathematical sci- 
ences students should obtain first-hand, experience with 
realistic applications of mathematics from the initial 
stage of model formulation through interpretation of 
solutions. This can be done in a project-oriented mod- 
eling course in one of the alternate out-of-class modes 
mentioned above. Such an experience yields insight into 
the place of mathematics in the larger realm of science. 
It provides an appreciation for the need for interdisci- 
plinary interaction and the limits of specialization. It 
offers a chance for individuals to make use of their own 
intuition and creative abilities, to sense the great joy of 
personal accomplishment, and to develop the confidence 
to confront similar problems after graiduation. Finally, 
such experience may assist students in choosing careers 
and fields for future study. 

Mathematical Modeling 

Modeling is a fundamental part of' the general sci- 
entific method and is of primary importance in ap- 
plied mathematics. A model is a simpler realization 
or an idealization of some more complex reality cre- 
ated for the purpose of gaining new knowledge about 
a real situation by investigating properties and impli- 
cations of the model. Models may take many differ- 
ent forms, from physical miniatures to pure intellectual 
substitutes. Study of a model will hopefully provide un- 
derstanding and new information about real phenomena 
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which are too complex, excessively expensive, or impos- 
sible to analyze in their original setting. 

We tend to take the amazing effectiveness of models 
for granted today. The reader should give a moment's 
thought to the following examples. One can learn a 
great deal about a proposed aircraft from wind tun- 
nel experiments before building a costly prototype, and 
one can learn much about flying an existing airplane 
from a computer-aided cockpit simulator. Simple com- 
puter simulations can provide insights into the complex 
flow or queueing behavior of traffic in a transportation 
system. Theoretical studies about elementary particles 
have provided new insight into fundamental physical 
laws and have guided subatomic experimentation. 

Real World Mathematical 
Problem Model 

t 
I 

Mathematical 
Solution 

Interpretation 
in Original Settin; 

A Simple Model of Mathematical Modeling 

Figure 1 

The process of mathematical modeling can be simply 
represented with the diagram in Figure 1. One begins 
with a problem which arises more or less directly out 
of the "real world." One builds an abstract model for 
purposes of analysis, and this frequently takes a math- 
ematical form. The model is solved in this abstract 
setting. The solution is then interpreted back into its 
original context. Finally, the analytical conclusions are 
compared with reality. If they fall short of matching 
the real situation, then modifications of the model may 
be called for, and one proceeds around this cycle again. 
One often proceeds back and forth within a cycle and 
makes successive iterations about this figure many times 
before arriving at a satisfactory representation of the 
real world. 

The creation of new knowledge via this modeling 
route is at the heart of theoretical science and applied 
mathematics. We will use the word "modeling" to de- 
scribe the complete progress illustrated in Figure 1. Fre- 
quently this term is used only for the model formulation 
step (the top arrow in the figure). A full discussion of 
the four steps in this modeling paradigm follow. Addi- 
tional steps refining the modeling process are sometimes 
inserted; for example, see Figure 2. 

First consider the downward pointing arrow on the 

right side from Urnathematical model" to "mathemati- 
cal solution." This is the deductive activity of finding 
solutions to well-formulated mathematical problem. It 
is usually the most logical, well-defined and straight- 
forward part of modeling, although not necessarily the 
easiest. It is often the most immediately pleasing, el- 
egant, and intellectual part. This "side" of the "mod- 
eling square" is the one covered best in standard a p  
plied mathematics courses. Unfortunately, most teach- 
ing of applied mathematics is confined to discussing just 
model-solving mathematical techniques, with superfi- 
cial treatment of the other three sides of the square, 
whereas these other sides often involve much more ccre- 
ativity, interaction with other disciplines, and commu- 
nication skills. 

END BEGIN 

INTERPRET RESULTS PROBLEM 
OF ANALYSIS PRESENTATION 

I 

ANALYSIS OF 

IN0 
SPECIALIZATION 

PREPARATION FOR 

I I MODIFICATION OF MODEL . REp!~t?%?~l!oN 

I I I I 

A Refined Model of Mathematical Modeling 

Figure 2 

The bottom arrow in Figure 1 is concerned with 
translating or explaining a purely mathematical result 
in terms of the original real world setting. This involves 
the need to communicate in a precise and lucid man- 
ner. (Inexperience in this skill, according to many em- 
ployers, is a serious shortcoming in mathematics gradu- 
ates). This aspect of a mathematical scientist's training 
should not be left to courses in other sciences or to on- 
the-job learning after graduation. 

In describing the meaning of a mathematical solution 
one must take great care to be complete and honest. It 
is dangerous to discard quickly some mathematical so- 
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lutions to  a physical problem as extraneous or having no 
physical meaning; there have been too many historical 
incidences where “extraneous“ solutions were of fun- 
damental importance. Likewise, one should not select 
out just the one preconceived answer which the “boss” 
is looking for t o  support his or her position. A deci- 
sion maker frequently does not want just one optimal 
solution, but desires to  know a variety of “good” solu- 
tions and the range of reasonable options available from 
which to  select. 

There is an  old adage to  the effect that bosses do 
not act on quantitative recommendations unless they 
are communicated in a manner which makes them un- 
derstandable to  such decision makers. This communi- 
cation can often be a difficult task because of the tech- 
nical nature of the formulation and solution, and also 
because large quantities of data  and extensive computa- 
tion may need to  be compressed to  a manageable size for 
the layman to  understand in a relatively limited time. 
If mathematical education gave more attention to  this 
aspect of mathematical modeling, there might be wider 
recognition and visibility of mathematicians in society 
beyond the academic world! 

A major step in real world modeling is to  validate 
models critically and to  check out solutions against the 
original phenomena and known results. This step, rep- 
resented by the left upward arrow in Figure 1, may in- 
volve experimentation, verifying, and evaluating. Two 
major criteria for evaluating a model are simplicity and 
accuracy of prediction. Questions about the range of 
validity, sensitivity of parameters errors resulting from 
approximations, and such should be investigated. In 
many cases, a modeling project will simply confirm from 
another perspective properties that are already believed 
to be true. The real gain from modeling activity occurs 
when the modeling leads to discovery of new knowledge 
(which subsequently is confirmed by other methods). 

Modern mathematics education rarely involves itself 
with this left hand side of the modeling process, except 
perhaps for an occasional “eyeballing” of an answer or 
in projects undertaken by a mathematics or statistics 
consulting clinic. By omitting this activity, mathemati- 
cal education misses an opportunity to  become involved 
with real-world decision making, judgmental inputs, the 
limitations of its mathematical tools, and other more 
human aspects of science, as well as the reward of wit- 
nessing the acceptance of a new theory. 

Finally, consider the top arrow in Figure 1 which 
represents the heart of the modeling activity. The con- 
struction of an  abstract model from a real situation is 
the really creative activity and an important compo- 
nent of all theoretical science. Building models involves 

translating into mathematics, maintaining the essential 
ingredients while filtering out a great amount of excess 
baggage, and arriving a t  realistic and manageable intel- 
lectual limitations. The three basic elements of a model 
are: 
1. A logical mathematical structure such as calculus, 

probability, or game theory; 
2. An appropriate interpretation of the variables in 

that structure in terms of the given problem; and 
3. A characterization with the structure of all laws and 

constraints pertinent to  the problem. 
To build such a mental construct, one must concep- 
tualize, idealize and identify propert,ies precisely. A 
model builder must carefully balance the tradeoffs be- 
tween coarse simplifications and unnecessary details- 
often the effects of such tradeoffs are n.ot apparent until 
subsequent validation (three steps later in the modeling 
process). 

This initial part of modeling is clearly the most es- 
sential and valuable part of the whole ]process. It is usu- 
ally the most difficult part. Eddington said “I regard 
the introductory part of a theory as the most difficult, 
because we have to  use our brains all of the time. Af- 
terwards we can use mathematics.” ]Model building is 
an art, and must be taught as such. 

An Undergraduate Modeling Course 
This section discusses various approaches to design- 

ing mathematical sciences courses concentrating on the 
modeling process. The resources list,ed a t  the end of 
this chapter contain a wealth of additional information 
on models, the modeling process and specific modeling 
courses as well as references to  supplementary materials 
which the reader may find useful in c’ourse design. 

Practitioners in the physical or social sciences or en- 
gineering have an instinctive feeling of what the mod- 
eling process is all about, even if they are not able to  
articulate it well. Modeling is an important part of 
their work-a-day activity. For the most part, however, 
they prefer to leave the analysis and structure of the 
modeling process itself to  workers in other disciplines, 
like mathematics, or to  philosophers of science who are 
trying to understand the abstract thieories underlying 
these results and how scientists get their results. 

How does one go about acquiring experience in real- 
world modeling? The wrong place to  start is looking at  
big models in the scientific literature which are broad 
in scope and the epitome of their kind. Indeed, one 
could probably learn more about sculpting by looking 
a t  the pieces that Michelangelo discarded than by look- 
ing a t  the Pieta. The mathematical techniques with 
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which one is familiar will be a primary limiting factor 
in understanding models. Another factor is that real- 
world problem areas have their own peculiar “empirical 
laws” and “principles” which are commonly known to 
specialists in an area but are not easily accessible to the 
casual reader. 

Apprentice modelers need some help and guidance 
in selecting model areas for study which will build their 
modeling skill without discouraging progress. The ideal 
way to do this within the college curriculum is to begin 
the modeling process as early as possible in the stu- 
dent’s career and reinforce modeling over the entire pe- 
riod of study. That is, the modeling process should be 
an integral part of the curriculum. Most mathematics 
departments, for a variety of reasons, are not prepared 
to give modeling such a major emphasis. For them, a 
more reasonable approach is to design a course specifi- 
cally around the modeling process. 

Efforts to emphasize the modeling process in under- 
graduate courses on a broad scale began in the 1960’s 
and were promoted mainly by engineers, operations re- 
searchers and social scientists. Extensive discussions of 
modeling in mathematics courses developed later. The 
modeling process has been brought into the classroom 
in many ways but two particular approaches are worth 
describing in some detail. 

First there is the case study approach in which the 
modeling process is described in a series of examples 
that are more-or-less self-contained. The examples se- 
lected by the instructor are designed to bring out the 
basic features of the modeling process as well as to in- 
form the students about basic models within a disci- 
pline. An excellent early example is You and Technol- 
ogy: A High School Case Study Tezt developed by the 
engineering departments of the PCM Colleges (Chester, 
PA), edited by N. Damaskos and M. Smyth. 

The second approach applies “hands-on” experience 
to problems that may only be vaguely described. This 
approach is sometimes called “open-ended” or “experi- 
ential,” because it is not clear a t  the outset what kind 
of a model will be successful in analyzing a problem, 
or indeed whether a particular problem is well-posed in 
any sense. An interesting sidelight on this approach to 
teaching the modeling process is that the models pro- 
posed by students for a particular problem depend not 
only on the students’ breadth of knowledge but, as much 
as anything else, on time constraints and computer (and 
other) resources available. Engineers popularized the 
experiential approach in the early sixties with the high 
school program Man Made World, mostly as a means of 
exposing students a t  an early stage to engineering as a 
profession (a text of the same name was written for this 

program by J. Truxal, et al., McGraw-Hill publisher). 
A range of courses emphasizing the modeling process 

is clearly possible between the case study approach and 
the experiential approach. 

It is important to note that the scope of the engineer- 
ing approach to modeling is much broader than just, the 
technical aspects of the problem a t  hand. In designing 
a solution to a problem, engineers must take into ac- 
count time constraints and build into their models pre- 
scribed economic and other technical constraints as well 
as consideration of the impact of their design on soci- 
ety. Engineers do not build elaborate models to explain 
the fundamental workings of nature nor do they seek 
the best possible solution to a problem in the absence 
of the proposed application of that solution. In spite 
of these differences, there is obviously a large overlap 
between the engineering and mathematical approaches 
to modeling. 

We now characterize the components of a modeling 
course in a way that readers should find useful in de- 
signing a course to fit their own local needs. The Table 
on pp. 46-47 organizes much of this information for easy 
reference. There are six basic aspects of teaching mod- 
eling that must be considered: 
1. Prerequisites. For whom is the course intended? 
2. Effort level. How long-a few weeks, a semester, a 

year? 
3. Course format. Experiential or case study ap- 

proach? Team or individual work? Instructor’s role. 
Communication skills used. 

4. Resources available. Computer system, remote ac- 
cess, good software packages (students should be- 
come familiar with using some major software pack- 
age). Access to expertise in fields considered. A p  
propriate handouts to keep students progressing. 

5 .  Source of problems. Real-world or contrived? 
Open-ended or can student answer all questions by 
looking them up in the literature? 

6. Technical thrust. What technical areas should the 
course emphasize, or avoid? Continuous or discrete 
models? Deterministic or stochastic? Role of com- 
puter programming. 

We now expand a little on two of these compo- 
nents, effort level and course format. The level of effort 
devoted to a modeling course can range from “mini- 
projects,” using a team approach to short projects 
within an established course, to major projects which 
last an entire year. The mini-project format requires 
a great deal of organization and preparation to make 
it work. See Borrelli and Busenburg ‘‘Undergradu- 
ate Classroom Experiences in Applied Mathematics” 
(UMAP Journal, Volume 1, 1980) for one approach to 
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structuring a mini-project program, together with its 
pro’s and con’s. The one-semester case study course, 
judging from its popularity, is the best understood and 
trusted of modeling courses. There are good textbooks 
and a great many modules written for use in such a 
course (see list at end of chapter). 

While most case studies texts on mathematical mod- 
eling are designed for upper-level courses, the text You 
and Technology (mentioned above), supplemented with 
modules, can easily be adapted for use in a freshman 
case studies course. Such a course might also present 
an opportunity for students to see the fundamental 
differences between engineering and mathematical a p  
proaches to modeling (this issue is treated nicely in 
You and Technology). An extensive outline is provided 
below for a special custom-made, lower-level modeling 
course. 

Experiential modeling courses are not used as often 
as case study courses. Since the experiential approach is 
typically used on open-ended problems where the out- 
come is difficult to predict in advance, this approach 
is especially risky for a mathematics instructor who is 
teaching a modeling course for the first time. Neverthe- 
less, experiences of various colleges over the last several 
years show that the experiential approach is feasible and 
that, whatever happens, students and instructors find 
it a rewarding experience. Several successful formats 
for experiential modeling courses have emerged. All 
seem to use the team approach with occasional guid- 
ance by consultants, as needed. It should be noted that 
many industrial employers treat such experiential mod- 
eling as job-related experience in assessing a student’s 
job qualifications. References at the end of this chap- 
ter contain descriptions of the well-known Mathematics 
Clinics in Claremont and other experiential modeling 
courses (interested readers can write directly to Harvey 
Mudd College for first-hand advice). 

We close this Section with some important general 
points to keep in mind when designing any modeling 
course. 

To encourage initiative and independent work, stu- 
dents should have access to, and be responsible for 
using, support resources such as documentation of 
software and previous student projects. 
If high standards are imposed on writing of re- 
ports, then these reports deserve some exposure; 
they should not just be shoved in filing cabinets and 
forgotten. Instructors should encourage students to 
seek publication of a paper based on their reports, if 
warranted, or an article in the campus newspaper. 
Abstracts of recent reports should be made avail- 
able to students early in a modeling course. When 

students know their work will get exposure, they are 
motivated to write good reports. 
It is valuable to integrate the modeling process into 
the curriculum as widely as possible and not just as 
an add-on special course with no connection to any 
other mathematical sciences course. 
A problem with most modeling courses is that the 
material in them quickly becomes dated. When stu- 
dents discover that they are working on the same 
projects or models as their classmates did last year, 
they lose enthusiasm. What is needed is a format 
for automatically updating the matlerial. A constant 
flow of real-world problems, as come into a mathe- 
matics consulting clinic, is a great advantage. 

Operations Research 
Operations research is a mathematic a1 science closely 

connected to mathematical modeling. Although some 
notable contributions were made prior to 1940, oper- 
ations research grew out of World War 11. The analy- 
sis of military logistics, supply and operational prob- 
lems by scientists from many different disciplines gen- 
erated the techniques and approaches that evolved into 
modern operations research. This sub-ject studies com- 
plex systems, structures and institutions with a view 
towards operating such multiparameter systems more 
efficiently within various constraints, such as scarce re- 
sources. Operations research analyse:! are used to op- 
timize current activities and predict ifuture feasibility. 
The complexity of its problems has made operations 
research heavily dependent on high-speed digital com- 
puters. It is now used in fields in which decisions were 
traditionally made on the basis of less quantitative ap- 
proaches, such as “experience” or merle hunches. There 
is frequently a major concern with “people” as well as 
“things,” and the man-system interface in a complex 
social activity. Major national concerns such as produc- 
tivity, environmental impact and energy supply have a 
large operations research component. 

The approach in operations research is multidis- 
ciplinary in nature, and uses common sense, data, 
and substantial empiricism (heuristics) combined with 
new, as well as repackaged traditional, mathematical 
methodologies. The principal mathematical theories of 
operations research are mathematical programming and 
stochastic processes. Major topics in these theories are 
mentioned in the operations research course contents in 
the next section. Operations research l n a s  major overlap 
with the fields of industrial engineering, management 
science, mathematical economics, econometrics and de- 
cision theory. 
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Anatomy of a Modeling Course 

Ingredients Background and Source Material Remarks 

PREREQUISITES: 
Lower Division. Single variable cal- 
culus, a science course with lab, some 
computing. 

Upper Division. Multivariable calcu- 
lus, linear algebra, computation and 
some computer programming, basic 
prob/stat., some diff. eqns., a science 
course with lab. 

EFFORT LEVEL: 
Partial Course. Recommended min- 
imum of 2 weeks out of a 3 hour 
course preceded by a tooling up pe- 
riod. 

Full Course. May be designed to fit 
into special options, either to give 
job-related training or introduction 
to modeling process with important 
models in a discipline. 

COURSE FORMAT: 
Case Study. The modeling process 
presented via examples that are 
more-or-less self-contained. 

Ezperiential. Hands-on approach to 
open-ended projects incorporating the 
modeling process. Some possibilities 
are: 
1. Problem-centered Course. Class 
divided into teams to  work on a se- 
quence of projects and share experi- 
ence. 

2. Mathematics Clinic, Consulting 
Group. Intensive, industry-supported 
team effort on a single project, usu- 
ally for one year. 

9. Research Assistance. Students aid 
faculty in research work. 

4. Mini-projects. Team approach on 
short projects within an established 
course. 

Case study approach most likely. See, 
e.g., "You and Technology" or suit- 
able UMAP modules. 

For experiential approach and case 
study approach consult appropriately 
noted reference. 

Mini-projects are a possibility here. 
See Borelli and Busenberg. Format of 
mini-projects can be effectively struc- 
tured. See Becker, et al., "Handbook 
for Projects." 

Many possibilities exist for modeling 
courses for a full semester-see items 
below. For a discussion of pros and 
cons, see Borelli and Busenberg. 

Material selected from modules, text- 
books, conference proceedings, or 
journals. 

Needs highly experienced instructor 
to select and present the projects and 
watch over progress of the teams. 
Class size limited by instructor's en- 
ergy. See Borelli and Busenberg for 
more details. 
Composition of team is critical. See 
Claremont Clinic Articles for details. 
Because of time constraints, able sup- 
port staff must be readily available. 

MIT has a highly organized program 
which does this. Mostly, however, it's 
catch-as-catch-can. The Institute of 
Decision Science, Claremont Men's 
College, has developed a classroom 
approach to such work. 

See Borelli and Busenberg. 

If the team approach is selected t,hen 
there can be some flexibility in these 
prerequisites. 

If modeling course is not required., 
then some thought must be given as 
to how students can be attracted to 
such a course: descriptions in reg- 
istration packets, posters, note to 
advisor, etc. 

Important that mini-project work not 
be simply added to standard load of 
the host course-it should replace: 
some required work; e.g., an exam. 

Format of instruction can seriously 
affect the student's interest as well as 
his capacity for effective work-see 
"Format" section below for possibili- 
ties. 

Advanced students can be asked 
to lecture on material that is well 
enough organized. 

Internships, work-study programs not 
appropriate for inclusion here. 

Oral presentation and written reports 
are emphasized. Most demanding of 
instructor's time. 

Team communication skills highly 
emphasized in Clinic program and is 
crucial to success. Team has main 
responsibility for work, instructor 
advises. Student handbook a t  Cla.re- 
mont Clinic (by Handa) available on 
request. 

A danger here is that the success of 
the faculty member's research may 
take precedence over the impact on 
the students' education. Students" 
needs could get lost in the shuffle. 

Emphasizes writing skills, highly 
structured activity; see "Handbook 
for Projects" by Becker, et al. 
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Ingredients 

Anatomy of a Modeling Course 

Background and Source Material Remarks 

RESOURCES AVAILABLE: 
Computer. Good access to  a high 
level computer (preferably with time- 
sharing capability) having good soft- 
ware packages is very important for 
the success of most modeling courses. 

Ezperienced Consultants. Access to 
knowledgeable colleagues, experts in 
local industrial firms, and talented 
computer center personnel are all 
helpful in keeping a team’s progress 
from faltering. 

Supplemental Materials. Handouts on 
how to work in a team on projects, 
or where to go for help, etc., lessen 
the student’s feeling of abandonment 
when working on projects. 

SOURCE O F  PROBLEMS: 
Real World. Open-ended problems 
submitted by local industrial firms 
or government agencies which are of 
current interest to them, or problems 
from current research of colleagues. 

Contrived. Open-ended problems 
pulled from a variety of sources: from 
technical journals, suggestions from 
colleagues, books, etc. 
Case Studies. Reasonably well self- 
contained descriptions of completed 
projects or problems. 

TECHNICAL THRUST: 
Discrete-OR. Problems whose models 
involve discrete structures, program- 
ming, or optimization within discrete 
settings. Also interpolation with fi- 
nite structures in continuous settings. 

Continuous. Problems whose models 
involve differential or integral equa- 
tions, continuous probabilities, or op- 
timization within continuous setting. 
Computer. Problems with main goal 
the production of software either a t  
the systems level or solvers for a class 
of equations in continuous settings, 
along with error analysis of same. 
For DEC users, the IMSL package is 
a good all-around one to have avail- 
able on the system. 

A successful, long-term program de- 
pends to a large extent on the Direc- 
tor’s ability to secure willing assis- 
tance from able consultants. 

For project work, see the Handbooks 
by Becker, et al., Handa, Seven and 
Zagar, and for computer graphics, 
Saunders, et  al. (all were developed 
a t  Harvey Mudd College and are 
available on request). 

See Borelli and Spanier for a descrip- 
tion of one effective method of re- 
cruiting sponsored projects from in- 
dustry. MIT has a highly organized 
way of advertising current research 
of its faculty and laboratories and 
whether undergraduates can play a 
role or not. 
The modeling books in the references 
are good sources of problems. 

Good sources in modules, proceedings 
of conferences on case studies and 
books. 

Computer graphics capabilities and 
knowledgeable (and accessible) con- 
sultants at the computer center add 
not only a professional touch but also 
help teams live within their time con- 
straints. 
Be sure that consultants help is ac- 
knowledged by the students in all 
written reports, even if it is only of a 
casual nature. 

Used only in experiential type model- 
ing courses. 

Used mostly in experiential type 
modeling course. 

Used only for case study type of 
modeling course. 

Deterministic and istochastic methods 
are both possibditi’es here. 
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There are many opportunities for mathematical sci- 
ences majors to  pursue graduate studies or find employ- 
ment in operations research and related fields. Indus- 
trial mathematicians in all fields find themselves faced 
with operations research problems from time-to-time. 
Thus it is important for mathematical sciences students 
to have some exposure to  operations research and its 
applications, and also knowledge of its career possibil- 
ities. This classroom exposure to  operations research 
can occur in conjunction with undergraduate model- 
ing experience or in a specific course on operations re- 
search. The current relevance and naturalness of this 
subject are immediately clear to  students, and realistic 
projects at various levels of difficulty are readily avail- 
able. An interesting article by D. Wagner about opera- 
tions research appeared in the American Mathematical 
Monthly (82, p. 895). Students should also be referred 
to the booklet Careers in Operations Research, avail- 
able from the Operations Research Society of America, 
428 Preston Street, Baltimore, MD 21202. 

A student interested in graduate work in operations 
research should have a solid preparation in undergrad- 
uate core mathematics: calculus, linear algebra, real 
analysis, plus courses in probability, introductory com- 
puter science and modeling. A course in operations re- 
search itself is more important as a way to  learn if one 
likes the field than as a prerequisite for graduate study. 
A substantial minor in a relevant area outside mathe- 
matics (as recommended for all mathematical sciences 
majors in the first chapter, “Mathematical Sciences”) is 
important. This outside work should include a sampling 
of quantitative courses in the social sciences, business, 
or engineering (if available). Experience solving some 
problems involving substantial computer computation 
and an exposure to nontrivial algorithms are also desir- 
able. 

At some institutions, mathematics departments are 
now preparing to  offer an operations research course for 
the first time, while other institutions may have many 
operations research courses offered in mathematics, eco- 
nomics, business, industrial engineering and computer 
science. In either extreme and situations in between, 
mathematical sciences students are best served by some 
form of interdepartmental cooperation, or at  least co- 
ordination of offerings. If a mathematics department 
is planning to  offer an operations research course when 
none previously existed a t  the institution, mathematics 
should work closely with other interested departments. 

In planning this first course, mathematicians could 
seek contacts with local industry to  obtain practition- 
ers as visiting lecturers. On the other hand, an in- 
troductory operations research course can be taught 

by most college mathematics professors with appropri- 
ate attitudes if they are willing to  undertake some self 
study. Indeed, faculty without formal operations re- 
search training who are going to  teach such a course 
should be strongly encouraged to  learn about the iield 
by attendance at short courses, participation in a de- 
partment seminar on the subject, or by sabbatical leave 
(or other released time) at universities or industrial lab- 
oratories with operations research activities. 

Course Descriptions 
Four sample courses on operations research and mod- 

eling are described below. Only more general remarks 
are given for the courses in operations research and 
stochastic processes since these have become fairly stan- 
dardized in recent years. More specific details are pro- 
vided for an elementary-level modeling course using idis- 
Crete mathematics and for a more advanced modeling 
course using continuous methods. These are merely il- 
lustrations of the wide variety of different sorts of mod- 
eling courses which can be taught. The 1972 CU:PM 
Recommendations on Applied Mathematics contain a 
detailed description of a physical-sciences oriented mod- 
eling course. Such a modeling course continues to  be 
very valuable and in no way should be considered dat,ed. 
Many basic intermediate-level courses in the physical 
sciences are also excellent modeling courses, from the 
point of view of a mathematical sciences major. 

Introductory Operations Research 
Much of the material in an introductory operati’ons 

research course for undergraduates has become fairly 
standard. The course covers primarily deterministic 
methods. Most publishing companies have good intro- 
ductory operations research texts (the text title may 
be Linear Programming, the course’s main topic). The 
level of this course can vary depending on the prerequi- 
sites and student maturity. It is normally an upper-level 
offering with a prerequisite or corequisite of linear al- 
gebra. Calculus and probability should be required if 
stochastic models are also included. 

An operations research course can be a “pure math- 
ematics” course which stresses the fundamental prop- 
erties of systems of linear inequalities, basic geometry 
of polyhedra and cones, discrete optimization and com- 
plexity of algorithms. Most operations research courses, 
however, emphasize the many applications which can be 
solved by linear programming and related techniques of 
combinatorial optimization. Such courses usually de- 
vote some time to  efficient algorithms and practical mu- 
merical methods (to avoid roundoff errors), as well as 
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basic notions of computational complexity. While prob- 
lem solving and modeling are important, a first oper- 
ations research course should cover some topic in rea- 
sonable depth and not be merely a collection of simple 
techniques and routine applications. 

COURSE CONTENT 

The course should start with a brief discussion of the 
general nature, history and philosophy of operations re- 
search. Some of the older texts such as Introduction to 
Operations Research by C. Churchman, R. Ackoff and 
E. Arnoff, Wiley, 1957, and Methods of Operations Re- 
search by P. Morse and G. Kimball, Wiley, 1951, de- 
vote extensive space to  history. The instructor should 
not spend much time on history a t  the beginning of 
a course but instead should weave it into discussions 
throughout a course. 

The first half of the course in usually devoted to lin- 
ear programming: its theory, the simplex algorithm, 
and applications. The course then continues on to  a se- 
ries of special linear programming problems, such as op- 
timal assignment, transportation, trans-shipment, net- 
work flow, minimal spanning tree, shortest path, PERT 
methods and traveling salesperson, each with its own 
algorithms and associated theory. Basic concepts of 
graph theory are normally introduced in conjunction 
with some of the preceding problems. If time per- 
mits, elementary aspects from decomposition theory, 
dynamic programming, integer programming, or non- 
linear programming may be included. 

It is difficult to  find space in an introductory opera- 
tions research course for even a small sampling of prob- 
ability or stochastic models. If possible, it is better to 
include this material in a second course. Similarly, there 
is usually little time available to discuss game theory, 
except possibly for showing that two-person, zero-sum 
games are equivalent to  a dual pair of linear programs. 
Game theory is probably best treated in a separate 
“topics” course. 

Elementary Modeling Course 

The following course on mathematical modeling and 
problem solving is intended for freshmen and sopho- 
mores with a solid preparation in high school math- 
ematics. The primary objective is to provide lower- 
level students with a first-hand experience in forming 
their own mathematical models and discovering their 
own solution techniques. A secondary goal is to  intro- 
duce some of the concepts from modern finite math- 
ematics and illustrate their applications in the social 
sciences. The instructor might supplement these main 
themes with brief discussions of some important recent 

mathematical developments and indicate the current 
relevance of mathematics to  contemporary science and 
policy making. 

The course should maintain an open-minded and 
questioning approach to problem solving. Much of the 
class time should be devoted to  student discussions of 
their models and how to improve them. Students should 
be asked to make formal oral and written expositions. 
Many of the topics coveredare also suit,able, with proper 
adjustments, for upper-level courses or for lower-level 
“mathematics appreciation” courses. (Readers inter- 
ested in the latter courses should coneult the 1981 Re- 
port of the CUPM Panel on Mathematics Apprecia- 
tion, reprinted later in this volume.) Nlot all of the top- 
ics mentioned below can be covered in any one course, 
and frequent changes in course content are necessary to 
maintain the originality of problems. 

No one current textbook appears appropriate for this 
course, although a simpler “prepackage:d” version of this 
course could use the high-school-oriented text You and 
Technology with supplementary modules. The course 
described below is an example of how various sources 
can be assembled (as handouts or on library reserve) to 
form a modeling course, in this instarnce emphasizing 
modeling in the social sciences. 

COURSE CONTENT 

Overview and Patterns of Problem Solving. Intro- 
duction to  the nature of modeling and problem solv- 
ing. The role of science, engineering and social sci- 
ences in making and implementing new discoveries. 
The nature of applied mathematics ,and the interdis- 
ciplinary approach to  problems. Illustrations of prob- 
lems solved by quick insight rather )than by involved 
analysis. Many books have chapters on modeling and 
problem solving; also see Patterns of’ Problem Solving 
by M. Rubinstein, Prentice-Hall, 1975, or “Foresight- 
Insight-Hindsight” by J. Frauenthal and T. Saaty, in 
Modules in Applied Mathematics, vol. 3 (W. Lucas, ed- 
itor), Springer-Verlag. 

A large variety of 
problems related to undirected and directed graphs and 
network flows can be assigned and discussed a t  the out- 
set with no hint of any theory or technical terms. At 
a later stage, a lecture can be devoted to  theory to  de- 
velop a common vocabulary. The language and general 
approach of systems analysis can be developed. The 
four-color theorem can be discussed. References are 
Applied Combinatorics, by F. Roberts, Prentice-Hall, 
1984, Graphs as Mathematical Models by G. Chartrand, 
Prindle, Weber and Schmidt, 1977, and Applied Com- 
binatorics by A. Tucker, Wiley, 1980. 

Graph and Network Problems. 
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Some lecture time can be spent illustrating how 
graphs are applied: to  simplify a complex problem, 
such as Instant Insanity (Chartrand, p. 125 or Tucker, 
p. 355), or the more difficult Rubik’s Cube (Scientific 
American, March, 1981); for purely mathematical pur- 
poses, such as to  prove Euler’s formula V - E + F = 2 
and use it in turn to prove the existence of exactly five 
regular polyhedra; or to  examine R. Connelly’s flex- 
ing (nonconvex) polyhedra (Mathematical Intelligencer, 
Vol. 1, No. 3, 1979). The analogy between transporta- 
tion, fluid flow, electric and hydraulic networks can be 
illustrated (see G. Minty’s article in Discrete Mathemat- 
ics and Its Applications Proceedings of a Conference a t  
Indiana University, ed. M. Thompson, 1977). 

Enumeration Problems. (Tucker, 2nd ed., Chapter 
5 or Roberts, Chapter 2.) Some practical uses can be 
covered briefly, e.g., to  probability problems or the Pi- 
geonhole Principle. Computational complexity and its 
application to hard-to-break codes can be discussed. 

Value and Utility Theory. Expected utility versus 
expected value; St. Petersburg paradox; construction of 
a money versus utility curve: axioms for utility; assess- 
ing Coalitional Values (see module by W. Lucas and L. 
Billera in Modules in  Applied Mathematics, vol. 2, W. 
Lucas, editor, Springer-Verlag). 

Conflict Resolution. Some three-person cooperative 
game experiments and analysis; the Prisoner’s Dilemma 
for two or more persons (H. Hamburger in Journal of 
Math. Sociology 3, 1973); illustrations of equilibrium 
concepts; two-person zero-sum games, e.g., batter ver- 
sus pitcher (Economics and the Competitive Process by 
J.  Case, NYU Press, 1979, p. 3; also see The Game of 
Business by John McDonald, Doubleday, 1975, Anchor 
paperback, 1977, and Game Theory: A Nontechnical 
Introduction by M. Davis, Basic Books, 1970). 

A Discrete Optimization Problem and an Algorithm. 
Possible topics are the complete and optimal assign- 
ment problems (UMAP module 317 by D. Gale), or the 
marriage problem (D. Gale and L. Shapley, American 
Mathematical Monthly 69, 1962, p. 9). 

See chapters on simulation in many 
books and “Four-Way Stop or Traffic Light? An Illus- 
tration of the Modeling Process” by E. Packel (in Mod- 
ules in Applied Mathematics, vol. 3, W. Lucas, editor, 
Springer-Verlag). Additional ideas from Inventory The- 
ory, Scheduling Theory, Dynamic Programming, and 
Control Theory, e.g., lunar landing, can be included. 

Projects and Mini-projects. At least one significant 
project type activity should be pursued over several 
weeks by the whole class by means of a sequence of 

Simulation. 

graded exercises and class discussions. Some of the t o p  
ics listed above can be treated in this mode. Other suit- 
able topics are: the Apportionment Problem (Fair R e p  
resentation by M. Balinski and H. Young, Yale Press); 
measuring power in Weighted Voting situations (W. 
Lucas in Case Studies in Applied Mathematics MAA, 
1976); Cost Analysis (C. Clark in same Case Studies 
on harvesting fish or forests); some simple topics from 
statistics such as Asking Sensitive Questions, module by 
J. Maceli (in Modules in  Applied Mathematics, vol. 2, 
W. Lucas, editor, Springer-Verlag); and Social Choice 
Theory and Voting (Theory of Voting by R. Farquhar- 
son, Yale, 1960). 

In addition to  the class project, teams of two or 
three students can spend a few weeks on a mini-project. 
Many of the topics above can be applied to a local prac- 
tical problem. Scheduling, inventory and optimal al- 
locations are good topics, as are gaming experiments, 
simulations and elementary statistical studies. More 
theoretical topics, ranging from walking versus running 
in the rain to designing the inside mechanism of the 
Rubik’s Cube are also possible. Some attempt at dis- 
cussing possible implementation of a mini-project re- 
sult, e.g., with a campus administrator, is encouraged 
in order to  show the practical difficulties of implement- 
ing mathematically optimal procedures. 

Introductory Stochastic Processes 

The purpose of this course is to  introduce the stu- 
dent to the basic mathematical aspects of the theory of 
stochastic processes and its applications. This course 
can equally well be offered under such alternate titles as 
Applied Probability or Operations Research: Stochas- 
tic Models. Stochastic processes is a large and growing 
field. This course will lay background for further learn- 
ing on the job or in graduate school. 

The prerequisite for this course is a t  least the equiv- 
alent of a full course of post-calculus probability incllud- 
ing the following topics: random variables, common 
univariate and multivariate distributions, moments, 
conditional probability, stochastic independence, c:on- 
ditional distributions and means, generating functions, 
and limit theorems. Such a course is fairly traditional 
now, but if most students have had just the integrated 
statistics and probability course suggested by the Statis- 
tics Subpanel, then the beginning of the stochastic pro- 
cesses course would have to  be devoted to  completing 
the needed probability background. It is also desirable 
for students to  have some experience with basic matrix 
algebra and with using computer terminals. 

The course should slight neither mathematical the- 
ory nor its applications. It is better to  cover few topics 
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with a full discussion of both theory and applications 
to  survey theory alone or to  cover only applications. 
The course emphasizes problem solving and develops an 
acquaintance with a variety of models that are widely 
used. Stochastic modeling and problem formulation are 
different activities that  should be treated in a modeling 
course. If many students do not subsequently take a 
modeling course, then the instructor should consider 
allocating some time (assuming course time did not 
also have to  be devoted to  probability) to  a module 
on stochastic modeling in business or government (see 
list of modules below) or to a real problem at the local 
college, e.g., modeling the demand for textbooks in the 
bookstore or utilization of campus parking spaces. 

Computers should be used in this course in two ways: 
0 As a computational aid to  perform, for example, 

matrix calculations needed in Markov chain theory; 
and 
As a simulation device to  exhibit the behavior of 
random processes. 

Understanding randomness is difficult for undergradu- 
ates and discussion of data  accumulated in simulation 
studies can help overcome students’ deterministic bi- 
ases. 

COURSE CONTENT 
Bernoulli process; Markov chains (random walks, 

classification of states, limiting distributions); Poisson 
process (as limit of binomial process and as derived 
via axioms); Markov processes (transition functions 
and state probabilities, Kolmogorov equations, limiting 
probabilities, birth-death processes). 

These basic topics have numerous applications that 
should be an essential feature of the course. In addition, 
some applied topics can be covered such as quality con- 
trol, social and occupational mobility, Markovian deci- 
sion processes, road traffic, reliability, queueing prob- 
lems, population dynamics or inventory models. In- 
structors can find these and other applications in the 
many good texts on stochastic processes. Also see the 
modules and modeling texts listed at the end of this 
chapter. 

Continuous Modeling 
A primary goal of a continuous modeling course is 

to present the mathematical analysis involved in sci- 
entific modeling, as for example, the derivation of the 
heat equation. The course should also give an introduc- 
tion to  important applied mathematics topics, such as 
Fourier series, regular and singular perturbations, sta- 
bility theory and tensor analysis. A few advanced t o p  
ics can be chosen from boundary layer theory, nonlinear 

waves and calculus of variations. The course should give 
a solid motivation for more advanced courses in these 
topics. A (non-original) paper on a topic of interest 
to  the students serves the dual purpose of developing 
communication skills and introducing pledagogical flex- 
ibility. 

A course on continuous modeling usually has as a 
prerequisite a course in differential equations, although 
the modeling can be taught concurrently or integrated 
in one course, using a book such as Martin Braun’s 
Differential Equations and Their Appkations (second 
edition), Springer-Verlag, 1978. Continuous modeling 
problems frequently involve concepts from natural sci- 
ences. In this case, it is important that either an appro- 
priate background is required of students or the techni- 
cal essentials are adequately introduced in the course. 

The texts by Lin and Segal and by Haberman (see 
below) are well suited for this course. Selections from 
the two-volume Lin and Segal text can be used to pro- 
vide a solid basis for physics and engineering modeling 
using both classical subjects, such as fluids, solids and 
heat transfer, and modern subjects, such as fields of bi- 
ology. The text’s broad coverage probably includes an 
introduction to an area of expertise of the instructor to 
which he or she can bring personal research insights. 

A course which requires a little less sophistication 
can be designed around Haberman’s book. This text’s 
topics in population dynamics, oscillations, and traffic 
theory require less scientific background than topics in 
mechanics and mathematical biology, lbut still provide 
an excellent basis for modeling discussions. For exam- 
ple, population dynamics provide a good introduction 
to  dynamical systems. Topics in regular and singular 
perturbation theory can be presented in the context of 
oscillations. Traffic theory provides a vehicle for intro- 
ducing continuum mechanical modeling in which the 
processes are readily appreciated by students. Here the 
“microscopic” processes involve cars amd drivers, and 
interesting models are obtained by car-following theory. 
Traffic flows also involve partial differential equations 
and shock waves. 

References on Modeling 

Modules 

A.  MODULE WRITING PROJECTS 
Claremont Graduate School (Department of Mathemat- 
ics): 

A Fractional Calculus Approach to a Simplified Air 
Pollution Model for Perturbation Analysis. 
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Continuous-system Simulation Languages for DEC- 
10. 

* Free Vibrations in the Inner Ear. 
* Modeling of Stellar Interiors. 

Subsurface Areal Flow Through Porous Media. 
Variance Reduction for Monto Carlo Applications 

Voting Games and Power Indices. 
Involving Deep Penetration. 

Mathematical Association of America’s Committee on 
the Undergraduate Program in Mathematics Project, 
Case Studies in Applied Mathematics (designed espe- 
cially for open-ended experiential teaching). 

Measuring Power in Weighted Voting Systems. 
A Model for Municipal Street Sweeping Operations. 

* A Mathematical Model of Renewable Resource Con- 
servation. 

* Dynamics of Several-species Ecosystems. 
* Population Mathematics. 

MacDonald’s Work on Helminth Infections. 
Modeling Linear Systems by Frequency Response 
Methods. 
Network Analysis of Steam Generator Flow. 

* Heat Transfer in Frozen Soil. 

Mathematical Association of America Summer 1976 
Module-writing Conference (at Cornell University De- 
partment of Operations Research): 

* About sixty modules covering virtually all areas of 
application, such as biology, ecology, economics, en- 
ergy, population dynamics, traffic flow, vibrating 
strings, and voting. 
Selected modules from this conference along with 
MAA applied mathematics case studies (ii) above 
were published by Springer-Verlag (New York, 
1983) in four volumes, edited by William Lucas. 

Rensselaer Polytechnic Institute (Department of Math- 
ematical Sciences), published in Case Studies in Mathe- 
matical Modeling, by W. Boyce, Pitman, Boston, 1981: 

Herbicide Resistance. 
* Elevator Systems. 
* Traffic Flow. 

Shortest Paths in Networks. 
Computer Data Communication and Security. 
Semiconductor Crystal Growth. 

State University of New York at Stony Brook (Depart- 
ment of Applied Mathematics and Statistics): 

A Model for Land Development. 
A Model for Waste Water Disposal, I and 11. 
A Water Resource Planning Model. 
Man in Competition with the Spruce Budworm. 

* Smallpox: When Should Routine Vaccination be 
Discontinued. 

Stochastic Models for the Allocation of Fire Com- 
panies. 

B. MODULES DEVELOPED BY INDIVIDUALS 
Undergraduate Mathematics Application Project 
(UMAP): UMAP has several hundred modules cov- 
ering all areas of application. Selected modules ap- 
pear in the UMAP Journal (four issues a year), 
published by Birkhauser-Boston. UMAP catalogue 
available by writing to: UMAP, Educational De- 
velopment Center, 55 Chapel Street, Newton, MA 
02160. 

c. PROCEEDINGS OF MODELING CONFERENCES 

1. Discrete Mathematics and Its Applications, Pro- 
ceedings of a Conference at Indiana University, ed. 
M. Thompson, 1976. 

2. Mathematical Models in the Undergraduate Cur- 
riculum, Proceedings of Conference a t  Indiana TJni- 
versity, ed. D. Maki and M. Thompson, 1975. 

3. Proceedings of Summer Seminar on Applied Mathe- 
matics, ed. M. Thompson, Indiana University, 1!)78. 

4. Mathematical Models for Environmental Problems, 
Proceedings of the International Conference a t  the 
University of Southampton, 1976. 

5 .  Proceedings of Conference on Environmental Mod- 
eling and Simulation, Environmental Proteciion 
Agency, 1976. 

6. Proceedings of a Conference on the Application 
of Undergraduate Mathematics in the Engineer- 
ing, Life, Managerial and Social Sciences, ed. P. 
Knopp and G. Meyer, Georgia Institute of Technol- 
ogy, 1973. 

7. Proceedings of the Pittsburgh Conferences on Mod- 
eling and Simulations, Vols. 1-9 (1969-78), Instru- 
ment Society of America. 

8. Proceedings of the Summer Conference for College 
Teachers on Applied Mathematics, University of 
Missouri-Rolla, 1971. 

9. Information Linkage Between Applied Mathematics 
and Industry, ed. P. Wang, Academic Press, 19’76. 

Articles on Teaching Modeling 
1. J. Agnew and M. Keener, A Case-study Course 

in Applied Mathematics Using Regional Industries, 
American Mathematical Monthly 87 (1980). 

2. R. Barnes, Applied Mathematics: An Introduction 
Via Models, American Mathematical Monthly 84 
(1977). 

3.  C. Beaumont and R. Wieser, Co-operative F’ro- 
grammes in Mathematical Sciences a t  the Univer- 
sity of Waterloo, Journal of Co-operative Education 
11 (1975). 
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4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

J. Becker, R. Borrelli, and C. Coleman, Models for 
Applied Analysis, Harvey Mudd College, 1976 and 
revised annually. 
R. Borrelli and J. Spanier, The Mathematics Clinic: 
A Review of Its First Seven Years, UMAP Journal 
2 (1981). 
R. Borton, Mathematical Clinic Handbook, Clare- 
mont Graduate School, 1979. 
J. Brookshear, A Modeling Problem for the Class- 
room, American Mathematical Monthly 85 (1978). 
E. Clark, How To Select a Clinic Project, Harvey 
Mudd College, 1975. 
C. Hall, Industrial Mathematics: A Course in Real- 
ism, American Mathematical Monthly 82 (1975). 
L. Handa, Mathematics Clinic Student Handbook: 
A Primer for Project Work, Harvey Mudd College, 
1979. 
J. Hachigian, Applied Mathematics in a Liberal 
Arts Context, American Mathematical Monthly 85 
(1978). 
E.  Rodin, Modular Applied Mathematics for Begin- 
ning Students, American Mathematical Monthly 84 
(1977). 
R. Rubin, Model Formulation Using Intermedi- 
ate Systems, American Mathematical Monthly 86 
(1 979). 
M. Seven and T. Zagar, The Engineering Clinic 
Guidebook, Harvey Mudd College, 1975. 
D. Smith, A Seminar in Mathematical Model- 
building, American Mathematical Monthly 86 
(1979). 
J .  Spanier, The Mathematics Clinic: An Innovative 
Approach to  Realism Within an Academic Environ- 
ment, American Mathematical Monthly 83 (1976). 

Books on Mathematical Modeling 
For further references, see Applications section of A Ba- 
sic Library List, Mathematical Association of America, 
1976. 

A. 

1. 

2. 

3. 

4. 

5. 

GENERAL MODELING 

J. Andrew and R. McLone, ed., Mathematical Mod- 
eling, Butterworth, 1976. 
R. Aris, Mathematical Modeling Techniques, Pit- 
man, 1978. 
E. Beltrami, Mathematics for Dynamic Modeling, 
Academic Press, 1987. 
E. Bender, An Introduction to Mathematical Mod- 
eling, Wiley, 1978. 
G. Carrier, Topics in Applied Mathematics, Vol. I 
and 11, MAA summer seminar lecture notes, Math- 
ematical Association of America, 1966. 

6. C. Coffman and G. Fix, ed., Constructive Ap- 
proaches to  Mathematical Models, Academic Press, 
1980. 

7. R. DiPrima, ed., Modern Modeling of Continuous 
Phenomena, American Mathematical Society, 1977. 

8. C. Dym and E. Ivey, Principles of Mathematical 
Modeling, Academic Press, 1980. 

9. B. Friedman, Lectures on Applications-oriented 
Mathematics, Holden-Day, 1969. 

10. F. Giordano and M. Weir, A First Course in Math- 
ematical Modeling, Brooks/Cole, 1!985. 

11. P. Lancaster, Mathematics Models of the Real 
World, Prentice Hall, 1976. 

12. D. Maki and M. Thompson, MathLematical Models 
and Applications, Prentice Hall, 1976. 

13. F. Roberts, Discrete Mathematical Models, Prentice 
Hall, 1976. 

14. T. Saaty, Thinking with Models, AAAS Study 
Guides on Contemporary Problems No. 9, 1974. 

B. MODELING IN VARIOUS DISCIPLINES 

Mathematical modeling is such an integral part of 
physics and engineering that any text in these fields 
is implicitly a mathematical modeling book. 
1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

P. Abell, Model Building in Sociology, Shocken, 
1971. 
R. Aggarwal and I. Khera, Management Science 
Cases and Applications, Holden-Day, 1979. 
R. Atkinson, et al., Introduction to  Mathematical 
Learning Theory, Krieger Publishing, 1965. 
D. Bartholomew, Stochastic Models for Social Pro- 
cesses, Wiley, 1973. 
M. Bartlett, Stochastic Population Models, 
Methuen, 1960. 
R. Barton, A Primer on Simulation and Gaming, 
Prentice Hall, 1970. 
S. Brams, Game Theory and Pollitics, The Free 
Press, 1975. 
C. Clark, Mathematical Bioeconom,ics, Wiley, 1976. 
J. Coleman, Introduction to Mathematical Sociol- 
ogy, Free Press, 1964. 
P. Fishburn, The Theory of Social Choice, Princeton 
University Press, 1973. 
J. Frauenthal, Introduction to Population Modeling, 
UMAP Monograph, 1979. 
H. Gold, Mathematical Modeling of Biological Sys- 
tems, Wiley, 1977. 
S .  Goldberg, Some Illustrative Ezamples of the 
Use of Undergraduate Mathematics in the Social 
Sciences, Mathematical Associatiion of America, 
CUPM Report, 1977. 
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 
25. 

M. Gross, Mathematical Models in Linguistics, 
Prentice Hall, 1972. 
R. Haberman, Mathematical Models, Mechanical 
Vibrations, Population Dynamics and %fit Flow, 
Prentice Hall, 1977. 
F. Hoppensteadt, Mathematical Theories of Popu- 
lations: Demographics and Epidemics, SIAM, 1976. 
J. Kemeny and L. Snell, Mathematical Models in the 
Social Sciences, MIT Press, 1973. 
C. Lave and J. March, An Introduction to Models 
in the Social Sciences, Harper and Row, 1975. 
C. Lin and L. Segal, Mathematics Applied to Deter- 
ministic Problems in the Natural Sciences, Macmil- 
Ian, 1974. 
D. Ludwig, Stochastic Population Theories, 
Springer, 1974. 
J. Maynard-Smith, Models in Ecology, Cambridge 
University Press, 1974. 
B. Noble, Applications of Undergraduate Mathe- 
matics t o  Engineering, Mathematical Association of 
America, 1976. 
M. Olinik, An Introduction to Mathematical Mod- 
els in the Social and Life Sciences, Addison Wesley, 
1978. 
E. Pielou, Mathematical Ecology, Wiley, 1977. 
H. Pollard, Mathematical Introduction to  Celestial 

Mechanics, Mathematical Association of America, 
1977. 

26. J. Pollard, Mathematical Models for the Growth of 
Human Populations, Cambridge University Press, 
1973. 

27. D. Riggs, The Mathematical Approach to  Physiolog- 
ical Problems, Macmillan, 1979. 

28. T. Saaty, Topics in Behavioral Mathematics, MAA 
summer seminar lecture notes, Mathematical Asso- 
ciation of America, 1973. 

29. H. Scarf, et al., Notes on Lectures on Mathematics 
in the Behavioral Sciences, MAA summer seminar 
lecture notes, Mathematical Association of Amer- 
ica, 1973. 

30. C. von Lanzenauer, Cases in Operations Reseawh, 
Holden Day, 1975. 

31. H. Williams, Model Building in Mathematical Pro- 
gramming, Wiley, 1978. 
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Statistics 

This chapter contains the report of the Subpanel on 
Statistics of the CUPM Panel on  a General Mathemat- 
ical Sciences Progmm, reprinted with minor changes 
f rom Chapter VI of the 1981 CUPM report entitled 
RECOMMENDATIONS FOR A GENERAL MATHEMATICAL 
SCIENCES PROGRAM. 

Introductory Course 

Statistics is the methodological field of science that 
deals with collecting data,  organizing and summariz- 
ing data, and drawing conclusions from data. Although 
statistics makes essential use of mathematical tools, es- 
pecially probability theory, it is a misrepresentation of 
statistics to  present it as essentially a subfield of math- 
ematics. 

The Statistics Subpanel believes that an introduc- 
tory course in probability and statistics should con- 
centrate on data  and on skills and mathematical tools 
motivated by the problems of collecting and analyzing 
data. The traditional undergraduate course in statisti- 
cal theory has little contact with statistics as it is prac- 
ticed and is not a suitable introduction to  the subject. 
Such a course gives little attention to data collection, 
to analysis of data  by simple graphical techniques, and 
to checking assumptions such as normality. 

The field of statistics has grown rapidly in applied 
areas such as robustness, exploratory data  analysis, 
and use of computers. Some of this new knowledge 
should appear in a first course. It is now inexcusable to 
present the two-sample t-test for means and the F-test 
for variances as equally legitimate when a large litera- 
ture demonstrates that  the latter is so sensitive to  non- 
normality as t o  be of little practical value, while the 
former (at least for equal sample sizes) is very robust 
(e.g., see Pearson and Please, Biometrika 62 (1975), pp. 
223-241, for an effective demonstration). However, the 
Statistics Subpanel does not believe that a course in 
“exploratory data  analysis” is a suitable introduction 
to statistics, nor does it advocate replacing (say) least 
squares regression by a more robust procedure in a first 
course. But it does think that new knowledge renders 
a course devoted solely to  the theory of classical para- 
metric procedures out of date. 

While the Statistics Subpanel prefers a two-semester 
introductory sequence in probability and statistics, en- 
rollment data  shows that most students take only a sin- 

gle course in this area. The course proposed below gives 
students a representative introduction to  both the data- 
oriented nature of statistics and the makhematical con- 
cepts underlying statistics. These broad objectives raise 
several issues that require preliminary comment. One 
year of calculus is assumed for this course. The course 
should use Minitab or a similar interactive statistical 
package. 

The Place of Probability 
Probability is an essential tool in several areas of the 

mathematical sciences. It is not possib1.e to  compress a 
responsible introduction to probability and coverage of 
statistics into a single course. The Statistics Subpanel 
therefore recommends that probability topics be divided 
between the courses on probability anti statistics, dis- 
crete methods, and modeling/operations research as fol- 
lows: 

* Probability and statistics course: Axioms and basic 
properties; random variables; univariate probability 
functions and density functions; moments; standard 
distributions; Laws of Large Numb’ers and Central 
Limit Theorem. 
Discrete methods course: Combinzrtorial enumera- 
tion problems in discrete probability. 
Modeling/operations research cour,Se: Conditional 
probability and several-stage models; stochastic 
processes. 

This division is natural in the sense that the respective 
parts of probability are motivated by and applied to the 
primary concerns of these courses. 

Alternative Arrangements 
The subpanel is convinced that two semesters are 

required for a firm introduction to both probability 
and statistics. Many institutions now offer such a two- 
semester sequence in which probabilit,y is followed by 
statistics. The subpanel prefers this structure. In this 
sequence the statistics course should be revised to  incor- 
porate the topics and flavor of the data  analysis section 
of the proposed unified course. With probability first, 
added material in statistics can also be covered, such as 
Neyman-Pearson theory, distribution-free tests, robust 
procedures, and linear models. 

Institutions will vary considerably in their choice of 
material for this statistics course, but the subpanel reit- 
erates its conviction that the traditional “theory-only” 



statistics course is not a wise choice. If experience 
shows that many students drop out in the middle of 
a two-course sequence, the unified course outlined be- 
low should be adopted, followed by one of the elective 
courses suggested in Section 3 of this chapter. 

Instructor Preparation 
Since the recommended outline is motivated by data 

and shaped by the modern practice of statistics, many 
mathematically trained instructors will be less prepared 
to  teach this course than a traditional statistical theory 
course. Growing interest in “applied” statistics has, of 
course, led many instructors to broaden their knowl- 
edge. Some background reading is provided for others 
who wish to  do so. The publications listed here contain 
material that can be incorporated in the recommended 
course, but none is suitable as a course text. In order 
of ascending level: 

1. Tanur, Judith, et al., eds., Statistics: A Guide to 
the Unknown, Second Edition, Holden-Day, 1978. 

An elementary volume describing important ap- 
plications of statistics and probability in many 
fields of endeavor. 

2. Moore, David, Statistics: Concepts and Controver- 

A paperback with good material on data collec- 
tion, statistical common sense, appealing exam- 
ples, and the logic of inference. 

3. Freedman, David; Pisani, Robert; Purves, Roger, 

A careful introduction to  elementary statistics 
written with conceptual richness, attention to 
the real world, and awareness of the treachery 
of data. 

4. Mosteller, Frederick and Tukey, John, Data Analy- 

Good ideas on exploratory data analysis, robust- 
ness and regression. 

5. Box, George; Hunter, William; Hunter, J .  Stuart, 

Applied statistics explained by experienced 
practical statisticians. Some specialized mate- 
rial, but much of the book will repay careful 
reading. 

6.  Efron, Bradley, “Computers and the Theory of 
Statistics: Thinking the Unthinkable,” SIAM Re- 
view, October, 1979. 

A superb article on some new directions in 
statistics, written for mathematicians who are 
not statisticians. 

sies, W.H. Freeman, 1979. 

Statistics, W.W. Norton, 1978. 

sis and Regression, Addison-Wesley, 1977. 

Statistics f o r  Ezperimenters, Wiley, 1978. 

Course Outline 

I. Data (about 2 weeks) 

Random sampling. Using a table of random digits; 
simple random samples, experience with sampling 
variability of sample proportions and means; strat- 
ified samples as a means of reducing variability. 
Ezperimental design. Why experiment; motivation 
for statistical design when field conditions for liv- 
ing subjects are present; the basic ideas of control 
and randomization (matching, blocking) to  red.uce 
variability. 

COMMENTS: Data collection is an important part of 
statistics. It meets practical needs (see Moore) andjus- 
tifies the assumptions made in analyzing data  (see Box, 
Hunter and Hunter). Experience with variability helps 
motivate probability and the difficult idea of a sam- 
pling distribution. Students should see for themselves 
the results of repeated random sampling from the same 
population and the variability of data  in simple experi- 
ments such as comparing 3-minute performance of egg 
timers (see W.G. Hunter, American Statistician, 1977, 
pp. 12-17, for suggestions). 

11. Organizing and Describing Data 
(about 2 weeks) 

Tables and graphs. Frequency tables and his- 
tograms; bivariate frequency tables and the mislead- 
ing effects of too much aggregation; standard line 
and bar graphs and their abuses; box plots; spot- 
ting outliers in data. 
Univariate descriptive statistics. Mean, median isnd 
percentiles; variance and standard deviation; a few 
more robust statistics such as the trimmed mean. 
Bivariate descriptive statistics. Correlation; fitting 
lines by least squares. If computer resources permit, 
least-square fitting need not be restricted to  lines. 

COMMENTS: In addition to  simple skills, students 
must be trained to  look at data  and be aware of pit- 
falls. Freedman, Pisani and Purves have much good 
material on this subject, such as the perils of aggrega- 
tion (pp. 12-15). The impressive effect on a correlation 
of keypunching 7.314 as 731.4 should be pointed out. 
Simple plots are a powerful tool and should be stressed 
throughout the course as part of good practice. 

111. Probability (about 4 weeks) 

General probability. Motivation; axioms and bisic 
rules, independence. 
Random variables. Univariate density and proba- 
bility functions; moments; Law of Large Numbers. 
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0 Standard distributions. Binomial, Poisson, expo- 
nential, normal; Central Limit Theorem (without 
proof). 
More ezperience with randomness. Use in computer 
simulation to illustrate Law of Large Numbers and 
Central Limit Theorem. 

COMMENTS: Probability must unavoidably be 
pressed in a unified course that includes data analysis. 
Instructors should repeatedly ask “What probability do 
I need for basic statistics?” and “What can the students 
learn within about four weeks?” It is certainly the case 
that combinatorics, moment generating functions, and 
continuous joint distributions must be omitted. Some 
instructors may be able to  cover conditional probability 
and Bayes’ theorem in addition to the outline material. 

IV. Statistical Inference (about 6 weeks) 
Statistics us. probability. The idea of a sampling 
distribution; properties of a random sample, e.g., it 
is normal for normal populations; the Central Limit 
Theorem. 
Tests of significance. Reasoning involved in alpha- 
level testing and use of P-values to assess evi- 
dence against a null hypothesis; cover one- and 
two-sample normal theory tests and (optional) chi- 
square tests for categorical data. Comment on ro- 
bustness, checking assumptions, and the role of de- 
sign (Part I) in justifying assumptions. 
Point estimation methods. Method of moments; 
maximum likelihood; least squares; unbiasedness 
and consistency. 
Confidence intervals. Importance of error estimate 
with point estimator; measure of size of effect in a 
test of significance. 
Inference in  simple linear regression. 

COMMENTS: A firm grasp of statistical reasoning is 
more important than coverage of a few additional spe- 
cific procedures. For much useful material on statis- 
tical reasoning such as use of the “empirical rule” to 
assess normality, see Box, Hunter and Hunter. Don’t 
just say, “We assume the sample consists of iid normal 
random variables.” Applied statisticians favor P-values 
over fixed alpha tests; a comparative discussion of this 
issue appears in Moore. 

RECOMMENDED TEXTS 
The Subpanel is not aware of a text at the post- 

calculus level that fits the recommended outline closely. 
Instructors should seriously consider adopting a good 
post-calculus statistical methods text rather than a the- 
oretical statistics text. A methods text is more likely 
to have examples and problems which have the ring of 

truth. Moreover, most instructors will find it easy to 
supplement a methods text with mathematical mate- 
rial and problems familiar from previous teaching. It is 
much harder to supply motivation and realistic prob- 
lems, and it is psychologically difficult for both the 
teacher and student to skip much of the probability in 
a mathematical statistics text. 

The following books are possible texts or reference 
material for the course described above. All of these 
have essentially the same shortcoming of being too ‘un- 
mathematical.” The appropriate combination of level of 
sophistication and content is not now a.vailable under a 
single cover. The class of books below fall in the “inter- 
mediate” level between an elementary statistics course 
and a first course in mathematical statistics. 

Box, George; Hunter, William; Hunter, J. Stuart, 
Statistics for Ezperimenters: A n  Introduction to 
Design, Data Analysis, and Modei! Building, John 
Wiley & Sons, New York, 1978. 
Moore, David and McCabe, George, Introduction to 
the Practice of Statistics, Freeman, San Francisco, 
1989. 
Ott, Lyman, A n  Introduction to Statistical Meth- 
ods and Data Analysis, Second Edition, Duxbury, 
Boston, 1984. 
Neter, John; Wasserman, William; Whitmore, 
G.A., Applied Statistics, Allyn and Bacon, Boston, 
1978. 

Additional Courses 

Probability and Statistical Theory 

CONTENT: Distribution functions; moment and 
probability generating functions; joint, marginal and 
conditional distributions; correlations; distributions of 
functions of random variables; Chebyschev’s inequal- 
ity; convergence in probability; limiting distributions; 
power test and likelihood ratio tests; introduction to 
Bayesian and nonparametric statistic!a; additional re- 
gression topics. 

COMMENT: This course is designed to complete the 
traditional probability-then-statistics sequence. Since 
the students have already completed a semester of 
study, they should be capable of tackling a good text 
on mathematical statistics such as the one by DeGroot 
or by Hogg and Craig. The book by Bickel and Dok- 
sum is a little more difficult than the other two, and the 
teacher would have to supplement it with the topics in 
probability. 
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TEXTS: 
1. Mendenhall, William; Schaeffer, Richard; Wackerly, 

Dennis, Mathematical Statistics with Applications, 
Second Edition, Duxbury, Boston, 1981. 

2. Larsen, Richard and Marx, Morris, A n  Introduction 
to Probability and its Applications, Prentice-Hall, 
Englewood Cliffs, N. Jers., 1985. 

3. DeGroot, Morris M., Probability and Statistics, 
Addison-Wesley, Reading, Mass., 1975. 

4. Hogg, Robert and Craig, Allen, Introduction to 
Mathematical Statistics, Macmillan, New York, 
1978. 

Applied Statistics 
CONTENT: This course uses statistical packages to 

analyze data sets. Topics include linear and multiple re- 
gression; nonlinear regression; analysis of variance; ran- 
dom, fixed and mixed models; expected mean squares; 
pooling, modifications under relaxed assumptions; mul- 
tiple comparisons; variance of estimators; analysis of 
covariance. 

COMMENT: The new introductory course will proba- 
bly attract more students from other fields than the tra- 
ditional probability-then-statistics course. This course 
is an excellent follow-up for such non-mathematical sci- 
ences students. Its topics are among the more widely 

classic but covers only discrete probability. The book 
by Olkin, Gleser and Derman is at a slightly lower level 
and is more "applied" but will require the instructor 
to provide some supplementary materials. The book 
by Chung is excellent but must be read with a "grain 
of salt." The book by Breiman is also excellent but 
expects much of its reader. A new book by Johnson and 
Kotz also looks interesting but is restricted to discrete 
probability. The books by Chung, Feller and Breirnan 
are difficult for the average student. 

TEXTS: 
1. Olkin, Ingram; Gleser, Leon J.; Derman, Cyrus, 

Probability Models and Applications, Macmillan, 
New York, 1980. 

2. Larsen, Richard and Marx, Morris, A n  Introduction 
to Probability and its Applications, Prentice-Hall, 
Englewood Cliffs, N.J., 1985. 

3. ROSS, Sheldon, A First Course in Probability, Sec- 
ond Edition, Macmillan, New York, 1984. 

4. Chung, Kai Lai, Elementary Probability Theory with 
Stochastic Processes, Springer-Verlag, New York, 
1974. 

5. Feller, William, A n  Introduction to Probability The- 
ory and Its Applications, Volume I, John Wiley & 
Sons, New York, 1950. 

used statistical tools. Students should be expected to 
use a statistical computing package such as Minitab of 
SPSS for many of the analyses. The book by Miller and 
Wichern is a possible text for this course. 

TEXTS: 

Preparation for Graduate Study 
There are a large number of career opportunities for 

statisticians in industry, government and teaching. For 
example as of 1977, the Federal Government employed 
over 3500 statisticians. plus 3500 statistical assistants 

1. Miller, Robert and Wichern, Dean, Intermediate 
Business Statistics, Holt, Rinehart and Winston, 
New York, 1977. 

2. Neter, John; Wasserman, William; Kutner, Michael, 
Applied Linear Statistical Models, Second Edition, 
Irwin, 1985. 

3. Morrison, Donald, Applied Linear Statistical Meth- 
ods, Prentice-Hall, Englewood Cliffs, N. Jers., 1983. 

Probability and Stochastic Processes 

CONTENT: Combinatorics; conditional probability 
and independence; Bayes theorem; joint, marginal and 
conditional distributions; distribution functions; dis- 
tributions of functions of random variables; probabil- 
ity and moment generating functions; Chebyschev's in- 
equality; convergence in probability; convergence in dis- 
tribution; random walks; Markov chains; introduction 
to continuous-time stochastic processes. 

COMMENT: This is a fairly standard course and a 
number of texts are available. The book by Feller is a 

I -  

and numerous other employees performing statistical 
duties but classified in different job series. A recent 
report by the U.S. Labor Department, reprinted in the 
New York Times National Recruitment Survey, predicts 
an increase of 35% in the demand for statisticians dur- 
ing the 1980's. This compares to a predicted increase 
of 9% for mathematicians and 30% for computer s:pe- 
cialists. 

Preparation for a career in statistics usually involves 
graduate study. An undergraduate major in statistics, 
computer science, or mathematical sciences is the rec- 
ommended preparation for graduate study in statistics. 
It is desirable for such a major to include solid courses in 
matrix theory and real analysis, in addition to courses 
in probability and statistics. Most statistics graduate 
programs require matrix algebra and real analysis for 
fully matriculated admission. Either one of the sample 
programs in the report of the General Mathematical 
Sciences Panel in the first chapter would be adequate 
preparation for graduate study in statistics. However, 
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major A is preferable to major B, and both should in- 
clude at least one follow-on elective in probability and 
statistics. 

In addition to  courses in the mathematical sciences, 
a student preparing for graduate study in statistics 
should: 

Study in depth some subject where statistics is an 
important tool (physics, chemistry, economics, psy- 
chology, ...). In fact, a double major should be 
considered. 
Take as many courses as possible which are designed 
to enhance his or her communication skills. Statis- 
ticians in industry and government are often called 
upon to provide written reports and critiques; con- 
sulting requires clear oral communications. 

A detailed discussion of preparation for a statistical 
career in industry can be found in [l] A similar report, 

[2], discusses preparation for a career i.n government. 
1. Preparing Statisticians for Careers in Industry: Re- 

port of the ASA Section on Statistical Education. 
The American Statistician, 1980, pp. 65-80. 

2. Preparing Statisticians for Careers; in Government: 
Report of the ASA Section on Statistics in Govern- 
ment. Paper presented at the Amserican Statistical 
Association meeting in August, 1980. 

Panel Members: 

RICHARD ALO, CHAIR, Lamar University. 
RICHARD KLEBER, St. Olaf College. 
DAVID MOORE, Purdue University. 
MIKE PERRY , Appalachian State University. 
TIM ROBERTSON, University of Iowa. 


