
Mathematical Sciences 

In 1981 the Committee on the Undergraduate Pro- 
gram i n  Mathematics (CUPM) published a major report 
entitled RECOMMENDATIONS FOR A GENERAL MATH- 
EMATICAL SCIENCES P R O G R A M .  This report comprises 
siz chapters that are reprinted here, with minor editing, 
as the first siz chapters of the present volume. Alan 
Tucker, Chairman of the CUPM Panel that wrote the 
1981 report, has written a new Preface to introduce this 
reprinting. 

1989 Preface 

In the eight years since the CUPM Recommendations 
on a General Mathematical Science Program appeared, 
issues in mathematics curriculum, such as calculus re- 
form and discrete mathematics, have become hot topics 
in the mathematics community and have even received 
extensive coverage in the popular press. The CUPM 
Panel on a General Mathematical Sciences Program had 
the luxury of working in comparative anonymity, al- 
though ten panel discussions at national and regional 
mathematics meetings gave the panel some professional 
visibility. The Panel’s basic goal was to  give long-term, 
general objectives for undergraduate training in math- 
emat ics. 

The 1960’s and 1970’s had seen a variety of spe- 
cialized appeals made to  college students interested in 
mathematics. For example, the discipline of computer 
science emerged as an exciting career for mathematics 
students. The earliest CUPM recommendations for the 
mathematics major were aimed at preparing students 
for doctoral work in mathematics. By the late 1970’~~ 
there was a sense that the mathematics major had lost 
its way, with upper-division enrollments in traditional 
core courses like analysis and number theory down by 
60% from their levels five years earlier and with indus- 
trial employers showing little interest in hiring mathe- 
matics majors. 

To put these recent events in perspective, the Panel 
obtained a historical briefing from Bill Duren (the 
founding chairman of CUPM). He recounted over a cen- 
tury of swings of the pendulum between the theoretical 
and the practical in American collegiate mathematics 
education, and between training for careers of the fu- 
ture and training in classical, old-fashioned methods. 

The Mathematical Sciences Panel sought to  find 
a common ground for the mathematics major which 

taught abstraction and application, emerging new prob- 
lem areas and time-tested old ones. The Panel sought 
to  persuade mathematicians that the curriculum in the 
mathematics major should be shared among the various 
intellectual and societal constituencies of mathematics. 
The challenge was to  be diverse without being superfi- 
cial. 

The most concrete consequence of the Panel’s work 
was its name, Panel on a General Mathematical Sci- 
ences Program. It asked that the mathematics major 
be renamed the mathematical sciences major-a change 
explicitly adopted by hundreds of colleges and univer- 
sities and implicitly adopted by the vast majority of 
institutions. The Panel recommended that first courses 
in most subjects should have a good dose of motivating 
applications, particularly linear algebra and statistics, 
and that one advanced course should have a mathemat- 
ical modeling project. This recommendation also seems 
to  have wide acceptance. There were several panel rec- 
ommendations that reflected trends already occurring 
but being resisted by some mathematicians: requiring 
an introductory course in computer science; not requir- 
ing linear algebra as a prerequisite for inultivariable cal- 
culus; encouraging weaker students to  delay core ab- 
stract courses until the senior year; and not requiring 
every mathematics major to take courses in real analysis 
and abstract algebra (i.e., other mathematics courses a t  
comparable levels of abstraction could1 be substituted). 

Although it was unhappy with calcxlus, the Mathe- 
matical Sciences Panel consciously avoided recommend- 
ing changes in calculus for fear that  the inevitable con- 
troversy and the complexity of such an undertaking 
would undermine acceptance of its basic recommenda- 
tions about the structure of a mathematics major. The 
Panel touched only lightly on the issue of discrete ver- 
sus continuous mathematics, recommending exposure 
to  “more combinatorially-oriented mathematics associ- 
ated with computer and decision sciences” (Tony Ral- 
ston’s provocative essays about discrete mathematics 
had not yet appeared). 

It was gratifying to  the Mathematical Sciences Panel 
that its report was well-accepted: all two-thousand 
copies printed have been sold (another two-thousand 
copies had been sent gratis to  department heads). In re- 
viewing the report for this reprinting, the only changes 
have been to add a few additional references On the 
other hand, there was one panel suggestion that has 
been ignored thus far and which merits consideration. 
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It concerns the “modest” version of abstract algebra 
(in Section 111) in which time would be spent sensitiz- 
ing students to  recognize how algebraic systems arise 
naturally in many situations in other areas of mathe- 
matics and outside mathematics (to keep algebra alive 
in their minds after they leave college). 

ALAN TUCKER 
SUNY at  Stony Brook 
March, 1989 

1981 Preface 

This report of the CUPM Panel on a General Mathe- 
matical Sciences Program (MSP) presents recommenda- 
tions for a mathematical sciences major. The panel has 
concentrated its efforts on general curricular themes and 
guiding pedagogical principles for a mathematical sci- 
ences major. It has tried to  frame its recommendations 
in general terms that will permit a variety of implemen- 
tations, tailored to  the needs of individual institutions. 
A prime objective of the original 1960’s CUPM cur- 
riculum recommendations for upper-level mathematics 
courses was easing the trauma of a student’s first year of 
graduate study in mathematics. This report refocuses 
the upper-level courses on the traditional objectives of 
general training in mathematical reasoning and mas- 
tery of mathematical tools needed for a life-long series 
of different jobs and continuing education. 

The MSP panel has tried to avoid highly innovative 
approaches to  the mathematics curriculum. The em- 
phasis, instead, has been on using historically rooted 
principles to  organize and unify the mathematical sci- 
ences curriculum. The MSP panel believes that the 
primary goal of a mathematical sciences major should 
be to develop rigorous mathematical reasoning. The 
word ‘rigorous’ is used here in the sense of ‘intellec- 
tually demanding’ and ‘in-depth.’ Such reasoning is 
taught through a combination of problem solving and 
abstract theory. Most topics should initially be devel- 
oped with a problem-solving approach. When theory is 
introduced, it usually should be theory for a purpose, 
theory to  simplify, unify, and explain questions of inter- 
est to  the students. 

CUPM now believes that the undergraduate major 
offered by a mathematics department at most Ameri- 
can colleges and universities should be called a Mathe- 
matical Sciences major. Enrollment data show that for 
several years less than half the courses, after calculus, in 
a typical mathematics major have been in pure math- 
ematics. Furthermore, applied mathematics, probabil- 
ity and statistics, computer science, and operations re- 

search are important subjects which should be incorpo- 
rated in undergraduate training in the general area of 
mathematics. 

Computer science has become such a large, multi- 
faceted field, with ties to  engineering and decision sci- 
ences, that it no longer can be categorized as a math- 
ematical science (at the National Science Foundation, 
computer science and mathematical sciences are dif- 
ferent research categories). A mathematical sciences 
major must involve coursework in computer science be- 
cause of the usefulness of computing and because of 
computer science’s close ties to mathematics. Under- 
graduate majors in mathematical sciences and in com- 
puter science should complement each other. 

The new course recommendations presented in this 
report do not, in most instances, replace past CUPM 
syllabi. They describe different approaches to  courses; 
for example, a one-semester combined probability and 
statistics course, or a multivariate calculus course with- 
out a linear algebra prerequisite. 

The work of the CUPM Panel on a General Math- 
ematical Sciences Program was supported by a grant 
from the Sloan Foundation. The chairmen of CUPM 
during this project, Donald Bushaw and William Lu- 
cas, deserve special thanks for their assistance. 

For information about other CUPM documents 
and related MAA mathematics education publications, 
write to: Director of Publications, The Mathematical 
Association of America, 1529 Eighteenth Street, N.W., 
Washington, D.C. 20036. 

ALAN TUCKER 
SUNY at Stony Brook 

Panel Background 

The CUPM Panel on a General Mathematical Sci- 
ences Program (MSP) was constituted in June, 1977 a t  
a CUPM conference in Berkeley. CUPM members de- 
cided that a major re-examination of the mathematics 
major was needed. The CUPM model for the math- 
ematics major contained in the 1965 CUPM reports 
on Pregraduate Training in Mathematics and a Gen- 
eral Curriculum in Mathematics in Colleges (revised in 
1972) was felt to be out of date. Following a six-month 
study, MSP reported to  CUPM that the CUPM mathe- 
matics major curriculum should be substantially revised 
and broadened to  define a mathematical sciences major. 
MSP was charged then with developing mathematical 
sciences recommendations. 

Five subpanels were created to  develop course rec- 
ommendations in: 
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The calculus sequence, 
Computer science, 
Modeling and operations research, 
Statistics, and 
Upper-level core mathematics. 

The MSP project has had the cooperation of curriculum 
groups in the American Statistical Association, the As- 
sociation for Computing Machinery, the Operations Re- 
search Society of America, and the Society for Industrial 
and Applied Mathematics. Graduate programs in the 
subjects covered by those societies draw heavily on un- 
dergraduate mathematics students, and except for com- 
puter science, undergraduate courses in these subjects 
are usually taught by mathematicians. Hence these cur- 
riculum groups had a major interest in the design of a 
mathematical sciences major. 

The MSP panel coordinated its work with the Na- 
tional Research Council’s Panel on Training in Applied 
Mathematics (chaired by P. Hilton, a member of MSP). 
The Hilton panel had a much broader mandate than 
the MSP panel. Its report addresses the unification 
of the mathematical sciences, the attitudes of math- 
ematicians, academic-industrial linkages, and society’s 
image of the mathematical sciences, as well as curric- 
ula. The Hilton report presented a limited number 
of general curriculum principles with the expectation 
that the MSP panel would develop fuller curriculum 
recommendations. The MSP panel recommendations 
have incorporated these principles (although the Hilton 
panel’s stress on differential equations has been dimin- 
ished). The MSP panel strongly endorses the Hilton 
report’s emphasis on the importance within mathemat- 
ics departments of proper attitudes towards the uses 
and users of mathematics and of a unified view that 
respects the content and teaching of pure and applied 
mathematics equally. 

While CUPM and the Hilton panel have been rec- 
ommending changes in the collegiate mathematics pro- 
gram, the National Council of Teachers of Mathemat- 
ics has been assessing priorities in school mathematics. 
The 1980 NCTM booklet, A n  Agenda for Action, rec- 
ommends “that problem solving be the focus of school 
mathematics in the 1980s . . . that  basic skills in math- 
ematics be defined to  encompass more than computa- 
tional facility.” Recent nation-wide mathematics tests 
administered to  students in several grades showed uni- 
formly poor performance on questions of a problem 
solving or application nature. Inevitably these mathe- 
matical weaknesses will become more of a problem with 
college students. 

The tentative MSP ideas for curriculum revision were 
discussed by panel members at sectional and national 

MAA meetings, a t  the PRIME 80 Conference, and indi- 
vidually with dozens of mathematics department chair- 
persons. The helpful criticisms received on these occa- 
sions played a vital role in shaping the panel’s thinking. 
It should be noted that several people: warned that a 
mathematical sciences major was unworkable because 
of the diversity of techniques and modes of reasoning 
in the mathematical sciences today. Others stated that 
student course preferences had already “redefined” the 
mathematics major along the lines being proposed by 
the MSP panel. 

Curriculum Background 
Many students today start mathematics in college at  

a lower level and yet have specific (but uninformed) ca- 
reer goals that require a broad scope of new topics of 
varying mathematical sophistication. Student changes 
are reflected in recent upper-level enrollment shifts and 
the explosion of new theory and applications in all 
the mathematical sciences. Uncertainties in curricu- 
lum produced by these developments have led the MSP 
panel to look for guidance from past CUPM curricu- 
lum development experiences and, farther back, from 
the traditional goals of the mathematics major before 
CUPM’s creation. No matter how great, the advances in 
the past generation, the traditional intellectual objec- 
tives of training in mathematics, defined over scores of 
years, should be the basis of any mathematical sciences 
program. 

Until the 19509, mathematics departments were pri- 
marily service departments, teaching necessary skills to 
science and engineering students and teaching mathe- 
matics to most students solely for its liberal-arts role as 
a valuable intellectual training of the mind. The average 
student majoring in mathematics at a better college in 
the 1930s took courses in trigonometry, analytic geome- 
try, and college algebra (including calciulus preparatory 
work on series and limits) in the freshman year followed 
by two years of calculus. While this program may today 
seem to have unnecessarily delayed calcdus, and subse- 
quent courses based on calculus, it did provide students 
with a background that permitted calculus to be taught 
in a more rigorous (i.e., more demanding) fashion than 
it is today. 

The mathematics major was filled out with five or 
six electives in subjects such as differential equations 
(a second course), projective geometry, theory of equa- 
tions, vector analysis, mathematics of finance, history of 
mathematics, probability and statistics, complex anal- 
ysis, and advanced calculus. Most mathematics majors 
also took a substantial amount of physics. Training of 
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secondary school mathematics teachers rarely included 
more than a year of calculus. In the early 19508, twenty 
years later, the situation had changed only a little; top 
schools did now offer modern algebra and abstract anal- 
ysis. 

In 1953, amid reports of widespread dissatisfac- 
tion with the undergraduate program, the Mathemati- 
cal Association of America formed the Committee on 
Undergraduate Program (CUP, later to be renamed 
CUPM). CUPM concentrated initially on a unified in- 
troductory mathematics sequence Universal Mathemat- 
ics, consisting of a first semester analysis/college alge- 
bra course (finishing with some calculus) followed by a 
semester of “mathematics of sets” (discrete mathemat- 
ics). CUPM hoped its Universal Mathematics would 
“halt the pessimistic retreat to remedial mathematics 
. . . (and) . . . modernize and upgrade the curriculum.” 

The first comprehensive curriculum report of CUPM, 
entitled Pregraduate Training for Research Mathemati- 
cians (1963), outlined a model program designed to pre- 
pare outstanding undergraduates for Ph.D. studies in 
mathematics. Emphasis on Ph.D. preparation repre- 
sented a major departure from the traditional mathe- 
matics program and was the source of continuing con- 
troversy. A more standard mathematics major curricu- 
lum was published in 1965 (revised in 1972), but many 
colleges also found it to be too ambitious for their stu- 
dents. 

For a fuller history of CUPM, see the article of W. 
Duren (founder of CUPM), “CUPM, The History of an 
Idea,” Amer. Math. Monthly 74 (1967), pp. 22-35. 

Current Issues 
In 1970, 23,000 mathematics majors were graduated. 

The numbers of Bachelors, Masters, and Doctoral grad- 
uates in mathematics had been doubling about every six 
years since the late 1950s. The 1970 CBMS estimate for 
the number of Bachelors graduates in mathematics in 
1975 was 50,000, but by the late 1970s only 12,000 were 
graduating annually. Enrollments in many upper-level 
pure mathematics courses declined even more dramat- 
ically in the 1970s as students turned to applied and 
computer-related courses. 

Yet while the number of mathematics majors is de- 
creasing, the demand for broadly-trained mathemat- 
ics graduates is increasing in government and indus- 
try. Mathematical problems inherent in projects to 
optimize the use of scarce resources and, more gener- 
ally, to make industry and government operations more 
efficient guarantee a strong future demand for mathe- 
maticians. These problems require people who, fore- 

most, are trained in disciplined logical reasoning and, 
secondarily, are versed in basic techniques and models of 
the mathematical sciences. In Warren Weaver’s words, 
these are problems of “organized complexity” as well as 
well-structured applied mathematics of the physical sci- 
ences. If mathematics departments do not train these 
quantitative problem-solvers, then departments in en- 
gineering and decision sciences will. 

The unprecedented growth of computer science as 
a major new college subject parallels the theoretical 
growth of the discipline and its ever-expanding im- 
pact on business and day-to-day living. The number of 
computer science majors now substantially exceeds the 
number of mathematics majors at most schools offering 
programs in both subjects. However, computer science 
has not “taken” students from mathematics, any more 
than science and engineering take students from mathe- 
matics. Rather, computers have generated the need for 
more quantitative problem-solvers, as noted above. 

The shortage of secondary school mathematics teach- 
ers nation wide has become worse than ever before. 
This shortage appears to be due in large measure to 
the greater attractiveness of computing careers to col- 
lege mathematics students (indeed high-paying com- 
puter jobs are currently luring many teachers out of the 
classroom). Although the training of future teachers 
should include course work in computing and applica- 
tions, such course work heightens the probability that 
these students will switch to careers in computing. 

On another front, pre-calculus enrollments have 
soared as the mathematical skills of incoming freshmen 
have been declining (a problem that concerned CUP in 
its first year). The mathematics curriculum may soon 
need to allow for majors who do not begin calculus until 
their sophomore year, as was common a generation ago. 

At universities, the decline in graduate enrollments 
has frequently over-shadowed the decline in undergrad- 
uate majors. Faced with heavy precalculus workloads, 
shrinking graduate programs, and competition from 
other mathematical sciences departments, university 
mathematics departments appear less able to broaden 
and restructure the mathematics major than most 
liberal-arts college mathematics departments. Many 
university mathematicians prefer to retain their current 
pure mathematics major for a small number of talented 
students. 

There are also several encouraging developments. A 
natural evolution in the mathematics major is occurring 
at many schools. Students and faculty have developed 
an informal “contract” for a major that includes tradi- 
tional core courses in algebra and analysis along with 
electives weighted in computing and applied mathemat- 
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ics (a formal "contract" major at one school is discussed 
below). 

Another important development is the emphasis on 
sys tem design, as opposed to mathematical computa- 
tion, in current computer science curricula. The Associ- 
ation for Computing Machinery Curriculum 78 Report 
delegates the responsibility for teaching numerical anal- 
ysis, discrete structures, and computational modeling 
to mathematics departments. This ACM curriculum 
implicitly encourages students interested in computer- 
based mathematical problem solving to be mathemat- 
ical sciences majors. The MSP panel has been careful 
to coordinate its work with computer science curricu- 
lum groups in order t o  minimize potential conflicts and 
maximize compatibility between computer science and 
mathematical sciences programs. 

Curricular Principles 

The goal of this panel was to produce a flexible set 
of recommendations for a mathematical sciences ma- 
jor, a major with a broad, historically rooted founda- 
tion for dealing with current and future changes in the 
mathematical sciences. The panel sought a unifying 
philosophy for diverse course work in analysis, algebra, 
computer science, applied mathematics, statistics, and 
operations research. 

Program Philosophy 

I. The curriculum should have a primary goal 
of developing attitudes of mind and analyti- 
cal skills required for efficient use and under- 
standing of mathematics. The development of 
rigorous mathematical reasoning and abstrac- 
tion from the particular to the general are two 
themes that should unify the curriculum. 

11. The mathematical sciences curriculum should 
be designed around the abilities and academic 
needs of the average mathematical sciences stu- 
dent (with supplementary work to attract and 
challenge talented students). 

111. A mathematical sciences program should use 
interactive classroom teaching to involve stu- 
dents actively in the development of new ma- 
terial. Whenever possible, the teacher should 
guide students to discover new mathematics for 
themselves rather than present students with 
concisely sculptured theories. 

IV. Applications should be used to illustrate and 
motivate material in abstract and applied 
courses. The development of most topics should 

involve an interplay of applications, mathemati- 
cal problem-solving, and theory. Theory should 
be seen as useful and enlightening for all math- 
ematical sciences. 

V. First courses in a subject should be designed to 
appeal to as broad an audience as is academ- 
ically reasonable. Many mat:hematics majors 
do not enter college planning to be mathemat- 
ics majors, but rather are attracted by begin- 
ning mathematics courses. Broad introductory 
courses are important for a mathematical sci- 
ences minor. 

Course Work 

VI. The first two years of the curriculum should 
be broadened to cover more than the tradi- 
tional four semesters of calculus-linear algebra- 
differential equations. Calculus courses should 
include more numerical methods and non- 
physical-sciences applications. Also, other 
mathematical sciences courses, such as com- 
puter science and applied probarbility and statis- 
tics, should be an integral part of the first two 
years of study. 

VII. All mathematical sciences students should take 
a sequence of two upper-division courses leading 
to the study of some subject(s) in depth. Rigor- 
ous, proof-like arguments are used throughout 
the mathematical sciences, and so all students 
should have some proof-orienled course work. 
Real analysis or algebra are natural choices 
but need not be the only possibilities. Proofs 
and abstraction can equally well be developed 
through other courses such as applied algebra, 
differential equations, probability, or combina- 
torics. 

VIII. Every mathematical sciences student should 
have some course work in the less theoretically 
structured, more combinatorially oriented math- 
ematics associated with computer and decision 
sciences. 

IX. Students should have an opportunity to un- 
dertake "real-world" mathematical modeling 
projects, either as term projects in an opera- 
tions research or modeling course, as indepen- 
dent study, or as an internship in industry. 

X. Students should have a minor in a discipline us- 
ing mathematics, such as physics, computer sci- 
ence, or economics. In addition, there should be 
sensible breadth in physical and social sciences. 
For example, a student interested in statistics 
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might minor in psychology but also take begin- 
ning courses in, say, economics or engineering 

might be: 

(heavy users of statistics). 
statiltics Applied / ] ‘ c u y v  Computer T i n g  

Probability Theory < Advanced fu\ ,Equ/ Differential 
Numerical Analysis 

REAL ANALYSIS 

Building Mathematical Maturity 

As noted in Principle I, a major in mathematical sci- 
ences should emphasize general mathematical reasoning 
as much as mastery of various subject matter. Implicit 
in this principle is that less material would be covered 
in many courses but that students would be expected to 
demonstrate a better understanding of what is taught, 
e.g., by solving problems that require careful mathe- 
matical analysis. 

This mathematical sciences curriculum would model 
the historical evolution of mathematical subjects: some 
problems are introduced, formulas and techniques are 
developed for solving problems (usually with heuristic 
explanations), then common aspects of the problems 
are examined and abstracted with the purpose of bet- 
ter understanding “what is really going on.” The dif- 
ference in this scheme between beginning calculus and 
upper-division probability theory would be primarily a 
matter of the difficulty of the problems and techniques 
and the speed with which the material is covered and 
generalized, i.e., a matter of the mathematical matu- 
rity of the audience. In the course of two or three years 
of such course work, there would be a steady increase 
in sophistication of the material and more importantly, 
an increase in the student’s ability to learn and orga- 
nize the ideas of a new mathematical subject. Students 
should be able to read and learn mathematics on their 
own from texts. The MSP panel feels that such matu- 
rity is a function of how a subject is learned as much as 
what is learned. 

All courses should have some proofs in class and, as 
the maturity of students increases, occasional proofs as 
homework exercises. In particular, students should ac- 
quire facility with induction arguments, a basic method 
of proof in the mathematical sciences. After review- 
ing performances of current students and programs of 
mathematics students 30 years ago, the MSP panel has 
concluded that many able students do not now have, 
nor were they previously expected to have, the mathe- 
matical maturity to take theoretical courses before their 
senior year. On the other hand, by the senior year, 
all students should be ready for some proof-oriented 
courses that show the power of mathematical abstrac- 
tion in analyzing concepts that underlie a variety of 
concrete problems. For example, part of a flowchart 
of courses leading to  a senior-year real analysis course 

Core Requirements 

The panel has found the question of whether to re- 
quire courses in algebra and analysis its most contro- 
versial problem. In light of the strongly differing opin- 
ions received on this subject, the MSP panel is making 
only a minimal recommendation (Principle VII) that it 
feels is reasonable for all students. Possible two course 
sequences besides a year of analysis or of algebra are: 
analysis and proof-oriented probability theory, analysis 
and differential equations, abstract algebra and (proof- 
oriented) combinatorics, applied algebra and theory of 
computation, or analysis and a topics-in-analysis semi- 
nar. While not a sequence, one course in analysis and 
one course in algebra also fulfill the spirit of this require- 
ment. Some departments will want to make stronger 
requirements. The issue of theory requirements is dis- 
cussed more fully below. 

Students should not be required to study a subject 
with an approach whose rationale depends on material 
in later courses nor should they be required to memorize 
(blindly) proofs or formulas. Some upper-level elective 
courses should always be taught as mathematics-for-its- 
own-sake, but an instructor should be very careful not 
to skip the historical motivation and application of a 
subject in order to delve further into its modern theory. 

The recommendation for interactive teaching (Prin- 
ciple 111) seeks to encourage student participation in 
developing new mathematical ideas. It constrains an 
instructor to teach at a level that students can reason- 
ably follow. Interactive teaching implicitly says that 
mathematics is learned by actively doing mathemat- 
ics, not by passively studying lecture notes and mim- 
icking methods in a book. Without needlessly slowing 
progress in class, an instructor should discuss how one 
can learn much from wrong approaches suggested by 
students. New mathematical theories are not divined 
with textbook-like compact proofs but rather involve a 
long train of trial-and-error creativity. 

Henry Pollak expressed this need in the Conference 
Board of Mathematical Sciences book, The Role of Az- 
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iomatics and Problem Solving in Mathematics (Ginn, 
1966): 

A carefully organized course in mathematics is 
sometimes too muchlike a hiking trip in the mountains 
that never leaves the well-constructed trails. The tour 
manages to visit a steady sequence of the high spots 
in the natural scenery. It carefully avoids all false 
starts, dead ends and impossible barriers and arrives 
by five o’clock every afternoon at a well-stocked cabin. 
. . .However, you miss the excitement of occasionally 
camping out or helping to find a trail and of making 
your way cross-country with only a good intuition and 
a compass as a guide. “Cross country” mathematics 
is a necessary ingredient of a good education. 

Further details about the course work recommenda- 
tions in Principles VI, VIII, and IX appear in later 
chapters of this report. Discussion of courses in dis- 
crete methods, applied algebra, and numerical analysis 
appears in the last section of this chapter. 

Teaching Mat hematical Reasoning 
Because a mathematical sciences major must include 

a broader range of courses than a standard (pure) math- 
ematics major, many mathematicians have expressed 
concern that it will be harder to  teach the average 
mathematics student rigorous mathematical reasoning 
in a mathematical sciences major. They believe that 
the major will develop problem-solving skills but that 
without more abstract pure mathematics, students will 
never develop a true sense of rigorous mathematical 
reasoning. The MSP panel thinks that a mathemati- 
cal sciences major with a strong emphasis on problem- 
solving is in keeping with time-tested ways of developing 
“mathematical reasoning.” The question of whether to  
require “core” pure mathematics courses, such as ab- 
stract algebra and real analysis, in any mathematical 
sciences major is discussed in the next section. 

Historically (before 1940), the main thrust of the 
mathematics major a t  most colleges was problem- 
solving. Most courses in the major could be classed 
as mathematics for the physical sciences: trigonometry, 
analytic geometry, calculus (first-year and advanced), 
differential equations, and vector analysis. Proofs in 
advanced calculus were symbolic computations. Proofs 
in number theory were, and still are, usually combi- 
natorial problems. The one abstract “pure” course in 
the curriculum was logic. A “rigorous” course did not 
mean an abstract course, “mathematics done right.” A 
rigorous course used to  mean a demanding, more in- 
depth treatment tbat required more skill and ingenuity 
from the student. The past curriculum surely had some 
faults, but its problem-solving and close ties to physics 

came from traditions that go back to  the roots of math- 
ematics. 

While problem solving may traditionally be the pri- 
mary way of teaching mathematical reasoning to un- 
dergraduates, the complexity and breadth of modern 
mathematics and mathematical scienceis require theory 
to help organize and simplify learning. Rigorous prob- 
lem solving should lead students to  appreciate theory 
and formal proofs. In a mathematical sciences major, 
theory should be primarily theory for a purpose, theory 
born from necessity (of course, this is also the historical 
motivation of most theory). Students may find theory 
difficult, but they should never find it irrelevant. 

Most courses in a mathematical sciences major 
should be case studies in the pedagogical paradigm 
of real world questions leading to  matlhematical prob- 
lem solving of increasing difficulty that forces some ab- 
straction and theory. As mentioned earlier, lower-level 
courses would concentrate on problem solving to build 
technical skills with occasional statements of needed 
theorems, while typical upper-level courses would con- 
centrate on problem solving to  build technical skills 
with occasional statements of needed ,theorems, while 
typical upper-level courses would emphasize the transi- 
tion from harder problem-solving to  theory. 

Instructors should resist pressures to  survey fully 
fields such as numerical analysis, probability, statistics, 
combinatorics, or operations research in the one cmrse 
a department may offer in the field. The instructor 
of such a course should give students a sense of the 
problems and modes of reasoning in the field, but after 
that, should be guided by the pedagogical model given 
above. All syllabi produced by MSP siubpanels should 
be viewed in this light. Most instructors will cover most 
of a suggested syllabus, but general pedagogical goals 
should always take precedence over the demands of in- 
dividual course syllabi. 

The MSP panel believes that for generations math- 
ematics instructors have used the paraldigm mentioned 
above to develop rigorous mathematical reasoning. Im- 
plicit in this paradigm is a unity of purpose between 
students and instructor. Most students like to start 
with concrete real-world examples as a basis for mathe- 
matical problem solving. They expect the problems to 
get harder and require more skill and insight. And they 
certainly appreciate theory when it  makes their work 
easier (although understanding formal proofs of useful 
theory requires maturity). Interactive t,eaching also be- 
comes natural: students are interested in participating 
in a class that  is developing a subject in a way that they 
can appreciate. 
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How Much Theory? 

This section summarizes arguments for and against 
requiring upper-level analysis and algebra courses of all 
mathematical sciences majors, and why the MSP panel 
made its "compromise" decision. 

Expecting controversy on several issues, the MSP 
panel organized sessions a t  national and regional MAA 
meetings to get input from the mathematics community. 
The main area of contention was how many courses to  
require in specific areas. The panel heard complaints 
that some areas were being neglected or that only one 
course in a certain area would be so superficial as to be 
worse than no course. However, most constituencies 
came to accept the need for compromise recommen- 
dations of limited exposure to several areas with stu- 
dents left to  choose for themselves an area to  study in 
greater depth. On the other hand, one important issue 
emerged on which a compromise position seemed to an- 
tagonize at least as many people as it pleased. This was 
the question of whether to  require an analysis and/or 
an abstract algebra course and, more generally, how 
much proof-oriented course work should be required in 
a mathematical sciences major. 

In the early 1970'~~ a majority of mathematics pro- 
grams required a t  least these two upper-level "core 
mathematics" courses for all students. Recently, de- 
clining enrollments in these courses and student prefer- 
ence for more applied or computing courses have forced 
many departments either to relax this requirement or 
to introduce a new applied track which does not require 
these two courses. People favoring the requirement of 
analysis and algebra argue that: 

0 Not requiring them would speed an already dan- 
gerous deterioration in the intellectual basis of the 
mathematics major; 
A major without a t  least analysis and algebra would 
be a superficial potpourri of courses-a major of no 
real value to  anyone, e.g., graduate study in statis- 
tics requires analysis and (linear) algebra; 
One cannot understand "what mathematics is 
about" without these two courses-a major with- 
out these two courses simply should not be offered 
by a mathematics department. 

People in favor of not requiring analysis and algebra 

With a more applied emphasis the mathematical 
sciences major will attract more good students, 
whereas requiring these courses would mean no 
change (except for new applied electives) from the 
1960s type of mathematics major that today at- 
tracts only a marginal number of students; 

argue that: 

Analysis and algebra are fine for some students 
but demand a mathematical maturity that many 
other undergraduates lack-these students memo- 
rize proofs blindly to  pass examinations and never 
take the follow-on courses needed to  appreciate the 
structure and elegance of these subjects; and 
Proofs and abstraction can equally well be devel- 
oped through other courses such as applied algebra, 
probability, differential equations, or combinatorics. 

Mathematicians must face the reality of a general 
change in the attitude of college students towards math- 
ematics. The popularity of science and mathematics in 
the 1960s drew more of the brightest students to mathe- 
matics and also motivated all students to work harder a t  
mathematics in high school. So the average mathemat- 
ics student was capable of handling a more theoretical 
mathematics program. 

Today, mathematics appears to  be getting no more 
than its traditional (smaller) share of bright students, 
and high school study habits are less good. However, al- 
most all of today's mathematics students still find a few 
subjects, pure or applied, particularly interesting and 
want to  study this material in some depth. Also by the 
senior year, the MSP panel believes that mathematics 
majors do have the mathematical maturity to  appre- 
ciate, say, a moderately abstract real analysis course. 
Examples of new approaches to  teaching analysis and 
other core mathematics courses appear in subsequent 
chapters. 

Since there was agreement on the importance of some 
theoretical depth, the MSP panel proposed the compro- 
mise of Principle VII, recommending "a sequence of two 
upper-division courses leading to  the study of some sub- 
ject in depth." Because of the lack of consensus on the 
analysis-algebra question, the MSP panel expects this 
issue to  be debated and modified at individual institu- 
tions. The faculty should not require courses that most 
students strongly dislike, nor should faculty shy away 
from any theory requirements for fear of losing majors. 
The faculty rather must motivate students to appreciate 
the value of some theoretical course work. 

Sample Majors 

This section presents two 12 semester-course math- 
ematical sciences majors. Many other sample majors 
could be given. The MSP panel believes that most ma- 
jors should be a "convexcombination" of the two majors 
given here. Major A contains much of a standard math- 
ematics major, while Major B is a broader program de- 
signed for students interested in problem solving. Both 
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majors should be accompanied by a minor in a related 
subject. 

The common core of all majors would be three 
semesters of calculus, one course in linear algebra, one 
course in computer science plus either a second com- 
puter course or extensive use of computing in several 
other courses, one course in probability and statistics, 
the equivalent of a course in discrete methods, modeling 
experience, and two theoretical courses of continuing 
depth. 

Mathematical Sciences Major A 
Three semesters of calculus 

* Linear algebra 
Probability and statistics 
Discrete methods 
Differential equations (with computing) 
Abstract algebra (one-half linear algebra) 
Two semesters of advanced calculus/real analysis 

* One course from the following set: abstract algebra 
(second course), applied algebra, geometry, topol- 
ogy, complex analysis, mathematical methods in 
physics 
Mathematical modeling 
Plus related course work: two semesters of computer 
science and two semesters of physics, to be taken in 
the first two years. 

Mathematical Sciences Major 

Three semesters of calculus 

B 

* Linear algebra 
Introduction to computer science 
Numerical analysis or second course in computer 

* Probability and statistics 
Advanced calculus or abstract algebra 
Discrete methods or differential equations 
Mathematical modeling or operations research 
Two electives continuing a subject with theoretical 

Subsequent sections in this report contain recom- 
mendations for discrete methods, applied algebra, and 
numerical analysis courses; for calculus, linear algebra, 
and differential equations courses; for upper-level core 
mathematics; for computer science; for modeling and 
operations research; and for probability and statistics. 

Major A is meant to  be close to the spirit of the major 
suggested by the NRC Panel on na in ing  in Applied 
Mathematics. That panel viewed differential equations 
as a unifying theme in the major. The proper mixture of 
Majors A and B (with appropriate electives) would also 

science 

depth. 

allow students to make statistics or operations research 
a unifying theme. 

The MSP panel feels that a set of courses similar to 
either of the above two majors, or a mixture thereof, 
would be reasonable for most mathematical sciences 
students. Some departments could offer several tracks 
for the mathematical sciences major. Special areas of 
faculty strength or student interest should obviously be 
reflected in the curriculum. 

Computing assignments should be used in most 
courses. When a liberal arts college mathematics de- 
partment teaches computer science, :such computing 
course work must frequently be counted within the col- 
lege limit of 12 or 13 courses permitted in one depart- 
ment. This regulation is assumed in Major B. However, 
the MSP panel believes that counting computer courses 
this way unfairly restricts a mathematical sciences ma- 
jor. One alternative is to list computer courses through 
the Computing Center. 

The one fundamental new course in these sample 
majors is discrete methods. As mentioned in Princi- 
ple VIII, the MSP panel feels that the central role of 
combinatorial reasoning in computer and decision sci- 
ences requires that some combinatorial problem solving 
should be taught in light of the three semesters devoted 
to analysis-related problem solving in the calculus se- 
quence. To this end, the modeling course should be 
heavily combinatorial if students have not taken a for- 
mal discrete methods course. 

Major A would be good preparation for graduate 
study in mathematics, applied mathematics, statistics, 
or operations research as well as many industrial posi- 
tions as a mathematical analyst or programmer. Ma- 
jor B would be good preparation for most industrial 
positions and for graduate study in applied mathemat- 
ics, statistics, or operations research (for such graduate 
study, both advanced calculus and upper-level linear al- 
gebra are usually needed). Representatives from many 
good mathematics graduate programs have stated that 
they would accept strong students with Major B-type 
training. 

Many computer science graduate programs would ac- 
cept Major B if the two electives were in computer sci- 
ence (although some other undergraduate computer sci- 
ence course deficiencies may still have to be made up in 
the first year of graduate study). In a computer science 
concentration within a mathematical sciences major, 
modern algebra might be replaced by applied algebra 
(see below for more details). Major B with an elec- 
tive in the theory of interest and a second probability- 
statistics course would be excellent preparation for ac- 
tuarial careers. Students interested in physical sciences- 
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related applied mathematics could modify either sam- 
ple major to get a good program. Both majors provide 
preparation for secondary school mathematics teach- 
ing, when supplemented with teaching methodology 
and practicum courses (theory courses must include al- 
gebra and geometry). 

Many smaller schools are being forced to offer a pro- 
gram in the spirit of Major B because almost all of 
B's courses have the needed enrollment base of students 
drawn from outside mathematics. 

The courses involving numerical analysis, probabil- 
ity and statistics, discrete methods, and modeling all 
can be designed as lower-level or upper-level courses. A 
large amount of flexibility is possible in "repackaging" 
the mathematical sciences material. For example, a 
Computational Models course (see the 1971 CUPM Re- 
port on Computational Mathematics) could cover some 
numerical analysis along with a little applied probabil- 
ity and statistics to be used in simulation modeling. 
A quarter system institution would have even greater 
flexibility in implementing this major. 

Mathematical Sciences Minor 
Just as a mathematical sciences major should be ac- 

companied by a minor in a related subject, so also do 
many other disciplines encourage their students to have 
a minor, or double major, in mathematics. At some col- 
leges, as many as half the mathematics majors have an- 
other major. Unfortunately, while mathematical meth- 
ods are playing an increasingly critical role in social 
and biological sciences and in business administration, 
students are generally ignorant or misinformed in high 
school and early college years about the importance of 
mathematics in these areas. 

The result is that many students either do not realize 
the value of further course work in the mathematical sci- 
ences until their junior or senior year, or their poor high 
school preparation forces them to  take a year of reme- 
dial mathematics before they can begin to learn any of 
the college mathematics they need. For such students, 
a traditional six to eight course minor in mathematics, 
starting with (at least) three semesters of calculus, is 
not feasible. When students in the social and biolog- 
ical sciences come to realize the value of mathematics 
in the junior year, they have frequently had only one 
semester of calculus, or perhaps a year of calculus with 
probability. 

The MSP panel believes that these students would be 
well served by a six to eight course mathematical sci- 
ences minor consisting of two semesters of calculus, one 
semester of (calculus-based) probability and statistics, 

one semester of introductory computer science, plus two 
to four electives chosen from courses such as numerical 
analysis, discrete methods, linear algebra, differential 
equations, linear programming, mathematical model- 
ing, and additional courses in calculus, probability or 
statistics, and computer science. Such a minor could 
easily be completed in three semesters. It has little 
prerequisite structure so that students can immediately 
pick courses based on personal interests rather than ini- 
tially "mark time" waiting to complete the calculus se- 
quence. 

Such a minor has several important points in its fa- 
vor. First of all, this minor is a collection of useful 
mathematical sciences courses which present concepts 
and techniques that arise frequently in the social and 
biological sciences. While this minor lacks the math- 
ematical depth of the traditional type of mathematics 
minor, it nonetheless introduces students to important 
modes of mathematical reasoning. Second, such a mi- 
nor will be attractive to students because it enhances 
employment opportunities and prospects for admission 
to graduate or professional schools. Third, after the 
exposure to interesting mathematical sciences topics, 
some students will want to study these subjects further 
in graduate school, either in a mathematical sciences 
graduate program or as electives in other graduate pro- 
grams. Fourth, this minor will bring more students into 
mathematical sciences courses, making it possible to of- 
fer these courses more frequently. Conversely, offering 
more mathematical sciences courses each semester will 
make a mathematical sciences minor, as well as the reg- 
ular mathematical sciences major, more attractive to 
students. In addition, when more students are taking 
mathematical sciences courses and finding out how use- 
ful mathematics is, the campus-wide student awareness 
of the value of mathematics will increase. 

Examples of Successful Programs 
Proper curriculum is the heart of a mathematical 

sciences program, but there are many non-academic as- 
pects that also must be considered. A wide variety of 
course offerings is not as important as the spirit with 
which the general program is offered. This section dis- 
cusses salient features of some successful mathematics 
programs. "Successful" means attracting a large num- 
ber of students into a program that develops rigorous 
mathematical thinking and also offers a spectrum of 
(well taught) courses in pure and applied mathemat- 
ics. Successful programs typically produce 5% to 8% of 
their college's graduates, although nation wide, mathe- 
matics majors constitute only about 1% of college grad- 
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uates. Faculty and student morale is uniformly high in 
these programs. As one would expect, teaching and re- 
lated student-oriented activities consume most of the 
faculty’s time in such successful programs, and there 
is little faculty research. The professors’ pride in good 
teaching and in the successes of their students leaves 
them with few regrets about not publishing. The set of 
programs mentioned here is only a sampling of success- 
ful programs that have come to the attention of this 
CUPM panel. More detailed information about these 
mathematics programs is available from individual col- 
leges. 

Saint Olaf College, a 2800-student liberal arts college 
in Northfield, Minnesota, has a contract mathematics 
major. Each mathematics student presents a proposed 
contract to  the Mathematics Department. The contract 
consists of at least nine courses (college regulations limit 
the maximum number of courses that can be taken in 
one department to  14). The department normally will 
not accept a contract without a t  least one upper-level 
applied and one upper-level pure mathematics course, 
a computing course or evidence of computing skills, 
and some sort of independent study (research program, 
problem-solving proseminar, colloquium participation, 
or work-study ). 

Frequently a student and an advisor will negotiate a 
proposed contract. For example, a faculty member will 
try to persuade a student interested in scientific com- 
puting and statistics that some real analysis and upper- 
level linear algebra should be included in the contract by 
showing that this material is needed for graduate study 
in applied areas, and in any case a liberal arts education 
entails a more broadly based mathematics major. Con- 
versely, a student proposing a pure mathematics con- 
tract would be confronted with arguments about not 
being able to appreciate theory without knowledge of 
its uses. In the end, the student and the faculty mem- 
ber understand and respect each other’s point of view. 

This understanding of each other’s interests natu- 
rally carries into the classroom. Also, the contract ne- 
gotiations “break the ice” and make students more at  
ease in talking to faculty (and encourage constructive 
criticism). The Mathematics Department offers minors 
in computing and statistics, but the attractiveness of 
a contract major in mathematics leads most students 
interested in these areas eventually to become mathe- 
matics majors. 

Lebanon Valley College, a small (1000-student) lib- 
eral arts college in Pennsylvania, has only five math- 
ematics faculty but its Department of Mathematical 
Sciences offers majors in Mathematics, Actuarial Sci- 

ence, Computer Science, and Operatioris Research. The 
course work in the mathematics graduate preparation 
track involves a problem seminar, Putnam team ses- 
sions, and formal and informal topics courses (because 
of the limited demand in this area). All mathematical 
sciences majors must take a rigorous 25 semester-hour 
core of calculus, differential equations, linear algebra, 
foundations, and computer science. Most courses are 
peppered with applications and computing assignments. 

The mathematics faculty are heavily involved in re- 
cruiting students by attending College Fairs and College 
Nights and by visiting regional high schools to explain 
to students and counselors the many diverse and at- 
tractive careers in the mathematical nciences, and the 
importance of mathematics in other professions. As a 
result of this effort, 10% of the incoming Lebanon Val- 
ley freshmen plan majors in the mathlematical sciences 
(the national average is 1%), and 7% of Lebanon Valley 
graduates are mathematical sciences majors. Many stu- 
dents are initially attracted by the major in actuarial 
science (an historically established profession) and then 
move into other areas of applied and pure mathematics, 
but this pattern may change with the newly established 
computer science major. 

Once the faculty have the “students’ attention,” they 
work the students hard. The students respond posi- 
tively to the demands of the faculty for three reasons. 
First, known rewards await those who do well in math- 
ematics (besides the obvious long-term rewards, the de- 
partment awards outstanding students with member- 
ship in various professional societies in the mathemat- 
ical sciences). Second, a personal sense of intellectual 
achievement is carefully nurtured starting in the fresh- 
man year with honors calculus for mathematics majors. 
Finally, as at  St. Olaf, a continuing (dialogue between 
students and faculty allows students l,o help shape the 
mathematics program. In fact, students interview can- 
didates for faculty positions and their irecommendations 
carry great weight. The department keeps in close touch 
with alumni by sending each one a personal letter every 
other year with news about the department and fellow 
alumni. 

Nearby Gettysburg College has a special vitality in 
its mathematics program that comes from an interdis- 
ciplinary emphasis. The department :has held joint de- 
partmental faculty meetings with each natural and so- 
cial science department at Gettysbyg to discuss com- 
mon curriculum and research interests. Several inter- 
disciplinary team-taught courses havc been developed, 
such as a course on symmetry taught jointly by a math- 
ematician and a chemist. An interdepartmental group 
organized two recent summer workshops in statistics 
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which drew faculty from eight departments. Mathe- 
matics faculty have audited a variety of basic and ad- 
vanced courses in related sciences to learn to  talk the 
language of mathematics users. Mathematics faculty 
bring this interdisciplinary point of view into every 
course they teach, giving interesting applications and 
showing, say, how a physicist would approach a certain 
problem. Needless to  say, a large number of mathemat- 
ics majors a t  Gettysburg are double majors. 

Frequently a separate computer science department 
with its own major spells disaster for the mathematics 
major a t  a college. But Potsdam State College (in the 
economically depressed northeast corner of New York) 
has possibly the greatest percentage of mathematics 
graduates of any public institution in the country-close 
to  lo%-despite competition from a popular computer 
science major. The most striking feature to  a visitor 
to  the Potsdam State Mathematics Department is the 
great enthusiasm among the students and the sense of 
pride students have in their ability to think mathemat- 
ically. (While it is hard to  measure objectively these 
students’ mathematical development, leading techno- 
logical companies, such as Bell Labs, IBM, and General 
Dynamics, annually hire several dozen Potsdam math- 
ematics graduates.) 

Classes have a limited amount of formal lectures. 
Most time is spent discussing work of the students. The 
emphasis on giving students a sense of achievement is 
due in large part to  experiences of the Potsdam chair- 
man when he taught in a Black southern institution. 
By instilling self confidence, he had helped able but ill- 
prepared students excel in calculus and even saw some 
go on to  good mathematics graduate programs. The de- 
partment has various awards for top students, a very ac- 
tive Pi Mu Epsilon chapter, publications about careers 
in mathematics and successes of former students, and 
a large student-alumni newsletter. Upper-class mathe- 
matics students are used to tutor (and encourage) be- 
ginning students. They also communicate their enthu- 
siasm about mathematics to  friends and teachers back 
home. As a result, half the incoming Potsdam freshmen 
sign up for calculus (although few departments require 
it). 

The computer science major a t  Potsdam State is 
viewed by the mathematics faculty as a great asset to  
the Mathematics Department. The computer science 
major helps attract good students to  Potsdam who of- 
ten decide to  switch to, or double major with, mathe- 
matics. Also the computer science program offers career 
skills and needed mathematical breadth. Numerical 
analysis, operations research, and modeling are taught 
in computer science (the Mathematics Department has 

had to limit severely their upper-level electives in or- 
der to  keep class size down and preserve small group 
seminars). 

As noted at the start of this section, the preced- 
ing mathematics programs represent only a small sam- 
pling of the excellent programs in this country. Sev- 
eral women’s colleges offer fine programs worth noting. 
For example, the Goucher College Mathematics Depart- 
ment has integrated computing in almost all courses and 
has a broad curriculum in pure and applied mathemat- 
ics; and the Mills College Mathematics Department has 
successfully promoted the critical role of mathematics 
for careers in science and engineering. The cornerstone 
of Ohio Wesleyan’s excellent mathematics program is 
an innovative calculus sequence (with computing, prob- 
ability, and diverse mathematical modeling). Georgia 
State University, an urban public institution with a 
highly vocational orientation, has a Mathematics De- 
partment that has broken out of the typical low-level 
service function mode to  offer a fine, well-populated 
mathematical sciences major. While research and grad- 
uate programs often dominate concerns about the un- 
dergraduate mathematics major at universities, math- 
ematics faculty at many universities work closely with 
undergraduate majors in excellent unified mathematical 
sciences programs. Three such institutions are Clemson 
University, Lamar University (Texas), and Rensselaer 
Polytechnical Institute. 

Most universities today have separate departments 
in computing and mathematical sciences. To counter 
this division, the University of Iowa and Oregon State 
University have developed unified inter-departmental 
mathematical sciences majors. The MSP panel strongly 
endorses such inter-departmental majors. At some uni- 
versities, most of the mathematical sciences, outside 
of pure mathematics, have been housed in one depart- 
ment. Although the MSP panel prefers a unified mathe- 
matical sciences major (ideally in one department), sev- 
eral of these non-pure mathematical sciences depart- 
ments have good undergraduate programs that may 
be of interest to  other institutions: the Mathemati- 
cal Sciences Department at Johns Hopkins University, 
the Mathematical Sciences Department at Rice Univer- 
sity, and the Department of Applied Mathematics and 
Statistics at the State University of New York a t  Stony 
Brook. 

Departmental Self-study and Publicity 

The MSP panel urges all mathematics departments 
to engage in serious self-study to  identify one or more 
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major themes to  emphasize in their mathematical sci- 
ences programs: an interdisciplinary focus in cooper- 
ation with other departments; an innovative calculus 
sequence (integrating computing, applications, etc.); a 
work-study program or other individualized learning 
experience; special strength in one area of the math- 
ematical sciences (pure or applied); or a track directed 
towards employment in a regional industry (such as 
aerospace, automative, insurance). Some colleges have 
successfully developed a multi-option major, but usu- 
ally such programs are the outgrowth of successful one- 
theme programs that slowly added new options (for ex- 
ample, the multiple-major mathematical sciences pro- 
gram at Lebanon Valley College, mentioned in the pre- 
ceding section, started with just an Actuarial Science 
option). The MSP panel’s advice is first to  do one thing 
well. 

A departmental emphasis should be consistent with 
the general educational purposes of the whole institu- 
tion and the academic interests of the high school gradu- 
ates who have historically gone to  that institution. It is 
very risky to  design a mathematical sciences program 
about a theme that the mathematics faculty find at- 
tractive and then to  try to  recruit a new group of high 
school students to  come to  the institution for this pro- 
gram. Note that a thematic emphasis does not mean 
that basic parts of the mathematical sciences program 
discussed earlier in this chapter can be neglected. 

Following a departmental self-study and implemen- 
tation of its recommendations for new courses or de- 
velopment of industrial work-study contacts, etc., it is 
next necessary to  publicize the mathematics depart- 
ment’s program with brochures and visits to regional 
high schools and College Fairs. Virtually all mathemat- 
ics departments with large programs (where mathemat- 
ical sciences majors constitute over 4% of the school’s 
graduates) have extensive publicity programs. Such 
publicity should emphasize the general usefulness of 
mathematics in the modern world, whether a student 
is a prospective mathematical sciences major or minor 
or an undecided liberal arts student. 

High school guidance counselors often do not realize 
that there are other attractive mathematics-related ca- 
reers outside straight computing. Counselors tend to  be 
afraid of mathematics because of their own personal dif- 
ficulties with the subject. Some counselors have been 
known to discourage students from taking more than 
the minimum required amount of high school mathe- 
matics with the warning that students risk getting poor 
grades in (hard) mathematics courses and thus hurting 
their chances of college admission. 

College faculty trying to  publicize the value of math- 

ematics and its study at their institution should seek the 
cooperation of local associations of the National Coun- 
cil of Teachers of Mathematics, which have long been 
working to  promote interest in mathematics in the high 
schools. 

New Course Descriptions 
Finite structures are used throughout the mathemat- 

ical sciences today. Two new basic courses about finite 
structures belong in the mathematical sciences curricu- 
lum, one addressing combinatorial aspects and one ad- 
dressing algebraic aspects. Another topic, numerical 
analysis, has become more important with the growth 
of computer science. This section describes a numeri- 
cal analysis course that is more applied and a t  a lower 
level than the previous CUPM numerical analysis rec- 
ommendations (Course 8 in the CUPM report A Gen- 
eral Curriculum for Mathematics in Colleges.) 

Discrete Methods Course 
This course introduces the basic techniques and 

modes of reasoning of combinatorial problem solving 
in the same spirit that calculus introduces continuous 
problem solving. The growing importance of computer 
science and mathematical sciences such as operations 
research that depend heavily on combinatorial methods 
justifies at least one semester of combinatorial problem 
solving to  balance calculus’ three semlesters of analysis 
problem solving. 

Unlike calculus, combinatorics is not largely re- 
ducible to  a limited set of formulas and operations. 
Combinatorial problems are solved primarily through 
a careful logical analysis of possibilities. Simple ad 
hoc models, often unique to  each different problem, are 
needed to  count or analyze the possiblle outcomes. This 
need to  constantly invent original solutions, different 
from class examples, is what makes the discrete meth- 
ods course so valuable for students. 

Like calculus, combinatorics is a subject which has a 
wide variety of applications. Many of them are related 
to  computers and to  operations research, but others re- 
late to  such diverse fields as genetics, organic chemistry, 
electrical engineering, political science, transportation, 
and health science. The basic discrete methods course 
should contain a variety of applicatiolns and use them 
both to  motivate topics and to  illustrate techniques. 

The course has an enumeration part and a graph 
theory part. These parts can be covered in either or- 
der. While texts traditionally do enumeration first, the 
graph material is more intuitive and hence it seems nat- 
ural to  do graph theory first (as suggested below). 
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With the right point-of-view, many combinatorial 
problems have quite simple solutions. However, the 
object of this course is not to show students simple 
answers. It is to teach students how to discover such 
simple answers (as well as not so simple answers). The 
means for achieving solutions are of more concern than 
the ends. Learning how to solve problems requires an 
interactive teaching style. I t  requires extensive discus- 
sion of the logical faults in wrong analyses as much as 
presenting correct analyses. 

Since the course should emphasize general combina- 
torial reasoning rather than techniques, a large degree 
of flexibility is possible in the choice of topics. The 
course outline given below contains many optional top- 
ics. Some of the core topics, such as the inclusion- 
exclusion formula, might also be skipped to allow the 
course to be tailored to the interests of students. 

COURSE OUTLINE 

I. Graph Theory 
A. Graphs as models. Stress many applications. 
B. Basic properties of graphs and digraphs. Chains, 

paths, and connectednesq isomorphism; pla- 
narity. 

C. Trees. Basic properties; applications in search- 
ing; breadth-first and depth-first search; span- 
ning trees and simple algorithms using spanning 
trees. Optional: branch and bound methods; 
tree-based analysis of sorting procedures. 

Chromatic number; coloring 
applications; map coloring. Optional: related 
graphical parameters such as independent num- 
bers. 

E. Eulerian and Hamiltonian circuits. Euler cir- 
cuit theorem and extensions; existence and non- 
existence of Hamiltonian circuits; applications 
to scheduling, coding, and genetics. 

D. Graph coloring. 

F. Optional topics: 
a. Tournaments 
b. Network flows and matching 
c. Intersection graphs 
d. Connectivity 
e. Coverings 
f. Graph-based games 

11. Combinatorics 
A. Motivating problems and applications. 
B. Elementary counting principles. Tree diagrams; 

sum and product role; solving problems that 
must be decomposed into several subcases. Op- 
tional: applications to complexity of computa- 
tion, coding, genetic codes. 

C. Permutations and combinations. Definitions 
and simple counting; sets and subsets; binomial 
coefficients; Pascal’s triangle; multinomial coef- 
ficients; elementary probability notions and ap- 
plications of counting. Optional: algorithms for 
enumerating arrangements and combinations; 
binomial identities; combinations with repeti- 
tion and distributions; constrained repetition; 
equivalence of distribution problems, graph ap- 
plications. 

D. Inclusion/ezclusion principle. Modeling with 
inclusion/exclusion; derangements; graph color- 
ing. Optional: rook polynomials. 

E. Recurrence relations. Recurrence relation mod- 
els; solution of homogeneous linear recurrence 
relations; Fibonacci numbers and their applica- 
tions. 

F. Optional topics: 
a. Generating functions 
b. Polya’s enumeration formula 
c. Experimental design 
d. Coding 

The preceding course outline is for either a one- 
semester or a two-quarter course. A two-quarter course 
has a natural structure, covering enumerative material 
in one quarter and graph theory plus designs in another 
quarter. There are several books available for part or 
all of the discrete methods course. It is anticipated that 
as this discrete methods course becomes more widely 
taught, many more books will become available and the 
exact nature of the syllabus will evolve. 

There are several obvious places where a computer 
can be used in this course: ways of representing graphs 
in a computer and performing simple tests (e.g., connec- 
tivity); asymptotic calculations in enumeration prob- 
lems; network flow algorithm; and algorithms for enu- 
merating permutations and combinations. The peda- 
gogical problem is that computer programming takes 
time away from problem-solving exercises, possibly too 
much time if a school’s computer operation runs in a 
batch processing mode. 

A more advanced second course in combinatorics 
may also be considered. This course can treat core top- 
ics in the discrete methods course in greater depth, and 
some of the optional topics. Other important topics are 
Ramsey theory, matroids, and graph algorithms. The 
course could concentrate on combinatorics or on graph 
theory, or could be a topics course which varies from 
year to year. Some of the texts listed below would be 
suitable for this second combinatorics course. 
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COMBINATORICS & GRAPH THEORY TEXTS 
1. Bogart, Kenneth, Introductory Combinatorics, Pit- 

2 .  Brualdi, Richard, Introductory Combinatorics, Else- 

3. Cohen, Daniel, Basic Techniques of Combinatorial 

4. Liu, C.L., Introduction to Combinatorial Mathemat- 

5. Roberts, Fred, Applied Combinatorics, Prentice- 

6. Tucker, Alan, Applied Combinatorics, J. Wiley lz 

GRAPH THEORY TEXTS 

man, Boston, 1983. 

vier-North Holland, New York, 1977. 

Theory, J. Wiley & Sons, New York, 1978. 

ics, McGraw Hill, New York, 1968. 

Hall, Englewood Cliffs, New Jers., 1984. 

Sons, New York, 1980. 

1. Bondy, J. and Murty, V.S.R., Graph Theory with 
Applications, American Elsevier, New York, 1976. 

2.  Chartrand, Gary, Graphs as Mathematical Models, 
Prindle, Weber, and Schmidt, Boston, 1977. 

3. Ore, Oystein, Graphs and Their Uses, Math. Assoc. 
of America, Washington, D.C., 1963. 

4. Roberts, Fred, Discrete Mathematical Models, Pren- 
tice-Hall, Englewood Cliffs, New Jersey, 1976. 

5. Trudeau, Robert, Dots and Lines, Kent State Press, 
Kent, Ohio, 1976. 

C o MB IN AT o RIC s TEXTS 
1. Berman, Gerald and Fryer, Kenneth, Introduction 

to Combinatorics, Academic Press, New York, 1969. 
2.  Eisen, Martin, Elementary Combinatorial Analysis, 

Gordon-Breach, New York, 1969. 
3. Vilenkin, N., Combinatorics, Academic Press, New 

York, 1971. 
4. Street, A. and Wallis, W., Combinatorial Theory: 

A n  Introduction, Charles Babbage, 1975. 

Applied Algebra Course 
(Editorial Note in 1989 reprinting: This course is 

now called Discrete Structures and is usually now 
taught a t  the freshman level. The course discussed here 
is more advanced and intended for the sophomore-junior 
level.) 

A traditional time for an applied algebra course is 
in the junior year-when students would be ready for a 
modern algebra course. However, as noted above, many 
students will not be ready for algebraic abstraction un- 
til senior year. The course builds on experiences in be- 
ginning computer science courses that have implicitly 
imparted to  students a sense of the underlying algebra 
of computer science structures, and formally presents 
topics like Boolean algebra, partial orders, finite-state 
machines, and formal languages that will be used in 

later computer science courses. At thle same time, this 
course can also be very rewarding to  regular mathe- 
matics majors who should appreciate ithe new algebraic 
structures such as formal languages and finite state ma- 
chines that are so different from the structures in the 
regular abstract algebra course. Substantial class time 
should be spent on proofs with special emphasis on in- 
duction arguments. This course is just as mathemati- 
cally sophisticated and capable of developing abstract 
reasoning as abstract algebra, but the topics stress set- 
relation systems rather than binary-operation systems. 
Indeed the abstract complexity of the basic structures 
is much greater in applied algebra, but this complexity 
precludes the construction of logical pyramids built of 
simple algebraic inferences common to many areas of 
abstract algebra. 

This course is an advanced version of the lower- 
division B3 Discrete Structures course in ACM Cur- 
riculum 68. The B3 course was the source of much 
dissatisfaction because it contained ii huge amount of 
material, and it required too great mathematical matu- 
rity for a lower-division course. The recent ACM Cur- 
riculum 78 recommends that the B3 course be treated 
as a more advanced course and that it, should be taught 
in mathematics departments rather than computer sci- 
ence departments. The B3 course was the subject of 
several papers a t  meetings of the ACM Special Inter- 
est Group in Computer Science Education (SIGCSE); 
see the February issues (Proceedings of SIGCSE annual 
meeting) of the SIGCSE Bulletin in 1973, 1974, 1975, 
1976. 

The B3 course contained both applied algebra and 
discrete methods. The MSP panel recommends that a 
separate full course be devoted to  discrete methods (see 
the discrete methods course description earlier in this 
Section). Because some computer science courses may 
devote a substantial amount of time introducing some 
of the topics in the above applied algebra syllabus, the 
exact content of this course will vary substantially from 
college to college. For this reason the syllabus outline 
was kept brief. At some colleges, applied algebra will 
still have to be combined with discrete methods in one 
course (the computer science major may not have the 
time for two separate courses). The applied algebra 
part of such a combined course would, in most cases, 
concentrate on topics 1, 2,  3, 4, 6 in the syllabus. Many 
of the discrete structures texts listed below cover both 
applied algebra and discrete methods. 

COURSE TOPICS 

A. Sets, binary relations, set functions, induction, basic 
graph terminology. 
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B. Partially ordered sets, order-preserving maps, weak 

C. Boolean algebra, relation to  switching circuits. 
D. Finite state machines, state diagrams, machine ho- 

E. Formal languages, context-free languages, recogni- 

F. Groups, semigroups, monoids, permutations and 

G. Modular arithmetic, Euclidean algorithm. 
H. Optional topics: linear machines, Turing machines 

and related automata; Polya’s enumeration theo- 
rem; finite fields, Latin squares and block design; 
computational complexity. 

orders. 

momorphism. 

tion by machine. 

sorting, representations by machines, group codes. 

APPLIED ALGEBRA TEXTS 

1. Dornhoff, Lawrence and Hohn, Frantz, Applied 
Modern Algebra, Macmillan, New York, 1978. 

2. Fisher, James, Application- Oriented Algebra, T. 
Crowell Publishers, New York, 1977. 

3. Johnsonbaugh, Richard, Discrete Mathematics, 
Macmillan, New York, 1984. 

4. Korfhage, Robert , Discrete Computational Struc- 
tures, Academic Press, New York, 1974. 

5. Liu, C.L., Elements of Discrete Mathematics, Mc- 
Graw Hill, New York, 1977. 

6. Preparata, Franco and Yeh, Robert, Introduction 
to Discrete Structures, Addison-Wesley, Reading, 
Mass., 1973. 

7. Prather, Robert, Discrete Mathematical Structures 
for Computer Sciences, Houghton Mifflin, Boston, 
1976. 

8. Stone, Harold, Discrete Mathematical Structures 
and Their Applications, Science Research Asso- 
ciates, Chicago, 1973. 

9. Tremblay, J. and Manohar, R., Discrete Mathemat- 
ical Structures with Applications in Computer Sci- 
ences, McGraw Hill, New York, 1975. 

Numerical Analysis Course 

In any elementary numerical analysis course a bal- 
ance must be maintained between the theoretical and 
the application portion of the subject. Normally, such 
a course is designed for sophomore and junior students 
in engineering, mathematics, science, and computer sci- 
ence. Students should be introduced to  a wide selection 
of numerical procedures. The emphasis should be more 
on demonstrations than on rigorous proofs (however, 
this is not meant to  slight necessary theoretical aspects 
of error analysis). At least one or two applied problems 
from each of the major topics should be included so that 

students have a good understanding of how the art of 
numerical analysis comes into play. 

The course outline below presents a good selection of 
topics for a one-semester course. Error analysis should 
be continuously discussed throughout the duration of 
the course so as to  stress the effectiveness and efficiency 
of the methods. Alternative methods should be con- 
trasted and compared from the standpoint of the com- 
putational effort required to  attain desired accuracy. 

An optional approach to  this course would emphasize 
a full discussion (with computer usage) of one procedure 
for each course topic (after the computer arithmetic in- 
troduction). A sample of five such procedures is: 
1. The Dekker-Brent algorithm (see UMAP module 

2. A good linear equation solver involving LU-de- 

3. Cubic spline interpolation. 
4. An adaptive quadrature code. 
5. The Runge-Kutta-Fehlberg code RKF4 with adap- 

Weekly assignments should include some computer 
usage; in total, four or five computer exercises for each 
major topic. Students should do computer work for 
larger applied programs in small groups. However, 
the concept of utilizing %armed" programs with mi- 
nor modifications should be stressed. Such an approach 
nicely brings out the strong interdependence between 
computers and numerical analysis yet does not over- 
emphasize the efforts necessary to  program a problem. 
An interactive computer system using video terminals 
is ideal for this course. Microcomputers and even hand- 
held calculators can also be used effectively. One or two 
applied homework problems from each of the main top- 
ics keep students aware of the balance that is necessary 
between the art and the science of numerical analysis. 
Prerequisites for this course should be a year of calculus 
including some basic elementary differential equations 
and a computer science course. 

For schools on a quarter system, two quarters should 
be a minimal requirement and the above material would 
be more than ample. One should spend the first quar- 
ter on numerical solutions of algebraic equations and 
systems of algebraic equations and the last quarter on 
the other topics. 

COURSE OUTLINE 

A. Computer arithmetic. Discretization and round-off 
error; nested multiplication. 

B. Solution of 4 single algebraic equation. Initial dis- 
cussion of convergence problems with emphasis on 
meaning of convergence and order of convergence; 

No. 264). 

composition. 

tive step determination. 



Newton’s method, Bairstow’s method; interpola- 
tion. 

C. Solution systems of equations. Elementary matrix 
algebra; Gaussian methods, LU decomposition, it- 
erative methods, matrix inversion; stability of algo- 
rithms (examples of unstable algorithms), errors in 
conditioned numbers. 

D. Interpolating polynomials. Lagrange interpolation 
to  demonstrate existence and uniqueness of interpo- 
lating polynomials and for calculation of truncation 
error terms; splines, least squares, inverse interpo- 
lation; truncation, inherent errors and their propa- 
gation. 

E. Numerical integration. Gaussian quadrature, 
method of undetermined coefficients, Romberg and 
Richardson extrapolation (for both integration and 
differentiation), Newton-Cotes formulas, interpolat- 
ing polynomials, local and global error analysis. 

F. Numerical solution of ordinary differential equa- 
tions. Both initial value and boundary value 
problems; Euler’s method, Taylor series method, 
Runge-Kutta, predictor-corrector methods, multi- 
step methods; convergence and accuracy criteria; 
systems of equations and higher order equations. 

If this course has an enrollment of under 25 students, 
non-standard testing can be considered, such as a take- 
home midterm. At the end of the term, instead of the 
traditional three hour examination, each student can 
write an expository paper exploring in greater depth 
one of the topics introduced in class or investigating 
a subject not included in the work of the course, ei- 
ther approach to include computational examples with 
analysis of errors. (Since most of the students will not 
have had previous experience in writing a paper, topics 
may be suggested by the instructor or must be approved 
if student devised; scheduled conferences and prelimi- 
nary critical reading of papers guard against disastrous 
attempts or procrastination.) Some examples of final 
projects are: spline approximations; relaxation meth- 

ods; method of undetermined coefficients in differen- 
tiation and integration; least squares approximations; 
parabolic (or elliptic or hyperbolic) partial differential 
equations; numerical methods for multi-dimensional in- 
tegrals; multi-step predictor-corrector methods. 

NUMERICAL ANALYSIS TEXTS 
1. Cheney, Ward and Kincaid, David, Numerical 

Mathematics and Computing, Brooks/Cole, Mon- 
terey, Calif., 1980. 

2. Conte, S. and DeBoor, C., Elemmtary Numerical 
Analysis, McGraw Hill, New York, 1978. 

3. Gerald, Curtis F., Applied Numerical Analysis, 2nd 
Edition, Addison-Wesley, Reading, Mass., 1978. 

4. Forsythe, G.E. and Moler, C.B., Computer Solu- 
tions of Linear Algebraic System,s, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1967. 

5. Hamming, R.W., Numerical Methods for Scientists 
and Engineers, 2nd Edition, McGraw Hill, New 
York, 1973. 

6. James, M.L.; Smith, G.M.; Wolford, J.C., Ap- 
plied Numerical Methods for Digital Computation, 
Harper & Row, New York, 1985. 

7. Ralston, Anthony and Rabinowitz, Philip, First 
Course in Numerical Analysis, McGraw Hill, New 
York, 1978. 
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