
Modeling and Operations Research 

This chapter contains the report of the Subpanel on 
Modeling and Operations Research of the CUPM Panel 
on a General Mathematical Sciences Program, reprinted 
with minor changes f rom Chapter V of the 1981 CUPM 
report entitled RECOMMENDATIONS FOR A GENERAL 
MATHEMATICAL SCIENCES PROGRAM. 

Experience in Applications 
This chapter is concerned with mathematical model- 

ing and associated interactive and experienceoriented 
approaches to teaching mathematical sciences. Math- 
ematical modeling attempts to involve students in the 
more creative and early design aspects of problem for- 
mulation, as well as provide them with a more complete 
exposure to how mathematics interfaces with other ac- 
tivities in solving problems arising outside of mathemat- 
ics itself. Model building is a major ingredient of opera- 
tions research and the contemporary uses of mathemat- 
ics in the social, life and decision sciences. In addition 
to being important in their own right, these newer uses 
of mathematics provide a rich source of suitable materi- 
als for interaction and modeling which complement the 
many modern and classical applications of mathematics 
in the physical sciences and engineering. 

This chapter is intended to assist mathematics fac- 
ulty in implementing the main panel's recommendation 
that mathematical sciences majors should have sub- 
stantial experience with mathematical modeling. Sub- 
sequent sections discuss the modeling process in some 
detail; provide specific suggestions for conducting stu- 
dent projects, applications-experience-related courses 
and other such programs, along with general recommen- 
dations concerning modeling courses at different lev- 
els; explain the field of operations research and the re- 
quirements for graduate study. The final two sections 
present outlines for four courses in operations research 
and modeling, and a compendium of resources and ref- 
erences for modeling courses. 

Learning and doing mathematics is a rather individ- 
ualized and personal activity. The typical classroom 
lecture in which students are passive spectators has ob- 
vious limitations. Students need supervised hands-on 
experience in problem solving and constructing rigor- 
ous proofs. A large variety of alternate teaching tech- 
niques and special programs have been developed in at- 
tempts to meet this need. These include problem solv- 

ing approaches using materials from pure and applied 
mathematics, such as the methods of G. P6lya and R.L. 
Moore. Problem solving teams for ccimpetitions such 
as the Putnam contest and special departmental prac- 
tica exist in many colleges. Special courses or seminars 
on modeling, case studies, and project-oriented activ- 
ity are becoming more common, as are mathematics 
clinics and consulting bureaus. Co-op and work-study 
programs, summer internships, and various other stu- 
dent exchanges have been successfully implemented at 
some inst it utions. 

The Modeling Subpanel believes that applications 
and modeling should be included in a nontrivial way in 
most college-level mathematical sciences courses. Con- 
cern with applications has been an important historical 
force and a major cultural ingredient in the develop- 
ment of all mathematics. Further, thie Modeling Sub- 
panel strongly recommends that all mathematical sci- 
ences students should obtain first-hand, experience with 
realistic applications of mathematics from the initial 
stage of model formulation through interpretation of 
solutions. This can be done in a project-oriented mod- 
eling course in one of the alternate out-of-class modes 
mentioned above. Such an experience yields insight into 
the place of mathematics in the larger realm of science. 
It provides an appreciation for the need for interdisci- 
plinary interaction and the limits of specialization. It 
offers a chance for individuals to make use of their own 
intuition and creative abilities, to sense the great joy of 
personal accomplishment, and to develop the confidence 
to confront similar problems after graiduation. Finally, 
such experience may assist students in choosing careers 
and fields for future study. 

Mathematical Modeling 

Modeling is a fundamental part of' the general sci- 
entific method and is of primary importance in ap- 
plied mathematics. A model is a simpler realization 
or an idealization of some more complex reality cre- 
ated for the purpose of gaining new knowledge about 
a real situation by investigating properties and impli- 
cations of the model. Models may take many differ- 
ent forms, from physical miniatures to pure intellectual 
substitutes. Study of a model will hopefully provide un- 
derstanding and new information about real phenomena 
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which are too complex, excessively expensive, or impos- 
sible to analyze in their original setting. 

We tend to take the amazing effectiveness of models 
for granted today. The reader should give a moment's 
thought to the following examples. One can learn a 
great deal about a proposed aircraft from wind tun- 
nel experiments before building a costly prototype, and 
one can learn much about flying an existing airplane 
from a computer-aided cockpit simulator. Simple com- 
puter simulations can provide insights into the complex 
flow or queueing behavior of traffic in a transportation 
system. Theoretical studies about elementary particles 
have provided new insight into fundamental physical 
laws and have guided subatomic experimentation. 

Real World Mathematical 
Problem Model 

t 
I 

Mathematical 
Solution 

Interpretation 
in Original Settin; 

A Simple Model of Mathematical Modeling 

Figure 1 

The process of mathematical modeling can be simply 
represented with the diagram in Figure 1. One begins 
with a problem which arises more or less directly out 
of the "real world." One builds an abstract model for 
purposes of analysis, and this frequently takes a math- 
ematical form. The model is solved in this abstract 
setting. The solution is then interpreted back into its 
original context. Finally, the analytical conclusions are 
compared with reality. If they fall short of matching 
the real situation, then modifications of the model may 
be called for, and one proceeds around this cycle again. 
One often proceeds back and forth within a cycle and 
makes successive iterations about this figure many times 
before arriving at a satisfactory representation of the 
real world. 

The creation of new knowledge via this modeling 
route is at the heart of theoretical science and applied 
mathematics. We will use the word "modeling" to de- 
scribe the complete progress illustrated in Figure 1. Fre- 
quently this term is used only for the model formulation 
step (the top arrow in the figure). A full discussion of 
the four steps in this modeling paradigm follow. Addi- 
tional steps refining the modeling process are sometimes 
inserted; for example, see Figure 2. 

First consider the downward pointing arrow on the 

right side from Urnathematical model" to "mathemati- 
cal solution." This is the deductive activity of finding 
solutions to well-formulated mathematical problem. It 
is usually the most logical, well-defined and straight- 
forward part of modeling, although not necessarily the 
easiest. It is often the most immediately pleasing, el- 
egant, and intellectual part. This "side" of the "mod- 
eling square" is the one covered best in standard a p  
plied mathematics courses. Unfortunately, most teach- 
ing of applied mathematics is confined to discussing just 
model-solving mathematical techniques, with superfi- 
cial treatment of the other three sides of the square, 
whereas these other sides often involve much more ccre- 
ativity, interaction with other disciplines, and commu- 
nication skills. 

END BEGIN 
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A Refined Model of Mathematical Modeling 

Figure 2 

The bottom arrow in Figure 1 is concerned with 
translating or explaining a purely mathematical result 
in terms of the original real world setting. This involves 
the need to communicate in a precise and lucid man- 
ner. (Inexperience in this skill, according to many em- 
ployers, is a serious shortcoming in mathematics gradu- 
ates). This aspect of a mathematical scientist's training 
should not be left to courses in other sciences or to on- 
the-job learning after graduation. 

In describing the meaning of a mathematical solution 
one must take great care to be complete and honest. It 
is dangerous to discard quickly some mathematical so- 
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lutions to  a physical problem as extraneous or having no 
physical meaning; there have been too many historical 
incidences where “extraneous“ solutions were of fun- 
damental importance. Likewise, one should not select 
out just the one preconceived answer which the “boss” 
is looking for t o  support his or her position. A deci- 
sion maker frequently does not want just one optimal 
solution, but desires to  know a variety of “good” solu- 
tions and the range of reasonable options available from 
which to  select. 

There is an  old adage to  the effect that bosses do 
not act on quantitative recommendations unless they 
are communicated in a manner which makes them un- 
derstandable to  such decision makers. This communi- 
cation can often be a difficult task because of the tech- 
nical nature of the formulation and solution, and also 
because large quantities of data  and extensive computa- 
tion may need to  be compressed to  a manageable size for 
the layman to  understand in a relatively limited time. 
If mathematical education gave more attention to  this 
aspect of mathematical modeling, there might be wider 
recognition and visibility of mathematicians in society 
beyond the academic world! 

A major step in real world modeling is to  validate 
models critically and to  check out solutions against the 
original phenomena and known results. This step, rep- 
resented by the left upward arrow in Figure 1, may in- 
volve experimentation, verifying, and evaluating. Two 
major criteria for evaluating a model are simplicity and 
accuracy of prediction. Questions about the range of 
validity, sensitivity of parameters errors resulting from 
approximations, and such should be investigated. In 
many cases, a modeling project will simply confirm from 
another perspective properties that are already believed 
to be true. The real gain from modeling activity occurs 
when the modeling leads to discovery of new knowledge 
(which subsequently is confirmed by other methods). 

Modern mathematics education rarely involves itself 
with this left hand side of the modeling process, except 
perhaps for an occasional “eyeballing” of an answer or 
in projects undertaken by a mathematics or statistics 
consulting clinic. By omitting this activity, mathemati- 
cal education misses an opportunity to  become involved 
with real-world decision making, judgmental inputs, the 
limitations of its mathematical tools, and other more 
human aspects of science, as well as the reward of wit- 
nessing the acceptance of a new theory. 

Finally, consider the top arrow in Figure 1 which 
represents the heart of the modeling activity. The con- 
struction of an  abstract model from a real situation is 
the really creative activity and an important compo- 
nent of all theoretical science. Building models involves 

translating into mathematics, maintaining the essential 
ingredients while filtering out a great amount of excess 
baggage, and arriving a t  realistic and manageable intel- 
lectual limitations. The three basic elements of a model 
are: 
1. A logical mathematical structure such as calculus, 

probability, or game theory; 
2. An appropriate interpretation of the variables in 

that structure in terms of the given problem; and 
3. A characterization with the structure of all laws and 

constraints pertinent to  the problem. 
To build such a mental construct, one must concep- 
tualize, idealize and identify propert,ies precisely. A 
model builder must carefully balance the tradeoffs be- 
tween coarse simplifications and unnecessary details- 
often the effects of such tradeoffs are n.ot apparent until 
subsequent validation (three steps later in the modeling 
process). 

This initial part of modeling is clearly the most es- 
sential and valuable part of the whole ]process. It is usu- 
ally the most difficult part. Eddington said “I regard 
the introductory part of a theory as the most difficult, 
because we have to  use our brains all of the time. Af- 
terwards we can use mathematics.” ]Model building is 
an art, and must be taught as such. 

An Undergraduate Modeling Course 
This section discusses various approaches to design- 

ing mathematical sciences courses concentrating on the 
modeling process. The resources list,ed a t  the end of 
this chapter contain a wealth of additional information 
on models, the modeling process and specific modeling 
courses as well as references to  supplementary materials 
which the reader may find useful in c’ourse design. 

Practitioners in the physical or social sciences or en- 
gineering have an instinctive feeling of what the mod- 
eling process is all about, even if they are not able to  
articulate it well. Modeling is an important part of 
their work-a-day activity. For the most part, however, 
they prefer to leave the analysis and structure of the 
modeling process itself to  workers in other disciplines, 
like mathematics, or to  philosophers of science who are 
trying to understand the abstract thieories underlying 
these results and how scientists get their results. 

How does one go about acquiring experience in real- 
world modeling? The wrong place to  start is looking at  
big models in the scientific literature which are broad 
in scope and the epitome of their kind. Indeed, one 
could probably learn more about sculpting by looking 
a t  the pieces that Michelangelo discarded than by look- 
ing a t  the Pieta. The mathematical techniques with 
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which one is familiar will be a primary limiting factor 
in understanding models. Another factor is that real- 
world problem areas have their own peculiar “empirical 
laws” and “principles” which are commonly known to 
specialists in an area but are not easily accessible to the 
casual reader. 

Apprentice modelers need some help and guidance 
in selecting model areas for study which will build their 
modeling skill without discouraging progress. The ideal 
way to do this within the college curriculum is to begin 
the modeling process as early as possible in the stu- 
dent’s career and reinforce modeling over the entire pe- 
riod of study. That is, the modeling process should be 
an integral part of the curriculum. Most mathematics 
departments, for a variety of reasons, are not prepared 
to give modeling such a major emphasis. For them, a 
more reasonable approach is to design a course specifi- 
cally around the modeling process. 

Efforts to emphasize the modeling process in under- 
graduate courses on a broad scale began in the 1960’s 
and were promoted mainly by engineers, operations re- 
searchers and social scientists. Extensive discussions of 
modeling in mathematics courses developed later. The 
modeling process has been brought into the classroom 
in many ways but two particular approaches are worth 
describing in some detail. 

First there is the case study approach in which the 
modeling process is described in a series of examples 
that are more-or-less self-contained. The examples se- 
lected by the instructor are designed to bring out the 
basic features of the modeling process as well as to in- 
form the students about basic models within a disci- 
pline. An excellent early example is You and Technol- 
ogy: A High School Case Study Tezt developed by the 
engineering departments of the PCM Colleges (Chester, 
PA), edited by N. Damaskos and M. Smyth. 

The second approach applies “hands-on” experience 
to problems that may only be vaguely described. This 
approach is sometimes called “open-ended” or “experi- 
ential,” because it is not clear a t  the outset what kind 
of a model will be successful in analyzing a problem, 
or indeed whether a particular problem is well-posed in 
any sense. An interesting sidelight on this approach to 
teaching the modeling process is that the models pro- 
posed by students for a particular problem depend not 
only on the students’ breadth of knowledge but, as much 
as anything else, on time constraints and computer (and 
other) resources available. Engineers popularized the 
experiential approach in the early sixties with the high 
school program Man Made World, mostly as a means of 
exposing students a t  an early stage to engineering as a 
profession (a text of the same name was written for this 

program by J. Truxal, et al., McGraw-Hill publisher). 
A range of courses emphasizing the modeling process 

is clearly possible between the case study approach and 
the experiential approach. 

It is important to note that the scope of the engineer- 
ing approach to modeling is much broader than just, the 
technical aspects of the problem a t  hand. In designing 
a solution to a problem, engineers must take into ac- 
count time constraints and build into their models pre- 
scribed economic and other technical constraints as well 
as consideration of the impact of their design on soci- 
ety. Engineers do not build elaborate models to explain 
the fundamental workings of nature nor do they seek 
the best possible solution to a problem in the absence 
of the proposed application of that solution. In spite 
of these differences, there is obviously a large overlap 
between the engineering and mathematical approaches 
to modeling. 

We now characterize the components of a modeling 
course in a way that readers should find useful in de- 
signing a course to fit their own local needs. The Table 
on pp. 46-47 organizes much of this information for easy 
reference. There are six basic aspects of teaching mod- 
eling that must be considered: 
1. Prerequisites. For whom is the course intended? 
2. Effort level. How long-a few weeks, a semester, a 

year? 
3. Course format. Experiential or case study ap- 

proach? Team or individual work? Instructor’s role. 
Communication skills used. 

4. Resources available. Computer system, remote ac- 
cess, good software packages (students should be- 
come familiar with using some major software pack- 
age). Access to expertise in fields considered. A p  
propriate handouts to keep students progressing. 

5 .  Source of problems. Real-world or contrived? 
Open-ended or can student answer all questions by 
looking them up in the literature? 

6. Technical thrust. What technical areas should the 
course emphasize, or avoid? Continuous or discrete 
models? Deterministic or stochastic? Role of com- 
puter programming. 

We now expand a little on two of these compo- 
nents, effort level and course format. The level of effort 
devoted to a modeling course can range from “mini- 
projects,” using a team approach to short projects 
within an established course, to major projects which 
last an entire year. The mini-project format requires 
a great deal of organization and preparation to make 
it work. See Borrelli and Busenburg ‘‘Undergradu- 
ate Classroom Experiences in Applied Mathematics” 
(UMAP Journal, Volume 1, 1980) for one approach to 
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structuring a mini-project program, together with its 
pro’s and con’s. The one-semester case study course, 
judging from its popularity, is the best understood and 
trusted of modeling courses. There are good textbooks 
and a great many modules written for use in such a 
course (see list at end of chapter). 

While most case studies texts on mathematical mod- 
eling are designed for upper-level courses, the text You 
and Technology (mentioned above), supplemented with 
modules, can easily be adapted for use in a freshman 
case studies course. Such a course might also present 
an opportunity for students to see the fundamental 
differences between engineering and mathematical a p  
proaches to modeling (this issue is treated nicely in 
You and Technology). An extensive outline is provided 
below for a special custom-made, lower-level modeling 
course. 

Experiential modeling courses are not used as often 
as case study courses. Since the experiential approach is 
typically used on open-ended problems where the out- 
come is difficult to predict in advance, this approach 
is especially risky for a mathematics instructor who is 
teaching a modeling course for the first time. Neverthe- 
less, experiences of various colleges over the last several 
years show that the experiential approach is feasible and 
that, whatever happens, students and instructors find 
it a rewarding experience. Several successful formats 
for experiential modeling courses have emerged. All 
seem to use the team approach with occasional guid- 
ance by consultants, as needed. It should be noted that 
many industrial employers treat such experiential mod- 
eling as job-related experience in assessing a student’s 
job qualifications. References at the end of this chap- 
ter contain descriptions of the well-known Mathematics 
Clinics in Claremont and other experiential modeling 
courses (interested readers can write directly to Harvey 
Mudd College for first-hand advice). 

We close this Section with some important general 
points to keep in mind when designing any modeling 
course. 

To encourage initiative and independent work, stu- 
dents should have access to, and be responsible for 
using, support resources such as documentation of 
software and previous student projects. 
If high standards are imposed on writing of re- 
ports, then these reports deserve some exposure; 
they should not just be shoved in filing cabinets and 
forgotten. Instructors should encourage students to 
seek publication of a paper based on their reports, if 
warranted, or an article in the campus newspaper. 
Abstracts of recent reports should be made avail- 
able to students early in a modeling course. When 

students know their work will get exposure, they are 
motivated to write good reports. 
It is valuable to integrate the modeling process into 
the curriculum as widely as possible and not just as 
an add-on special course with no connection to any 
other mathematical sciences course. 
A problem with most modeling courses is that the 
material in them quickly becomes dated. When stu- 
dents discover that they are working on the same 
projects or models as their classmates did last year, 
they lose enthusiasm. What is needed is a format 
for automatically updating the matlerial. A constant 
flow of real-world problems, as come into a mathe- 
matics consulting clinic, is a great advantage. 

Operations Research 
Operations research is a mathematic a1 science closely 

connected to mathematical modeling. Although some 
notable contributions were made prior to 1940, oper- 
ations research grew out of World War 11. The analy- 
sis of military logistics, supply and operational prob- 
lems by scientists from many different disciplines gen- 
erated the techniques and approaches that evolved into 
modern operations research. This sub-ject studies com- 
plex systems, structures and institutions with a view 
towards operating such multiparameter systems more 
efficiently within various constraints, such as scarce re- 
sources. Operations research analyse:! are used to op- 
timize current activities and predict ifuture feasibility. 
The complexity of its problems has made operations 
research heavily dependent on high-speed digital com- 
puters. It is now used in fields in which decisions were 
traditionally made on the basis of less quantitative ap- 
proaches, such as “experience” or merle hunches. There 
is frequently a major concern with “people” as well as 
“things,” and the man-system interface in a complex 
social activity. Major national concerns such as produc- 
tivity, environmental impact and energy supply have a 
large operations research component. 

The approach in operations research is multidis- 
ciplinary in nature, and uses common sense, data, 
and substantial empiricism (heuristics) combined with 
new, as well as repackaged traditional, mathematical 
methodologies. The principal mathematical theories of 
operations research are mathematical programming and 
stochastic processes. Major topics in these theories are 
mentioned in the operations research course contents in 
the next section. Operations research l n a s  major overlap 
with the fields of industrial engineering, management 
science, mathematical economics, econometrics and de- 
cision theory. 
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Anatomy of a Modeling Course 

Ingredients Background and Source Material Remarks 

PREREQUISITES: 
Lower Division. Single variable cal- 
culus, a science course with lab, some 
computing. 

Upper Division. Multivariable calcu- 
lus, linear algebra, computation and 
some computer programming, basic 
prob/stat., some diff. eqns., a science 
course with lab. 

EFFORT LEVEL: 
Partial Course. Recommended min- 
imum of 2 weeks out of a 3 hour 
course preceded by a tooling up pe- 
riod. 

Full Course. May be designed to fit 
into special options, either to give 
job-related training or introduction 
to modeling process with important 
models in a discipline. 

COURSE FORMAT: 
Case Study. The modeling process 
presented via examples that are 
more-or-less self-contained. 

Ezperiential. Hands-on approach to 
open-ended projects incorporating the 
modeling process. Some possibilities 
are: 
1. Problem-centered Course. Class 
divided into teams to  work on a se- 
quence of projects and share experi- 
ence. 

2. Mathematics Clinic, Consulting 
Group. Intensive, industry-supported 
team effort on a single project, usu- 
ally for one year. 

9. Research Assistance. Students aid 
faculty in research work. 

4. Mini-projects. Team approach on 
short projects within an established 
course. 

Case study approach most likely. See, 
e.g., "You and Technology" or suit- 
able UMAP modules. 

For experiential approach and case 
study approach consult appropriately 
noted reference. 

Mini-projects are a possibility here. 
See Borelli and Busenberg. Format of 
mini-projects can be effectively struc- 
tured. See Becker, et al., "Handbook 
for Projects." 

Many possibilities exist for modeling 
courses for a full semester-see items 
below. For a discussion of pros and 
cons, see Borelli and Busenberg. 

Material selected from modules, text- 
books, conference proceedings, or 
journals. 

Needs highly experienced instructor 
to select and present the projects and 
watch over progress of the teams. 
Class size limited by instructor's en- 
ergy. See Borelli and Busenberg for 
more details. 
Composition of team is critical. See 
Claremont Clinic Articles for details. 
Because of time constraints, able sup- 
port staff must be readily available. 

MIT has a highly organized program 
which does this. Mostly, however, it's 
catch-as-catch-can. The Institute of 
Decision Science, Claremont Men's 
College, has developed a classroom 
approach to such work. 

See Borelli and Busenberg. 

If the team approach is selected t,hen 
there can be some flexibility in these 
prerequisites. 

If modeling course is not required., 
then some thought must be given as 
to how students can be attracted to 
such a course: descriptions in reg- 
istration packets, posters, note to 
advisor, etc. 

Important that mini-project work not 
be simply added to standard load of 
the host course-it should replace: 
some required work; e.g., an exam. 

Format of instruction can seriously 
affect the student's interest as well as 
his capacity for effective work-see 
"Format" section below for possibili- 
ties. 

Advanced students can be asked 
to lecture on material that is well 
enough organized. 

Internships, work-study programs not 
appropriate for inclusion here. 

Oral presentation and written reports 
are emphasized. Most demanding of 
instructor's time. 

Team communication skills highly 
emphasized in Clinic program and is 
crucial to success. Team has main 
responsibility for work, instructor 
advises. Student handbook a t  Cla.re- 
mont Clinic (by Handa) available on 
request. 

A danger here is that the success of 
the faculty member's research may 
take precedence over the impact on 
the students' education. Students" 
needs could get lost in the shuffle. 

Emphasizes writing skills, highly 
structured activity; see "Handbook 
for Projects" by Becker, et al. 
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Ingredients 

Anatomy of a Modeling Course 

Background and Source Material Remarks 

RESOURCES AVAILABLE: 
Computer. Good access to  a high 
level computer (preferably with time- 
sharing capability) having good soft- 
ware packages is very important for 
the success of most modeling courses. 

Ezperienced Consultants. Access to 
knowledgeable colleagues, experts in 
local industrial firms, and talented 
computer center personnel are all 
helpful in keeping a team’s progress 
from faltering. 

Supplemental Materials. Handouts on 
how to work in a team on projects, 
or where to go for help, etc., lessen 
the student’s feeling of abandonment 
when working on projects. 

SOURCE O F  PROBLEMS: 
Real World. Open-ended problems 
submitted by local industrial firms 
or government agencies which are of 
current interest to them, or problems 
from current research of colleagues. 

Contrived. Open-ended problems 
pulled from a variety of sources: from 
technical journals, suggestions from 
colleagues, books, etc. 
Case Studies. Reasonably well self- 
contained descriptions of completed 
projects or problems. 

TECHNICAL THRUST: 
Discrete-OR. Problems whose models 
involve discrete structures, program- 
ming, or optimization within discrete 
settings. Also interpolation with fi- 
nite structures in continuous settings. 

Continuous. Problems whose models 
involve differential or integral equa- 
tions, continuous probabilities, or op- 
timization within continuous setting. 
Computer. Problems with main goal 
the production of software either a t  
the systems level or solvers for a class 
of equations in continuous settings, 
along with error analysis of same. 
For DEC users, the IMSL package is 
a good all-around one to have avail- 
able on the system. 

A successful, long-term program de- 
pends to a large extent on the Direc- 
tor’s ability to secure willing assis- 
tance from able consultants. 

For project work, see the Handbooks 
by Becker, et al., Handa, Seven and 
Zagar, and for computer graphics, 
Saunders, et  al. (all were developed 
a t  Harvey Mudd College and are 
available on request). 

See Borelli and Spanier for a descrip- 
tion of one effective method of re- 
cruiting sponsored projects from in- 
dustry. MIT has a highly organized 
way of advertising current research 
of its faculty and laboratories and 
whether undergraduates can play a 
role or not. 
The modeling books in the references 
are good sources of problems. 

Good sources in modules, proceedings 
of conferences on case studies and 
books. 

Computer graphics capabilities and 
knowledgeable (and accessible) con- 
sultants at the computer center add 
not only a professional touch but also 
help teams live within their time con- 
straints. 
Be sure that consultants help is ac- 
knowledged by the students in all 
written reports, even if it is only of a 
casual nature. 

Used only in experiential type model- 
ing courses. 

Used mostly in experiential type 
modeling course. 

Used only for case study type of 
modeling course. 

Deterministic and istochastic methods 
are both possibditi’es here. 
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There are many opportunities for mathematical sci- 
ences majors to  pursue graduate studies or find employ- 
ment in operations research and related fields. Indus- 
trial mathematicians in all fields find themselves faced 
with operations research problems from time-to-time. 
Thus it is important for mathematical sciences students 
to have some exposure to  operations research and its 
applications, and also knowledge of its career possibil- 
ities. This classroom exposure to  operations research 
can occur in conjunction with undergraduate model- 
ing experience or in a specific course on operations re- 
search. The current relevance and naturalness of this 
subject are immediately clear to  students, and realistic 
projects at various levels of difficulty are readily avail- 
able. An interesting article by D. Wagner about opera- 
tions research appeared in the American Mathematical 
Monthly (82, p. 895). Students should also be referred 
to the booklet Careers in Operations Research, avail- 
able from the Operations Research Society of America, 
428 Preston Street, Baltimore, MD 21202. 

A student interested in graduate work in operations 
research should have a solid preparation in undergrad- 
uate core mathematics: calculus, linear algebra, real 
analysis, plus courses in probability, introductory com- 
puter science and modeling. A course in operations re- 
search itself is more important as a way to  learn if one 
likes the field than as a prerequisite for graduate study. 
A substantial minor in a relevant area outside mathe- 
matics (as recommended for all mathematical sciences 
majors in the first chapter, “Mathematical Sciences”) is 
important. This outside work should include a sampling 
of quantitative courses in the social sciences, business, 
or engineering (if available). Experience solving some 
problems involving substantial computer computation 
and an exposure to nontrivial algorithms are also desir- 
able. 

At some institutions, mathematics departments are 
now preparing to  offer an operations research course for 
the first time, while other institutions may have many 
operations research courses offered in mathematics, eco- 
nomics, business, industrial engineering and computer 
science. In either extreme and situations in between, 
mathematical sciences students are best served by some 
form of interdepartmental cooperation, or at  least co- 
ordination of offerings. If a mathematics department 
is planning to  offer an operations research course when 
none previously existed a t  the institution, mathematics 
should work closely with other interested departments. 

In planning this first course, mathematicians could 
seek contacts with local industry to  obtain practition- 
ers as visiting lecturers. On the other hand, an in- 
troductory operations research course can be taught 

by most college mathematics professors with appropri- 
ate attitudes if they are willing to  undertake some self 
study. Indeed, faculty without formal operations re- 
search training who are going to  teach such a course 
should be strongly encouraged to  learn about the iield 
by attendance at short courses, participation in a de- 
partment seminar on the subject, or by sabbatical leave 
(or other released time) at universities or industrial lab- 
oratories with operations research activities. 

Course Descriptions 
Four sample courses on operations research and mod- 

eling are described below. Only more general remarks 
are given for the courses in operations research and 
stochastic processes since these have become fairly stan- 
dardized in recent years. More specific details are pro- 
vided for an elementary-level modeling course using idis- 
Crete mathematics and for a more advanced modeling 
course using continuous methods. These are merely il- 
lustrations of the wide variety of different sorts of mod- 
eling courses which can be taught. The 1972 CU:PM 
Recommendations on Applied Mathematics contain a 
detailed description of a physical-sciences oriented mod- 
eling course. Such a modeling course continues to  be 
very valuable and in no way should be considered dat,ed. 
Many basic intermediate-level courses in the physical 
sciences are also excellent modeling courses, from the 
point of view of a mathematical sciences major. 

Introductory Operations Research 
Much of the material in an introductory operati’ons 

research course for undergraduates has become fairly 
standard. The course covers primarily deterministic 
methods. Most publishing companies have good intro- 
ductory operations research texts (the text title may 
be Linear Programming, the course’s main topic). The 
level of this course can vary depending on the prerequi- 
sites and student maturity. It is normally an upper-level 
offering with a prerequisite or corequisite of linear al- 
gebra. Calculus and probability should be required if 
stochastic models are also included. 

An operations research course can be a “pure math- 
ematics” course which stresses the fundamental prop- 
erties of systems of linear inequalities, basic geometry 
of polyhedra and cones, discrete optimization and com- 
plexity of algorithms. Most operations research courses, 
however, emphasize the many applications which can be 
solved by linear programming and related techniques of 
combinatorial optimization. Such courses usually de- 
vote some time to  efficient algorithms and practical mu- 
merical methods (to avoid roundoff errors), as well as 
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basic notions of computational complexity. While prob- 
lem solving and modeling are important, a first oper- 
ations research course should cover some topic in rea- 
sonable depth and not be merely a collection of simple 
techniques and routine applications. 

COURSE CONTENT 

The course should start with a brief discussion of the 
general nature, history and philosophy of operations re- 
search. Some of the older texts such as Introduction to 
Operations Research by C. Churchman, R. Ackoff and 
E. Arnoff, Wiley, 1957, and Methods of Operations Re- 
search by P. Morse and G. Kimball, Wiley, 1951, de- 
vote extensive space to  history. The instructor should 
not spend much time on history a t  the beginning of 
a course but instead should weave it into discussions 
throughout a course. 

The first half of the course in usually devoted to lin- 
ear programming: its theory, the simplex algorithm, 
and applications. The course then continues on to  a se- 
ries of special linear programming problems, such as op- 
timal assignment, transportation, trans-shipment, net- 
work flow, minimal spanning tree, shortest path, PERT 
methods and traveling salesperson, each with its own 
algorithms and associated theory. Basic concepts of 
graph theory are normally introduced in conjunction 
with some of the preceding problems. If time per- 
mits, elementary aspects from decomposition theory, 
dynamic programming, integer programming, or non- 
linear programming may be included. 

It is difficult to  find space in an introductory opera- 
tions research course for even a small sampling of prob- 
ability or stochastic models. If possible, it is better to 
include this material in a second course. Similarly, there 
is usually little time available to discuss game theory, 
except possibly for showing that two-person, zero-sum 
games are equivalent to  a dual pair of linear programs. 
Game theory is probably best treated in a separate 
“topics” course. 

Elementary Modeling Course 

The following course on mathematical modeling and 
problem solving is intended for freshmen and sopho- 
mores with a solid preparation in high school math- 
ematics. The primary objective is to provide lower- 
level students with a first-hand experience in forming 
their own mathematical models and discovering their 
own solution techniques. A secondary goal is to  intro- 
duce some of the concepts from modern finite math- 
ematics and illustrate their applications in the social 
sciences. The instructor might supplement these main 
themes with brief discussions of some important recent 

mathematical developments and indicate the current 
relevance of mathematics to  contemporary science and 
policy making. 

The course should maintain an open-minded and 
questioning approach to problem solving. Much of the 
class time should be devoted to  student discussions of 
their models and how to improve them. Students should 
be asked to make formal oral and written expositions. 
Many of the topics coveredare also suit,able, with proper 
adjustments, for upper-level courses or for lower-level 
“mathematics appreciation” courses. (Readers inter- 
ested in the latter courses should coneult the 1981 Re- 
port of the CUPM Panel on Mathematics Apprecia- 
tion, reprinted later in this volume.) Nlot all of the top- 
ics mentioned below can be covered in any one course, 
and frequent changes in course content are necessary to 
maintain the originality of problems. 

No one current textbook appears appropriate for this 
course, although a simpler “prepackage:d” version of this 
course could use the high-school-oriented text You and 
Technology with supplementary modules. The course 
described below is an example of how various sources 
can be assembled (as handouts or on library reserve) to 
form a modeling course, in this instarnce emphasizing 
modeling in the social sciences. 

COURSE CONTENT 

Overview and Patterns of Problem Solving. Intro- 
duction to  the nature of modeling and problem solv- 
ing. The role of science, engineering and social sci- 
ences in making and implementing new discoveries. 
The nature of applied mathematics ,and the interdis- 
ciplinary approach to  problems. Illustrations of prob- 
lems solved by quick insight rather )than by involved 
analysis. Many books have chapters on modeling and 
problem solving; also see Patterns of’ Problem Solving 
by M. Rubinstein, Prentice-Hall, 1975, or “Foresight- 
Insight-Hindsight” by J. Frauenthal and T. Saaty, in 
Modules in Applied Mathematics, vol. 3 (W. Lucas, ed- 
itor), Springer-Verlag. 

A large variety of 
problems related to undirected and directed graphs and 
network flows can be assigned and discussed a t  the out- 
set with no hint of any theory or technical terms. At 
a later stage, a lecture can be devoted to  theory to  de- 
velop a common vocabulary. The language and general 
approach of systems analysis can be developed. The 
four-color theorem can be discussed. References are 
Applied Combinatorics, by F. Roberts, Prentice-Hall, 
1984, Graphs as Mathematical Models by G. Chartrand, 
Prindle, Weber and Schmidt, 1977, and Applied Com- 
binatorics by A. Tucker, Wiley, 1980. 

Graph and Network Problems. 
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Some lecture time can be spent illustrating how 
graphs are applied: to  simplify a complex problem, 
such as Instant Insanity (Chartrand, p. 125 or Tucker, 
p. 355), or the more difficult Rubik’s Cube (Scientific 
American, March, 1981); for purely mathematical pur- 
poses, such as to  prove Euler’s formula V - E + F = 2 
and use it in turn to prove the existence of exactly five 
regular polyhedra; or to  examine R. Connelly’s flex- 
ing (nonconvex) polyhedra (Mathematical Intelligencer, 
Vol. 1, No. 3, 1979). The analogy between transporta- 
tion, fluid flow, electric and hydraulic networks can be 
illustrated (see G. Minty’s article in Discrete Mathemat- 
ics and Its Applications Proceedings of a Conference a t  
Indiana University, ed. M. Thompson, 1977). 

Enumeration Problems. (Tucker, 2nd ed., Chapter 
5 or Roberts, Chapter 2.) Some practical uses can be 
covered briefly, e.g., to  probability problems or the Pi- 
geonhole Principle. Computational complexity and its 
application to hard-to-break codes can be discussed. 

Value and Utility Theory. Expected utility versus 
expected value; St. Petersburg paradox; construction of 
a money versus utility curve: axioms for utility; assess- 
ing Coalitional Values (see module by W. Lucas and L. 
Billera in Modules in  Applied Mathematics, vol. 2, W. 
Lucas, editor, Springer-Verlag). 

Conflict Resolution. Some three-person cooperative 
game experiments and analysis; the Prisoner’s Dilemma 
for two or more persons (H. Hamburger in Journal of 
Math. Sociology 3, 1973); illustrations of equilibrium 
concepts; two-person zero-sum games, e.g., batter ver- 
sus pitcher (Economics and the Competitive Process by 
J.  Case, NYU Press, 1979, p. 3; also see The Game of 
Business by John McDonald, Doubleday, 1975, Anchor 
paperback, 1977, and Game Theory: A Nontechnical 
Introduction by M. Davis, Basic Books, 1970). 

A Discrete Optimization Problem and an Algorithm. 
Possible topics are the complete and optimal assign- 
ment problems (UMAP module 317 by D. Gale), or the 
marriage problem (D. Gale and L. Shapley, American 
Mathematical Monthly 69, 1962, p. 9). 

See chapters on simulation in many 
books and “Four-Way Stop or Traffic Light? An Illus- 
tration of the Modeling Process” by E. Packel (in Mod- 
ules in Applied Mathematics, vol. 3, W. Lucas, editor, 
Springer-Verlag). Additional ideas from Inventory The- 
ory, Scheduling Theory, Dynamic Programming, and 
Control Theory, e.g., lunar landing, can be included. 

Projects and Mini-projects. At least one significant 
project type activity should be pursued over several 
weeks by the whole class by means of a sequence of 

Simulation. 

graded exercises and class discussions. Some of the t o p  
ics listed above can be treated in this mode. Other suit- 
able topics are: the Apportionment Problem (Fair R e p  
resentation by M. Balinski and H. Young, Yale Press); 
measuring power in Weighted Voting situations (W. 
Lucas in Case Studies in Applied Mathematics MAA, 
1976); Cost Analysis (C. Clark in same Case Studies 
on harvesting fish or forests); some simple topics from 
statistics such as Asking Sensitive Questions, module by 
J. Maceli (in Modules in  Applied Mathematics, vol. 2, 
W. Lucas, editor, Springer-Verlag); and Social Choice 
Theory and Voting (Theory of Voting by R. Farquhar- 
son, Yale, 1960). 

In addition to  the class project, teams of two or 
three students can spend a few weeks on a mini-project. 
Many of the topics above can be applied to a local prac- 
tical problem. Scheduling, inventory and optimal al- 
locations are good topics, as are gaming experiments, 
simulations and elementary statistical studies. More 
theoretical topics, ranging from walking versus running 
in the rain to designing the inside mechanism of the 
Rubik’s Cube are also possible. Some attempt at dis- 
cussing possible implementation of a mini-project re- 
sult, e.g., with a campus administrator, is encouraged 
in order to  show the practical difficulties of implement- 
ing mathematically optimal procedures. 

Introductory Stochastic Processes 

The purpose of this course is to  introduce the stu- 
dent to the basic mathematical aspects of the theory of 
stochastic processes and its applications. This course 
can equally well be offered under such alternate titles as 
Applied Probability or Operations Research: Stochas- 
tic Models. Stochastic processes is a large and growing 
field. This course will lay background for further learn- 
ing on the job or in graduate school. 

The prerequisite for this course is a t  least the equiv- 
alent of a full course of post-calculus probability incllud- 
ing the following topics: random variables, common 
univariate and multivariate distributions, moments, 
conditional probability, stochastic independence, c:on- 
ditional distributions and means, generating functions, 
and limit theorems. Such a course is fairly traditional 
now, but if most students have had just the integrated 
statistics and probability course suggested by the Statis- 
tics Subpanel, then the beginning of the stochastic pro- 
cesses course would have to  be devoted to  completing 
the needed probability background. It is also desirable 
for students to  have some experience with basic matrix 
algebra and with using computer terminals. 

The course should slight neither mathematical the- 
ory nor its applications. It is better to  cover few topics 
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with a full discussion of both theory and applications 
to  survey theory alone or to  cover only applications. 
The course emphasizes problem solving and develops an 
acquaintance with a variety of models that are widely 
used. Stochastic modeling and problem formulation are 
different activities that  should be treated in a modeling 
course. If many students do not subsequently take a 
modeling course, then the instructor should consider 
allocating some time (assuming course time did not 
also have to  be devoted to  probability) to  a module 
on stochastic modeling in business or government (see 
list of modules below) or to a real problem at the local 
college, e.g., modeling the demand for textbooks in the 
bookstore or utilization of campus parking spaces. 

Computers should be used in this course in two ways: 
0 As a computational aid to  perform, for example, 

matrix calculations needed in Markov chain theory; 
and 
As a simulation device to  exhibit the behavior of 
random processes. 

Understanding randomness is difficult for undergradu- 
ates and discussion of data  accumulated in simulation 
studies can help overcome students’ deterministic bi- 
ases. 

COURSE CONTENT 
Bernoulli process; Markov chains (random walks, 

classification of states, limiting distributions); Poisson 
process (as limit of binomial process and as derived 
via axioms); Markov processes (transition functions 
and state probabilities, Kolmogorov equations, limiting 
probabilities, birth-death processes). 

These basic topics have numerous applications that 
should be an essential feature of the course. In addition, 
some applied topics can be covered such as quality con- 
trol, social and occupational mobility, Markovian deci- 
sion processes, road traffic, reliability, queueing prob- 
lems, population dynamics or inventory models. In- 
structors can find these and other applications in the 
many good texts on stochastic processes. Also see the 
modules and modeling texts listed at the end of this 
chapter. 

Continuous Modeling 
A primary goal of a continuous modeling course is 

to present the mathematical analysis involved in sci- 
entific modeling, as for example, the derivation of the 
heat equation. The course should also give an introduc- 
tion to  important applied mathematics topics, such as 
Fourier series, regular and singular perturbations, sta- 
bility theory and tensor analysis. A few advanced t o p  
ics can be chosen from boundary layer theory, nonlinear 

waves and calculus of variations. The course should give 
a solid motivation for more advanced courses in these 
topics. A (non-original) paper on a topic of interest 
to  the students serves the dual purpose of developing 
communication skills and introducing pledagogical flex- 
ibility. 

A course on continuous modeling usually has as a 
prerequisite a course in differential equations, although 
the modeling can be taught concurrently or integrated 
in one course, using a book such as Martin Braun’s 
Differential Equations and Their Appkations (second 
edition), Springer-Verlag, 1978. Continuous modeling 
problems frequently involve concepts from natural sci- 
ences. In this case, it is important that either an appro- 
priate background is required of students or the techni- 
cal essentials are adequately introduced in the course. 

The texts by Lin and Segal and by Haberman (see 
below) are well suited for this course. Selections from 
the two-volume Lin and Segal text can be used to pro- 
vide a solid basis for physics and engineering modeling 
using both classical subjects, such as fluids, solids and 
heat transfer, and modern subjects, such as fields of bi- 
ology. The text’s broad coverage probably includes an 
introduction to an area of expertise of the instructor to 
which he or she can bring personal research insights. 

A course which requires a little less sophistication 
can be designed around Haberman’s book. This text’s 
topics in population dynamics, oscillations, and traffic 
theory require less scientific background than topics in 
mechanics and mathematical biology, lbut still provide 
an excellent basis for modeling discussions. For exam- 
ple, population dynamics provide a good introduction 
to  dynamical systems. Topics in regular and singular 
perturbation theory can be presented in the context of 
oscillations. Traffic theory provides a vehicle for intro- 
ducing continuum mechanical modeling in which the 
processes are readily appreciated by students. Here the 
“microscopic” processes involve cars amd drivers, and 
interesting models are obtained by car-following theory. 
Traffic flows also involve partial differential equations 
and shock waves. 

References on Modeling 

Modules 

A.  MODULE WRITING PROJECTS 
Claremont Graduate School (Department of Mathemat- 
ics): 

A Fractional Calculus Approach to a Simplified Air 
Pollution Model for Perturbation Analysis. 
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Continuous-system Simulation Languages for DEC- 
10. 

* Free Vibrations in the Inner Ear. 
* Modeling of Stellar Interiors. 

Subsurface Areal Flow Through Porous Media. 
Variance Reduction for Monto Carlo Applications 

Voting Games and Power Indices. 
Involving Deep Penetration. 

Mathematical Association of America’s Committee on 
the Undergraduate Program in Mathematics Project, 
Case Studies in Applied Mathematics (designed espe- 
cially for open-ended experiential teaching). 

Measuring Power in Weighted Voting Systems. 
A Model for Municipal Street Sweeping Operations. 

* A Mathematical Model of Renewable Resource Con- 
servation. 

* Dynamics of Several-species Ecosystems. 
* Population Mathematics. 

MacDonald’s Work on Helminth Infections. 
Modeling Linear Systems by Frequency Response 
Methods. 
Network Analysis of Steam Generator Flow. 

* Heat Transfer in Frozen Soil. 

Mathematical Association of America Summer 1976 
Module-writing Conference (at Cornell University De- 
partment of Operations Research): 

* About sixty modules covering virtually all areas of 
application, such as biology, ecology, economics, en- 
ergy, population dynamics, traffic flow, vibrating 
strings, and voting. 
Selected modules from this conference along with 
MAA applied mathematics case studies (ii) above 
were published by Springer-Verlag (New York, 
1983) in four volumes, edited by William Lucas. 

Rensselaer Polytechnic Institute (Department of Math- 
ematical Sciences), published in Case Studies in Mathe- 
matical Modeling, by W. Boyce, Pitman, Boston, 1981: 

Herbicide Resistance. 
* Elevator Systems. 
* Traffic Flow. 

Shortest Paths in Networks. 
Computer Data Communication and Security. 
Semiconductor Crystal Growth. 

State University of New York at Stony Brook (Depart- 
ment of Applied Mathematics and Statistics): 

A Model for Land Development. 
A Model for Waste Water Disposal, I and 11. 
A Water Resource Planning Model. 
Man in Competition with the Spruce Budworm. 

* Smallpox: When Should Routine Vaccination be 
Discontinued. 

Stochastic Models for the Allocation of Fire Com- 
panies. 

B. MODULES DEVELOPED BY INDIVIDUALS 
Undergraduate Mathematics Application Project 
(UMAP): UMAP has several hundred modules cov- 
ering all areas of application. Selected modules ap- 
pear in the UMAP Journal (four issues a year), 
published by Birkhauser-Boston. UMAP catalogue 
available by writing to: UMAP, Educational De- 
velopment Center, 55 Chapel Street, Newton, MA 
02160. 

c. PROCEEDINGS OF MODELING CONFERENCES 

1. Discrete Mathematics and Its Applications, Pro- 
ceedings of a Conference at Indiana University, ed. 
M. Thompson, 1976. 

2. Mathematical Models in the Undergraduate Cur- 
riculum, Proceedings of Conference a t  Indiana TJni- 
versity, ed. D. Maki and M. Thompson, 1975. 

3. Proceedings of Summer Seminar on Applied Mathe- 
matics, ed. M. Thompson, Indiana University, 1!)78. 

4. Mathematical Models for Environmental Problems, 
Proceedings of the International Conference a t  the 
University of Southampton, 1976. 

5 .  Proceedings of Conference on Environmental Mod- 
eling and Simulation, Environmental Proteciion 
Agency, 1976. 

6. Proceedings of a Conference on the Application 
of Undergraduate Mathematics in the Engineer- 
ing, Life, Managerial and Social Sciences, ed. P. 
Knopp and G. Meyer, Georgia Institute of Technol- 
ogy, 1973. 

7. Proceedings of the Pittsburgh Conferences on Mod- 
eling and Simulations, Vols. 1-9 (1969-78), Instru- 
ment Society of America. 

8. Proceedings of the Summer Conference for College 
Teachers on Applied Mathematics, University of 
Missouri-Rolla, 1971. 

9. Information Linkage Between Applied Mathematics 
and Industry, ed. P. Wang, Academic Press, 19’76. 

Articles on Teaching Modeling 
1. J. Agnew and M. Keener, A Case-study Course 

in Applied Mathematics Using Regional Industries, 
American Mathematical Monthly 87 (1980). 

2. R. Barnes, Applied Mathematics: An Introduction 
Via Models, American Mathematical Monthly 84 
(1977). 

3.  C. Beaumont and R. Wieser, Co-operative F’ro- 
grammes in Mathematical Sciences a t  the Univer- 
sity of Waterloo, Journal of Co-operative Education 
11 (1975). 
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4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

J. Becker, R. Borrelli, and C. Coleman, Models for 
Applied Analysis, Harvey Mudd College, 1976 and 
revised annually. 
R. Borrelli and J. Spanier, The Mathematics Clinic: 
A Review of Its First Seven Years, UMAP Journal 
2 (1981). 
R. Borton, Mathematical Clinic Handbook, Clare- 
mont Graduate School, 1979. 
J. Brookshear, A Modeling Problem for the Class- 
room, American Mathematical Monthly 85 (1978). 
E. Clark, How To Select a Clinic Project, Harvey 
Mudd College, 1975. 
C. Hall, Industrial Mathematics: A Course in Real- 
ism, American Mathematical Monthly 82 (1975). 
L. Handa, Mathematics Clinic Student Handbook: 
A Primer for Project Work, Harvey Mudd College, 
1979. 
J. Hachigian, Applied Mathematics in a Liberal 
Arts Context, American Mathematical Monthly 85 
(1978). 
E.  Rodin, Modular Applied Mathematics for Begin- 
ning Students, American Mathematical Monthly 84 
(1977). 
R. Rubin, Model Formulation Using Intermedi- 
ate Systems, American Mathematical Monthly 86 
(1 979). 
M. Seven and T. Zagar, The Engineering Clinic 
Guidebook, Harvey Mudd College, 1975. 
D. Smith, A Seminar in Mathematical Model- 
building, American Mathematical Monthly 86 
(1979). 
J .  Spanier, The Mathematics Clinic: An Innovative 
Approach to  Realism Within an Academic Environ- 
ment, American Mathematical Monthly 83 (1976). 

Books on Mathematical Modeling 
For further references, see Applications section of A Ba- 
sic Library List, Mathematical Association of America, 
1976. 

A. 

1. 

2. 

3. 

4. 

5. 

GENERAL MODELING 

J. Andrew and R. McLone, ed., Mathematical Mod- 
eling, Butterworth, 1976. 
R. Aris, Mathematical Modeling Techniques, Pit- 
man, 1978. 
E. Beltrami, Mathematics for Dynamic Modeling, 
Academic Press, 1987. 
E. Bender, An Introduction to Mathematical Mod- 
eling, Wiley, 1978. 
G. Carrier, Topics in Applied Mathematics, Vol. I 
and 11, MAA summer seminar lecture notes, Math- 
ematical Association of America, 1966. 

6. C. Coffman and G. Fix, ed., Constructive Ap- 
proaches to  Mathematical Models, Academic Press, 
1980. 

7. R. DiPrima, ed., Modern Modeling of Continuous 
Phenomena, American Mathematical Society, 1977. 

8. C. Dym and E. Ivey, Principles of Mathematical 
Modeling, Academic Press, 1980. 

9. B. Friedman, Lectures on Applications-oriented 
Mathematics, Holden-Day, 1969. 

10. F. Giordano and M. Weir, A First Course in Math- 
ematical Modeling, Brooks/Cole, 1!985. 

11. P. Lancaster, Mathematics Models of the Real 
World, Prentice Hall, 1976. 

12. D. Maki and M. Thompson, MathLematical Models 
and Applications, Prentice Hall, 1976. 

13. F. Roberts, Discrete Mathematical Models, Prentice 
Hall, 1976. 

14. T. Saaty, Thinking with Models, AAAS Study 
Guides on Contemporary Problems No. 9, 1974. 

B. MODELING IN VARIOUS DISCIPLINES 

Mathematical modeling is such an integral part of 
physics and engineering that any text in these fields 
is implicitly a mathematical modeling book. 
1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

P. Abell, Model Building in Sociology, Shocken, 
1971. 
R. Aggarwal and I. Khera, Management Science 
Cases and Applications, Holden-Day, 1979. 
R. Atkinson, et al., Introduction to  Mathematical 
Learning Theory, Krieger Publishing, 1965. 
D. Bartholomew, Stochastic Models for Social Pro- 
cesses, Wiley, 1973. 
M. Bartlett, Stochastic Population Models, 
Methuen, 1960. 
R. Barton, A Primer on Simulation and Gaming, 
Prentice Hall, 1970. 
S. Brams, Game Theory and Pollitics, The Free 
Press, 1975. 
C. Clark, Mathematical Bioeconom,ics, Wiley, 1976. 
J. Coleman, Introduction to Mathematical Sociol- 
ogy, Free Press, 1964. 
P. Fishburn, The Theory of Social Choice, Princeton 
University Press, 1973. 
J. Frauenthal, Introduction to Population Modeling, 
UMAP Monograph, 1979. 
H. Gold, Mathematical Modeling of Biological Sys- 
tems, Wiley, 1977. 
S .  Goldberg, Some Illustrative Ezamples of the 
Use of Undergraduate Mathematics in the Social 
Sciences, Mathematical Associatiion of America, 
CUPM Report, 1977. 
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 
25. 

M. Gross, Mathematical Models in Linguistics, 
Prentice Hall, 1972. 
R. Haberman, Mathematical Models, Mechanical 
Vibrations, Population Dynamics and %fit Flow, 
Prentice Hall, 1977. 
F. Hoppensteadt, Mathematical Theories of Popu- 
lations: Demographics and Epidemics, SIAM, 1976. 
J. Kemeny and L. Snell, Mathematical Models in the 
Social Sciences, MIT Press, 1973. 
C. Lave and J. March, An Introduction to Models 
in the Social Sciences, Harper and Row, 1975. 
C. Lin and L. Segal, Mathematics Applied to Deter- 
ministic Problems in the Natural Sciences, Macmil- 
Ian, 1974. 
D. Ludwig, Stochastic Population Theories, 
Springer, 1974. 
J. Maynard-Smith, Models in Ecology, Cambridge 
University Press, 1974. 
B. Noble, Applications of Undergraduate Mathe- 
matics t o  Engineering, Mathematical Association of 
America, 1976. 
M. Olinik, An Introduction to Mathematical Mod- 
els in the Social and Life Sciences, Addison Wesley, 
1978. 
E. Pielou, Mathematical Ecology, Wiley, 1977. 
H. Pollard, Mathematical Introduction to  Celestial 

Mechanics, Mathematical Association of America, 
1977. 

26. J. Pollard, Mathematical Models for the Growth of 
Human Populations, Cambridge University Press, 
1973. 

27. D. Riggs, The Mathematical Approach to  Physiolog- 
ical Problems, Macmillan, 1979. 

28. T. Saaty, Topics in Behavioral Mathematics, MAA 
summer seminar lecture notes, Mathematical Asso- 
ciation of America, 1973. 

29. H. Scarf, et al., Notes on Lectures on Mathematics 
in the Behavioral Sciences, MAA summer seminar 
lecture notes, Mathematical Association of Amer- 
ica, 1973. 

30. C. von Lanzenauer, Cases in Operations Reseawh, 
Holden Day, 1975. 

31. H. Williams, Model Building in Mathematical Pro- 
gramming, Wiley, 1978. 
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