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Preface

In response to a request from the Association of
American Colleges (AAC), the Mathematical As-
sociation of America (MAA) convened a special
Task Force to address a range of issues concerning
the undergraduate major as a sequel to the 1985
AAC report Integrity in the College Curriculum.
Whereas the 1985 Integrity study examined the
effectiveness of general education, the new AAC
study addresses the contribution that “study in
depth” makes to liberal education. Each of the
several AAC disciplinary task forces examined how
study in depth relates to goals for the major, as-
surance of intellectual development, and relations
with other fields.

The MAA-AAC Task Force operated in the con-
text of two other simultaneous MAA reviews of the
mathematics major. One was conducted by a sub-
committee of CUPM, the Committee on the Un-
dergraduate Program in Mathematics; the other by
COMET, the Committee on the Mathematical Ed-
ucation of Teachers. Since these other committees
are charged by MAA to provide specific advice to
the mathematical community about requirements
for the mathematics major, the MAA-AAC Task
Force dealt only with broader questions that are
central to the AAC study. Hence this report is not
intended as a detailed statement about curricular
content, but as a statement of issues and priori-
ties that determine the context of undergraduate
mathematics majors.

In preparing the present draft, the Task Force
held several open hearings on issues concerning
the undergraduate major at national meetings of
the Mathematical Association of America and the
American Mathematical Society. A draft of this
report was mailed for review to several hundred
persons including every Governor, Chair, and Sec-
retary of the 29 sections of the Mathematical As-
sociation of America; department heads, deans,

and provosts at a variety of institutions; and
many leaders of mathematical professional soci-
eties. This draft was also reviewed at meetings
of AAC and MAA in January 1990. At the latter
meeting, the document was discussed extensively
at an invitational three-hour roundtable meeting
that involved about forty experienced college and
university mathematicians, including many who
have been working actively to improve opportuni-
ties for women and minorities in the mathematical
sciences.

Sectional Governors of the MAA were asked to
nominate exemplary departments whose programs
illustrate issues discussed in the report. Descrip-
tions of some of these programs have been adapted
as illustrations of promising practices in the final
draft. During the spring of 1989 graduating se-
niors on several campuses were surveyed as part
of a multi-disciplinary AAC effort to gather stu-
dent opinion. Subsequently, leaders of several stu-
dent chapters of the Mathematical Association of
America were asked to review a draft of the report.
Their careful and thoughtful responses underscore
our belief in the value to students of the recom-
mendations contained in this report.

The report has benefited enormously from these
many external reviews. We believe that it now
represents a consensus of the informed mathemat-
ical community concerning urgent issues of impor-
tance to the undergraduate mathematics major.
In August, 1990 the report was unanimously ap-
proved by the MAA Board of Governors as an offi-
cial MAA statement concerning the undergraduate
major. We hope that widespread discussion of this
report will help focus the efforts at reform that are
already underway on many campuses.

Lynn Arthur Steen,
Task Force Chair



Challenges for College Mathematics:

An Agenda for the Next Decade

Mathematics in Liberal Education

The 1985 AAC report Integrity in the College
Curriculum [6] sets forth a vision of undergrad-
uate education steeped in the tradition of liberal
education. It describes study in depth in terms
of the capacity to master complexity, to undertake
independent work, and to achieve critical sophis-
tication. To achieve the kind of depth envisioned
by the authors of this report, students must grap-
ple with connections, progress through sequential
learning experiences, and enhance their capacity
to discern patterns, coherence, and significance in
their learning. Study in depth should enhance stu-
dents’ abilities to apply the approaches of their ma-
jors to a broad spectrum of problems and issues,
and at the same time develop a critical perspective
on inherent limitations of these approaches.

We are especially concerned in this study with
how the experience in the major contributes to the
education of the great majority of students who do
not pursue advanced study in the field of their un-
dergraduate major. Hence we focus more on the
quality of students’ engagement with their colle-
giate major than on curricular content which may
be required for subsequent study or careers. This
emphasis on general benefits of the major rather
than on specific things learned gives the AAC un-
dertaking a distinctive perspective that is not often
emphasized in discussions of the mathematics ma-
jor by mathematicians.

Historical Perspective

For over 35 years the Committee on the Under-
graduate Program in Mathematics (CUPM) has
helped provide coherence to the mathematics ma-
jor by monitoring practice, advocating goals, and
suggesting model curricula. Until the 1950s, most
mathematics departments functioned primarily as
service departments for science and engineering.
CUPM was established in 1953 to “modernize
and upgrade” the mathematics curriculum and “to
halt the pessimistic retreat to remedial mathemat-
ics.” At that time total enrollment in mathemat-
ics courses in the United States was approximately

800,000; each year about 4,000 students received a
bachelor’s degree in mathematics, and about 200
received Ph.D. degrees.

Following an unsuccessful initial effort to intro-
duce a “universal” first-year course in college math-
ematics, CUPM concentrated in its second decade
on proposals to strengthen undergraduate prepara-
tion for Ph.D. study in mathematics [15]. Spurred
on by Sputnik and assisted by significant support
from the National Science Foundation, interest in
mathematics rose to levels never seen before (or
since) in the United States. By 1970 total under-
graduate mathematics enrollments had expanded
to over three million students; U.S. mathematics
departments produced 24,000 bachelors and 1,200
doctoral degrees a year.

But then the bubble burst. As student interest
shifted from personal goals to financial security,
and as computer science began to attract increas-
ing numbers of students who in earlier years might
have studied mathematics, the numbers of mathe-
matics bachelor’s degrees dropped by over 50% in
ten years, as did the number of U.S. students who
went on to a Ph.D. in mathematics. However, total
undergraduate mathematics enrollments continued
to climb as students shifted from studying mathe-
matics as a major to enrolling in selected courses
that provided tools necessary for other majors. In
1981, at the nadir of B.A. productivity, CUPM
published its second major comprehensive report
on the undergraduate curriculum [16] which advo-
cated a broad innovative program in mathematical
sciences.

During the 1980s the number of undergraduate
majors rebounded, although both the number and
the percentage of U.S. mathematics students who
persist to the Ph.D. degree continued to decline
[1, 21]. As a consequence, one of the most urgent
problems now facing American mathematics is to
restore an adequate flow in the pipeline from col-
lege study to Ph.D. attainment. Three recent re-
ports from the National Academy of Sciences [39,
9, 44] document this crisis of renewal now con-
fronting U.S. mathematics.

The precipitous decline in the 1970s and early
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1980s in the number of undergraduate mathemat-
ics majors paralleled both a significant decrease in
mathematical accomplishment of secondary school
graduates and an erosion of financial support for
mathematical research. Strangely, all this occurred
at precisely the same time that the full scope of
mathematical power was unfolding to an unprece-
dented degree in scientific research and business
policy. These conflicting forces produced a spate
of self-studies within the mathematical community,
some devoted to school education [13, 19, 40, 41],
some to college education [2, 50, 59], a few to grad-
uate education [8, 12], and others to research issues
[9, 24, 29]. The crisis of confidence among mathe-
maticians reflected broad public concern about the
quality and effectiveness of mathematics education
[24, 45, 32]. Even research mathematicians are now
taking seriously the crisis in school mathematics
[27, 62]. A recent report [43] by the National Re-
search Council recommends sweeping action based
on an emerging consensus with broad support that
extends well beyond the mathematical community.

Market-driven demand for undergraduate math-
ematics majors is strong. There is a shortage
of mathematical scientists with doctor’s degrees;
there is consistent demand (with high salaries) for
those who hold master’s degrees in the mathemati-
cal sciences; there is steady demand for undergrad-
uate mathematics majors in entry-level positions in
business, finance, and technology-intensive indus-
try; and there is increasing need for well-qualified
high school teachers of mathematics, especially as
a consequence of the national effort to raise stan-
dards for school mathematics. Moreover, the in-
creasingly analytical nature of other professions
(business, law, medicine) as well as the continued
mathematization of science and engineering pro-
vide strong indicators of the long-range value of
an undergraduate mathematics major for students
who are entering other professions.

Today, mathematics is the second largest dis-
cipline in higher education. Indeed, over 10% of
college and university faculty and student enroll-
ments are in departments of mathematics. How-
ever, more than half of this enrollment is in high
school-level courses, and most of the rest is devoted
to elementary service courses. Less than 10% of the
total post-secondary mathematics enrollment is in
post-calculus courses that are part of the math-
ematics major. Even in these advanced courses

many students are not mathematics majors—they
are enrolled to learn mathematical techniques used
in other fields. As a consequence, the major has
suffered from neglect brought about in part by
the overwhelming pressure of elementary service
courses.

In spite of the 1965 and 1981 reports from
CUPM and dozens of collateral studies published
in the last decade, there is no national consen-
sus about the undergraduate mathematics curricu-
lum. However, examination of practices at many
campuses reveals common threads that are highly
compatible with goals of the AAC Integrity study.
These include a multiple track system that ad-
dresses diverse student objectives, emphasis on
breadth of study in the major, and requirements
for depth that help students achieve critical sophis-
tication. In this report we build on these common
threads to suggest new goals for study in depth
that will both enhance the mathematics major and
better suit students who will live and work in the
twenty-first century.

Common Goals

Mathematics shares with many disciplines a
fundamental dichotomy of instructional purpose:
mathematics as an object of study, and mathe-
matics as a tool for application. These different
perspectives yield two quite different paradigms
for a mathematics major, both of which are re-
flected in today’s college and university curricula.
The first, reminiscent of the CUPM recommenda-
tions of the 1960s, focuses on a core curriculum
of basic theory that prepares students for gradu-
ate study in mathematics. The second, reflecting
the broader objectives of CUPM’s 1981 mathemat-
ical sciences report, focuses on a variety of math-
ematical tools needed for a “life-long series of dif-
ferent jobs.” Typically faculty interests favor the
former, whereas student interests are usually in-
clined towards the latter. Most campuses support
a mixed model representing a locally devised com-
promise between the two standards, although ac-
curate descriptions of present practice are virtually
non-existent. (Partly in response to the paucity
of information about degree programs in mathe-
matics, the National Research Council through its
project Mathematical Sciences in the Year 2000 is
seeking to stimulate a comprehensive examination
of degree patterns in mathematics.)

The 1985 AAC Integrity study, echoing themes
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reflected in similar studies [10, 38, 42], provides
a broad context in which to examine practices
of individual disciplines. The AAC report high-
lights “study in depth” as an essential component
of liberal education, but not for the reasons com-
monly advanced by students and their parents—
preparation for vocation, for professional study, or
for graduate school. Integrity views study in depth
as a means to master complexity, to grasp coher-
ence, and to explore subtlety. “Depth cannot be
reached merely by cumulative exposure to more
and more . . . subject matter.” The AAC goals for
study in depth are framed by twin concerns for in-
tellectual coherence intrinsic to the discipline and
for development of students’ capacity to make con-
nections, both within their major and with other
fields.

Both previous models advanced by CUPM for
the undergraduate major reflect these same po-
tentially conflicting concerns. The earlier major,
which emphasized a traditional core mathematics
curriculum as preparation for graduate study, was
motivated principally by the internal coherence of
mathematics; the more recent proposal stressed
an interplay of problem solving and theory across
both the broad spectrum of the mathematical sci-
ences and the boundaries that mathematics shares
with other disciplines. Although many believe
that the latter model, emphasizing broadly appli-
cable mathematical methods, is better geared to
graduates’ future employment, others—including
many liberal educators—believe that broader abil-
ities such as the art of reasoning and the disposition
for questioning are of greater long-term practical
value. However, both types of majors—and the
many mixtures that exist on today’s campuses—
help students discern patterns, formulate and solve
problems, and cope with complexity. In this sense,
present practice of mathematical science majors
in U.S. colleges and universities matches well the
overall objectives of Integrity in the College Cur-
riculum.

Certain principles articulated by CUPM in
1981 (reprinted in a recent compendium [17] of
CUPM curriculum recommendations from the past
decade) make explicit areas where Integrity’s ob-
jectives and those of the mathematical community
align:

• The primary goal of a mathematical sciences ma-
jor should be to develop a student’s capacity to

undertake intellectually demanding mathemati-
cal reasoning.

• A mathematical sciences curriculum should be
designed for all students with an interest in
mathematics, with both appropriate opportuni-
ties for average mathematics majors and appro-
priate challenges for more advanced students.

• Every student who majors in the mathematical
sciences should complete a year-long course se-
quence at the upper-division level that builds on
two years of lower-division mathematics.

• Instructional strategies should encourage stu-
dents to develop new ideas and discover new
mathematics for themselves, rather than merely
master the results of concise, polished theories.

• Every topic in every course should be well moti-
vated, most often through an interplay of appli-
cations, problem-solving, and theory. Applica-
tions and interconnections should motivate the-
ory so that theory is seen by students as useful
and enlightening.

• Students majoring in mathematics should un-
dertake some real-world mathematical modelling
project.

• Mathematics majors should complete a minor in
a discipline that makes significant use of mathe-
matics.

Emphasis on coherence, connections, and the in-
tellectual development of all students are evident
in these principles from the 1981 CUPM report.
At the level of broad goals, the prevailing profes-
sional wisdom concerning undergraduate mathe-
matics matches well the intent of AAC’s Integrity.

Diverse Objectives

Once one moves beyond generalities and into
specifics of program development, however, main-
stream mathematical practice often diverges from
many of the explicit AAC goals. Most students
study mathematics in depth not to achieve broad
goals of liberal education but for some professional
purpose—for example, to support their study of
science or to become a systems analyst, teacher,
statistician, or computer scientist. Others study
mathematics as a liberal art, an enjoyable and chal-
lenging major that can serve many ends. It is as
true in mathematics as in any other field that the
great majority of undergraduate mathematics ma-
jors do not pursue advanced study that builds on
their major.
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Because so few U.S. students pursue graduate
study in the mathematical sciences, many math-
ematicians believe that the mathematics major
should be strengthened in ways that will prepare
students better for graduate study in mathematics.
Whereas formerly this view may have been based
on the myopic academic view of undergraduate ed-
ucation as the first step in the reproduction of uni-
versity professors, today in mathematics this per-
spective is reinforced by vigorous argument based
on an impending shortage of adequately trained
mathematics faculty. Some argue for greater depth
to ensure that all mathematics majors are capable
of pursuing further study; others argue for greater
breadth to attract more students to the mathe-
matical sciences. National need has now reinforced
self-interest in emphasizing preparation of the next
generation of Ph.D. mathematicians as an impor-
tant priority for many college and university math-
ematics departments [20, 39].

This said, there remains considerable room for
debate about strategies for achieving the several
different (but overlapping) objectives that are com-
mon among the majors offered by the 2500 math-
ematics departments in U.S. colleges and universi-
ties:
• Advanced Study. Preparation for graduate

study in various mathematical sciences (includ-
ing statistics and operations research) or in other
mathematically based sciences (e.g., physics,
computer science, economics).

• Professional Preparation. Skills required
to pursue a career that requires considerable
background in mathematics:
• Natural and Social Science. Background for

careers in science or engineering, in biology (in-
cluding agriculture, medicine, and biotechnol-
ogy), in many computing fields, and in such
emerging interdisciplinary fields as cognitive
science or artificial intelligence.

• Business and Industry. Preparation for ca-
reers in management, finance, and other busi-
ness areas that use quantitative, logical, or
computer skills normally developed through
undergraduate study of mathematics.

• School Teaching. Preparation for teaching sec-
ondary school mathematics, or for careers as
mathematics-science specialists for elementary
school.

• Liberal Education. General background

for non-mathematical professions such as law,
medicine, theology, or public service, or for other
employment which does not directly use mathe-
matical skills.

There is no lack of sources for advice about ob-
jectives. Recent documents outline priorities for
teacher training [14], applied mathematics [25],
and service courses [33]. The diversity of U.S. edu-
cation ensures that different departments will have
different priorities that recognize differences in en-
tering students, in goals of graduates, and in insti-
tutional missions.

For many students the link between their under-
graduate major and their post-graduate plans is
very elastic. Such students study mathematics for
the same reason that hikers climb mountains—for
challenge, for fun, and for a sense of accomplish-
ment. Often mathematics is paired with another
major to provide complementary strengths. At one
institution this has helped strengthen the mathe-
matics major while enhancing connections to other
fields of study:

An analysis of the senior class shows that nearly
half of the graduates had double majors. In many
cases the mathematics major was taken to pro-
vide theoretical and computational grounding nec-
essary for a modern approach to primary majors
in economics, physics, chemistry, or biology. In
other cases availability of a double major gave stu-
dents who enjoyed mathematics an opportunity to
continue their studies in mathematics while also
gaining a desired major in an apparently unrelated
field—for example, English, philosophy, or music.
Many of our majors chose mathematics as a sound
liberal arts approach to a general education. The
success of the major program in mathematics is
due in part to the belief of both faculty and stu-
dents that the study of mathematics is not just
for those intending to pursue a career in the area.

Some argue that the goals of liberal education
are best served by a mathematics major designed
to prepare students for graduate school. Even
though most mathematics majors never undertake
further study of mathematics, advocates of pre-
graduate preparation argue that the special com-
bination of robust problem solving with rigorous
logical thinking achieved by a solid pre-graduate
major also serves well the more general objectives
of sequential study, intellectual development, and
connected learning. This view is substantiated in
part by a strong history of mathematics majors
being eagerly sought by employers and graduate
programs in other areas (e.g., law, economics) for
a wide variety of non-mathematical professions.
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Others argue that since most of today’s college
students do not foresee graduate study in math-
ematics as a desirable goal, it is only through a
more general major stressing links to other fields
that enough students can be recruited to major
in mathematics to serve as a proper basis for the
nation’s needs in teaching, in science, and in math-
ematics itself. In this view, a broad major stress-
ing mathematics as part of liberal education is an
effective strategy for strengthening the pool of po-
tential mathematical doctoral students as well as
students in other mathematically oriented profes-
sions. It is rare to find a department of mathe-
matics that would naturally place top priority on
a major that specifically serves liberal education,
as is common, for example, in many departments
of English or philosophy. The needs of society and
the constraints of client disciplines in science and
engineering do not permit mathematicians this lux-
ury. But in the present climate, departments are
rediscovering the strategic value of a broad major,
even for those who do continue professionally in
mathematics. Here’s how one institution expresses
its objectives for the mathematics major:

The mathematics major is designed to include stu-
dents with a wide variety of goals, tastes, and
backgrounds. Mathematics is an excellent prepa-
ration for fields from technical to legal, from sci-
entific to managerial, and from computational to
philosophic. It is also a source of satisfaction for
people in every line of endeavor. Recognizing this,
we have constructed a program to welcome inter-
ested students of all sorts. Our comparatively un-
structured program reflects not only the diversity
of interests of our students, but their increasingly
diverse backgrounds, and the increasingly diverse
nature of what are now being called the “mathe-
matical sciences.”

Since department goals must match institutional
missions, it would not be right for any commit-
tee to recommend uniform goals for individual de-
partments. We can, however, urge increased atten-
tion to an important and distinctive feature of un-
dergraduate mathematics: National need requires
greater encouragement for students to continue
their study of mathematics beyond the bachelor’s
level—whether as preparation for school teaching,
for university careers, or for employment in gov-
ernment and industry. In some institutions this
encouragement may arise from a thriving pre-
graduate program; in others it may evolve from an
emphasis on liberal education. In all cases, depart-
mental objectives must be realistically matched

to student aspirations and to institutional goals.
Wherever faculty and students share common ob-
jectives, mathematics can thrive.

Multiple Tracks

Most mathematics departments resolve the di-
lemma of diverse goals for the major with some
sort of track system. In some institutions there
are separate departments such as Applied Math-
ematics, Operations Research, Statistics, or Com-
puter Science, whereas in others these options are
accommodated by means of explicit or implicit
choices within the offerings of a single Department
of Mathematics or Department of Mathematical
Sciences. Tracks within the major are a sensible
strategy to respond to competing interests of stu-
dents, of faculty, and of institutions.

Although tracks do accommodate student inter-
ests—and thereby help sustain enrollments—they
can produce a fragmented curriculum. Whereas
in the late 1960s most mathematics majors took
six or seven standard courses before branching into
electives, by 1981 CUPM found that there was no
longer any national agreement on such an exten-
sive core of the undergraduate mathematics ma-
jor. At that time, only elementary calculus and lin-
ear algebra were universally recognized as required
courses within the mathematics major. Branching
occurred after the third or fourth course, rather
than after the sixth or seventh.

Today however, despite institutional diversity,
there is striking uniformity in the elementary and
intermediate courses pursued by mathematics ma-
jors: all begin with calculus for two, three, or
four semesters; most introduce linear algebra in the
sophomore year and require one or two semesters of
abstract algebra; virtually all require some upper
division work in analysis—the “theory of calculus.”
Nowadays, most require some computer work (pro-
gramming, computer use, or computer science) as
well as some applied work (statistics, differential
equations, etc.) among the electives. This restores
a de facto six-course core to the major, typically
half the total.

The rise, fall, and restoration of a core cur-
riculum in the mathematics major paralleled simi-
lar patterns in other arts and sciences. Whereas
the CUPM recommendations of the late 1960s
may have had too narrow a focus, the subsequent
curricular chaos of the mid-1970s may have been
too unstructured. Mathematicians began worrying
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then—as AAC is now—about whether the typical
student’s experience with the mathematics major
may lack appropriate coherence and depth. Too
often, it seemed to many, the mathematics major
had become just an accumulation of courses with-
out sufficient structure to ensure a common core of
learning.

In most colleges courses in the mathematical sci-
ences are taught in many different departments.
Even upper division mathematics courses are com-
monly taught in departments of application: a re-
cent survey [28] shows that as many students study
post-calculus mathematics outside departments of
mathematics as do so within traditional mathe-
matics course offerings. Examples include discrete
mathematics taught in departments of computer
science; methods of mathematical physics taught
in departments of physics; logic and model theory
taught in departments of philosophy; optimization
and operations research taught in departments of
economics; and mathematical foundations of lin-
guistics taught in departments of linguistics. The
practice of cross-listing such courses or counting
them as electives in the major varies enormously
(and arbitrarily) from campus to campus.

Whether for good or ill, the diffusion of mathe-
matics courses both within departments of math-
ematical sciences and into other departments has
moved the mathematics major away from a strict
linear vertical pattern towards a more horizontal
structure typical of the humanities or social sci-
ence major. Today’s major, however, retains a dis-
tinctive strength of mathematics: sequenced learn-
ing. By its very nature, mathematics builds on it-
self and reinforces links among related fields. All
mathematics courses build on appropriate prereq-
uisites. A student who progresses from calculus
to probability to operations research sees just as
many connections as does one who moves through
the more traditional sequence of advanced calcu-
lus and real analysis. Although the focus of each
student’s work is different, the contributions made
by each track to the general objectives of study in
depth are comparable, and equally valuable.

Moreover, it is common for advanced courses to
be offered in sequences (e.g., Abstract Algebra I,
II; Real Analysis I, II; Probability and Statistics
I, II) that begin with a three or four course chain
of prerequisites. Many departments, following the
1981 CUPM recommendations, require mathemat-

ics majors to take some advanced sequence without
specifying which particular sequence it should be.
Thus most mathematics majors today take a sub-
stantial sequence of courses, but they no longer all
take the same sequence of core courses. This is a
wise policy for undergraduate mathematics in to-
day’s diverse climate: Each student who majors in
mathematics should experience the power of deep
mathematics by taking some upper-division course
sequence that builds on lower-division prerequisites.
It is neither necessary nor wise, however, to re-
quire that all mathematics majors take precisely the
same sequence.

Flexibility with rigor can be administered in a
variety of ways. In one institution with a flourish-
ing mathematics major, the mechanism is a per-
sonal “contract” developed to suit each student’s
own objectives:

Students arrange their major sequence according
to a contract system. Potential majors meet with
a member of the department and prepare a list of
courses and activities that will constitute the ma-
jor. This allows the student to arrange his or her
program to suit special needs. The faculty mem-
ber judges the appropriateness of the student pro-
posal in terms of post-graduate plans, other stud-
ies, and general departmental guidelines. This
contract system has two distinct advantages: it
serves the personal needs of students, and the pro-
cess itself enhances students’ education. The pro-
cess of developing the contract provides an oppor-
tunity for the student to work closely with a fac-
ulty member, to understand the variety of math-
ematical options in a personal framework, and to
see how a program ensuring depth and breadth of
study can be achieved.

Emphasizing Breadth

At the same time as we stress the value of se-
quential courses to study in depth, we must also
emphasize the essential contribution of breadth
to building mathematical insight and maturity.
Whereas course sequences demonstrate depth by
building in expected fashion on prior experience,
the links that emerge among very different courses
(tying geometry to calculus, group theory to com-
puter science, number theory to analysis) re-
veal depth by indirection: such links point to
deeper common principles that lie beyond the
student’s present understanding but are within
grasp with further study. They show the moun-
tain yet to be climbed—to shift metaphors from
depth to height—and offer hints of the explana-
tory panorama to be revealed by some future and
more profound principles.
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There are other good reasons to recommend
breadth as an important objective of an under-
graduate mathematics major. Students who are
introduced to a variety of areas will more readily
discern the power of connected ideas in mathemat-
ics: unexpected links discovered in different areas
provide more convincing examples of a deep logical
unity than do the expected relationships in tightly
sequenced courses.

For the many majors who will teach (either in
high school or college), it is vitally important that
their undergraduate experience provide a broad
view of the discipline—since further study gener-
ally is more narrow and specialized. For those
seeking their niche in the world of mathematics,
a broad introduction to many different yet inter-
connected subjects, styles, and techniques helps
pique interest and attract majors. And for the
many students who may never make professional
use of mathematics, depth through breadth offers
a strong base for appreciating the true power and
scope of the mathematical sciences. Graduates of
programs that emphasize breadth will become ef-
fective ambassadors for mathematics.

Every student who majors in mathematics
should study a broad variety of advanced courses in
order to comprehend both the breadth of the mathe-
matical sciences and the powerful explanatory value
of deep principles. Such breadth can sometimes be
achieved with courses offered by the department
of mathematics, but more often than not it would
be educationally advantageous for students to also
select a few mathematically-based courses offered
by other departments.

Effective Programs

Departments of mathematics in colleges and uni-
versities exhibit enormous variety in goals and ef-
fectiveness. In various universities, the percentage
of bachelor’s degrees awarded to students with ma-
jors in mathematics ranges from well under one-
half of 1 percent to over 20 percent. In some
departments the major is designed primarily to
prepare students for graduate school. Other de-
partments focus much of their major on preparing
students to teach high school mathematics, or on
preparing students for employment in business and
industry. Most departments fail to attract or retain
many Afro-American, Hispanic, or Native Ameri-
can students, whereas a few succeed in this very
difficult arena.

Many measures can be used to monitor effective-
ness of a mathematics major. Indicators of num-
bers of majors, of employability, of graduate school
admissions, of eventual Ph.D.s, or of placement in
teaching jobs are used by different departments ac-
cording to their self-determined missions. Many
mathematics departments work hard to improve
their effectiveness in one or another of these dif-
ferent dimensions. Exploration, experimentation,
and innovation—along with occasional failures—
are the hallmarks of a department that is commit-
ted to effective education.

Mathematics programs that work can be found
in all strata of higher education, from small pri-
vate colleges to large state universities, from av-
erage to highly selective campuses. The variety
of mathematics programs that work reveal what
can be achieved when circumstance and commit-
ment permit it. When faculty resolve is backed by
strong administrative support, most mathematics
departments can easily adopt strategies to build
vigorous majors even while meeting other service
obligations.

One department that has had great success in
attracting students to major in mathematics bases
its work on two “articles of faith:”
• We believe that faculty should relate to their stu-

dents in such a way that each student in the de-
partment will know that someone is personally in-
terested in him and his work.

• We believe that careful and sensitive teaching that
helps students develop confidence and self-esteem
is far more important than curriculum or teaching
technique.

Another department builds strength on a founda-
tion of excellent introductory instruction:

We put our best teachers in the introductory
courses. We put the most interesting material
in the introductory courses. We try to make the
statements of problems fun, not dry. We work
very hard to motivate all topics, drawing on ap-
plications in other disciplines and in the working
world. We are less interested in providing answers
than in motivating students to ask the right ques-
tions.

Effective mathematics programs reflect sound prin-
ciples of psychology as much as important topics
in mathematics:

We try to make students proud of their efforts
in mathematical problem-solving, and especially
proud of their partial solutions—what some might
call mistakes. We look at how much is right in an
answer and teach how to detect and correct the
parts that are wrong.
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Regular, formal recognition of student achieve-
ment at different stages of the major serves to build
students’ confidence and helps attract students to
major in mathematics. Students know mathemat-
ics’ reputation for being challenging, so recognition
of honest accomplishment can provide a tremen-
dous boost to a student’s fragile self-esteem. Effec-
tive programs teach students, not just mathematics.

Challenges for the 1990s

Changes in the practice of mathematics and in
the context of learning pose immense challenges
for college mathematics. Many of those issues that
pertain directly to course content, curricular re-
quirements, and styles of instruction are under re-
view by committees of the mathematical commu-
nity. We focus here on challenges that transcend
particular details of courses and curriculum:
• The learning problem: To help students learn to

learn mathematics.
• The teaching problem: To adopt more effective

styles of instruction.
• The technology problem: To enhance mathemat-

ics courses with modern computer methods.
• The foundation problem: To provide intellectu-

ally stimulating introductory courses.
• The connections problem: To help students con-

nect areas of mathematics and areas of applica-
tion.

• The variety problem: To offer students a suf-
ficient variety of approaches to a mathematics
major to match the enormous variety of student
career goals.

• The self-esteem problem: To help build students’
confidence in their mathematical abilities.

• The access problem: To encourage women and
minorities to pursue advanced mathematical
study.

• The communication problem: To help students
learn to read, write, listen, and speak mathemat-
ically.

• The transition problem: To aid students in mak-
ing smooth transitions between major stages in
mathematics education.

• The research problem: To define and encourage
appropriate opportunities for undergraduate re-
search and independent projects.

• The context problem: To ensure student atten-
tion to historical and contemporary contexts in
which mathematics is practiced.

• The social support problem: To enhance stu-
dents’ personal motivation and enthusiasm for
studying mathematics.

These challenges have more to do with the suc-
cess of a mathematics program than any curricu-
lar structure. In the diverse landscape of Amer-
ican higher education, successful programs differ
enormously in curricular detail, but they all have
in common effective responses to many of these
broader challenges. The agenda for undergradu-
ate mathematics in the 1990s must focus at least
as much on these issues of context, attitude, and
methodology as on traditional themes such as cur-
ricula, syllabi, and content.

Learning

One principal goal of the undergraduate math-
ematical experience is to prepare students for life-
long learning in a sequence of jobs that will re-
quire new mathematical skills. Departments of
mathematics often interpret that goal as calling
for breadth of study. But another interpretation is
just as important: because mathematics changes so
rapidly, undergraduates must become independent
learners of mathematics, able to continue their own
mathematical education once they graduate.

Most college students don’t know how to learn
mathematics, and most college faculty don’t know
how students do learn mathematics. It is a tribute
to the efforts of individual students and teachers
that any learning takes place at all. Effective pro-
grams pay as much attention to learning as they
do to teaching.

First-year students need special attention to
launch their college career on a suitable course.
Typically, they carry with them a high school tra-
dition of passive learning which emphasizes bite-
sized problems to be solved by techniques provided
by the textbook section in which the problem ap-
pears. Unfortunately, by maintaining this tradi-
tional teaching format which perpetuates the myth
of passive mathematics learners, college calculus
teachers typically contribute more to the problem
than to its solution.

For example, calculus, the common entry point
for potential mathematics and science majors, of-
ten fails to come alive intellectually as it should
or as it is now at many institutions where calcu-
lus reform efforts are underway. One school has
found that new goals for calculus can significantly
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enhance the entrée of students into the study of
college mathematics:

The larger goals of the major are reflected in the
calculus sequence, which is founded on three prin-
ciples: context, collaboration, and communica-
tion. “Context” means that we focus on the mean-
ing and significance of calculus in the world. “Col-
laboration” means that students work in groups
and support each other. “Communication” means
the recognition that calculus is first of all a lan-
guage, not only for scientists, but for economists
and social scientists. Our goal is fluency.

Another institution uses calculus as a vehicle to
broaden radically the view of mathematics that
students bring with them from high school:

Calculus should give students a solid base for ad-
vanced study. It is our opinion that our calculus
courses were the weakest part of our program. We
had, in effect, allowed the high schools to set the
tone for our entire program. Our new course is so
radically different from traditional calculus that
our students are forced to confront the transition
from school to college mathematics. It carries sev-
eral important messages, e.g., mathematics is cru-
cial for understanding science; mathematics has a
strongly experimental side; mathematics is some-
thing we all are capable of understanding deeply;
and mathematics is the most powerful of all the
sciences.

Some institutions offer special freshman semi-
nars as a way to encapsulate the ideal of liberal
education in an intimate setting that permits stu-
dents to identify with faculty mentors. However,
in mathematics the massive tradition of calculus
often stands in the way, so very few mathematics
majors can trace the origin of their college major to
a freshman seminar. Ideally calculus itself would
be seen by colleges as the intellectual equivalent
of a freshman seminar in which students learn to
speak a new language. If that analogy were to be
accepted, mathematics departments would teach
calculus only in a context that placed a great deal
of emphasis on one-to-one communication between
student and teacher. Unfortunately, in too many
institutions calculus is taught in large impersonal
settings that make meaningful person-to-person di-
alogue unrealistic. Many efforts are now under-
way to reform the teaching of calculus [64]; most
of these experiments emphasize student motivation
and styles of learning as a primary factor in reshap-
ing the course.

One way or another, students should learn early
in their college years how to study and learn math-
ematics. They should learn psychological as well
as mathematical strategies for solving problems.

They should come to recognize that it is common
even for mathematicians to hear lectures or read
material that they cannot grasp, and they must
learn how to pick up clues from such experiences
that will fit into their personal mathematical puz-
zles only some time later. They should learn the
value of persistence and the strategic value of go-
ing away and coming back. These “metacognitive”
skills to control one’s own learning are virtually
never learned in high school mathematics, so they
must be planned into the early stages of the college
curriculum.

As students progress through their mathemat-
ical study, they need to learn the value of li-
brary and electronic resources as tools for learn-
ing. Mathematics students rarely use the library or
other sources of information, concentrating instead
on mastering material in course texts. They need
specific assignments that focus on the big map of
mathematics in order to gain perspective on their
brief undergraduate tour. Undergraduate students
should not only learn the subject of mathematics,
but also learn how to learn mathematics. The ma-
jor in mathematics should become more than the
sum of its courses. By conscious effort to help stu-
dents negotiate in unfamiliar terrain, instructors
can provide them with the tools of inquiry neces-
sary to approach the literature and learn whatever
they need to know.

Teaching

The purpose of teaching, and its ultimate mea-
sure, is student learning. So in some sense one
cannot discuss one without the other. However,
as students must learn to learn, so teachers must
learn to teach. In mathematics more than in most
other subjects, the role of teaching assistants and
part-time instructors is particularly important, es-
pecially in the first year [12]. Although there is
no formula for successful teaching, there is con-
siderable evidence that separates certain practices
that have proven successful from those that are
generally ineffective [55]. Teachers who study this
evidence can learn much from the experiences of
others.

Despite the general reputation of mathematics
as one of the most desirable environments for devel-
oping rigorous habits of mind, criticism of under-
graduate mathematics has been mounting in recent
years for failure in this, mathematics’ distinctive
area of strength. Those who study cognitive de-
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velopment criticize standard teaching practices for
failing to develop fully students’ power to apply
their mathematical knowledge in unfamiliar ter-
rain. These critics conclude that present teaching
practice in undergraduate mathematics does not
do as much as it should to develop students’ intel-
lectual power.

The evidence of failure is persuasive, both lo-
cally and globally [57]. Data on the inability of
the profession to attract and retain the best and
brightest college graduates is confirmed by case
studies of students who cannot make effective use
of what they have learned. Although some very
good students use a mathematics major as a plat-
form for substantial accomplishment, the majority
of those who major in mathematics never move
much beyond technical skills with standard text-
book problems. Passive teaching and passive learn-
ing results from an unconscious conspiracy of mini-
mal expectations among students and faculty, both
of whom find advantages in a system that avoids
the challenges of active learning that fully engages
both students and teacher. Both the curriculum
and teaching practices must respond to this chal-
lenge of intellectual malnutrition that is all too
common in today’s major.

Much of the research that bears on how students
learn college mathematics has been conducted in
the setting either of high school mathematics or
college physics. The results from these efforts are
often surprising, yet not well known among uni-
versity mathematicians. They show, among other
things, that formal learning by itself rarely influ-
ences behavior outside the artificial classroom con-
text in which the concept was learned [53, 54].
Students who know how to solve differential equa-
tions of motion often have no better insight into
the behavior of physical phenomena described by
these equations than do others who never studied
the equations; students who have learned course-
based tests of statistical significance frequently do
not recognize statistical explanations for events in
the world around them [47].

Additional evidence of how young adults learn
mathematics—or more often, why they fail to
learn—has accumulated in recent years as a re-
sult of many innovations in teaching tried on dif-
ferent campuses. For example, intervention pro-
grams designed to improve the mathematical per-
formance of minority students show the impor-

tance of a supportive environment: constructive
teamwork in a context of challenging problems in
which instructors and students know each other
personally builds mathematical self-esteem and, as
a consequence, leads to greatly improved learn-
ing [5, 30, 63]. Very different but equally strik-
ing lessons emerge from experiences of students
who study calculus in a technology-intensive en-
vironment: by forcing students (and instructors)
to focus on the behavior of mathematical objects
(functions, algorithms, operators) rather than on
their formalism, and by integrating visual, numer-
ical, and symbolic clues into the mathematical en-
vironment, computers reveal to students and fac-
ulty both avenues for insight and common sources
of misconception [36].

A third example, but by no means the last that
could be cited, can be found in evidence of im-
proved student motivation and self-reliance that
occurs in those contexts where research-like experi-
ences are used to enrich traditional classroom and
textbook experiences: students whose minds and
eyes become engaged in the challenge of true dis-
covery are frequently transformed by the experi-
ence [56].

The evidence from such diverse but non-tradi-
tional instructional environments shows clearly
the effectiveness of instruction that builds self-
confidence on the foundation of significant accom-
plishment in a context that is meaningful to the
student. Here is an especially dramatic example:

In 1986 we began a critical evaluation of our
program, course offerings, and teaching methods.
This examination led to profound changes in our
understanding of the teacher-student relationship,
and of our role in the educational process. We
found, for example, that we had not engaged our
students sufficiently to assume an active role in
their learning of mathematics. So we deliberately
modified our courses and attitude to experiment
with active student participation in doing math-
ematics problems and theory both in class and
outside class.

Results were strikingly positive, and we largely
discontinued the typical mathematics lecture for-
mat, since lecturing kept students in a passive
role. With an active participation method, stu-
dents studied the text and worked problems be-
fore class; faculty and students discussed difficult
points in class. Students presented problems and
results on the board in class with encouragement
and guidance from the instructor. We found that
students became actively and enthusiastically in-
volved in their learning of mathematics, with the
instructor acting as a coach.

As a consequence of these changes, our faculty
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and students have become a community of learn-
ers and scholars. Students now do mathematics
in groups outside class, and more graduating se-
niors are seeking advanced degrees in mathemat-
ics. The number of mathematics majors rose from
69 in 1986 to 104 in 1988; the Mathematics De-
partment is now the largest unit in the School of
Natural Sciences. Finally, and perhaps most im-
portant, faculty affirm the belief that many more
students can realize their mathematical abilities.

Several barriers separate educational studies and
experiments from the larger community of college
and university mathematicians. First, there are
very few individuals who conduct formal research
dealing directly with college mathematics. Second,
mathematicians tend to distrust educational re-
search. Third, and perhaps more important, math-
ematicians follow habit more than evidence in their
teaching styles: even well-documented reports of
better methods are insufficient to influence math-
ematicians to change their teaching habits. (This
is not really too surprising, since neither do con-
vincing classroom explanations of effective math-
ematical methods suffice to eradicate deep-seated
misconceptions among students.)

Too often mathematicians assume with little re-
flection that what was good for their education is
good enough for their students, not realizing that
most of their students, not being inclined to be-
come mathematicians, have very different styles
of learning. College faculty must begin to recog-
nize the proven value of various styles of instruc-
tion that engage students more directly in their
own learning. Those who teach college mathemat-
ics must seek ways to incorporate into their own
teaching styles the findings of research on teaching
and learning.

Studies of metacognition and problem solving
have yielded some insights that could be useful in
pedagogy, but they have also been frustrated by
barriers that confront all teachers of mathematics
(for example, the difficulty of assessing just what
has been learned, and the great length of time re-
quired to develop effective problem-solving heuris-
tics). Such studies may yield insights that will
change for the better the way teachers teach and
students learn. But so far, college-level evidence
is sufficiently slim to make the case unconvincing
to those who most need to be persuaded. We re-
ally don’t know how to induce most students to
rise to the challenge of mathematical thinking; we
have much to learn about what works and what

does not. To improve our understanding of the in-
tellectual development of college mathematics stu-
dents, mathematicians should increase their efforts
to conduct research on how college students learn
mathematics.

We need to experiment with new ways to eval-
uate teaching. One key factor in good teaching
is how much students learn; other factors include
such issues as how many students decide to major
in mathematics, to go on to graduate school, or to
work in mathematical careers. These are measures
of the quality of teaching done both by an indi-
vidual and by a department. They look not only
to indicators such as demonstrable knowledge, but
also to motivation, attitude, and enthusiasm for
the discipline. Evaluation of teaching must involve
robust indicators that reflect the broad purposes of
mathematics education.

Technology

Computing has changed profoundly—and per-
manently—the practice of mathematics at every
level of use. College mathematics departments,
however, often lag behind other sciences in adapt-
ing their curricula to computing, although con-
siderable momentum is now building within the
community for greater use of computing. The
delay in response may have been due in part to
conservatism of mathematicians, but at least as
important is the simple fact of computer power:
only in the last few years have desk-top machines
achieved sufficient power to provide a legitimate
aid to undergraduate (and research) mathematics.
As a consequence, scientific computation is becom-
ing a third paradigm of scientific investigation—
alongside experimental and theoretical science—
and the role of experiment in the practice of math-
ematics itself is increasing [52].

Computing can enhance undergraduate study in
many ways. It provides natural motivation for
many students, and helps link the study of mathe-
matics to study in other fields. It offers a tool with
which mathematics influences the modern world
and a means of putting mathematical ideas into
action. It alters the priorities of courses, rendering
certain favorite topics obsolete and making oth-
ers, formerly inaccessible, now feasible and neces-
sary [34, 68]. Computers facilitate earlier introduc-
tion of more sophisticated models, thus making in-
struction both more interesting and more realistic.
The penetration of computing into undergraduate
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mathematics is probably the only force with suffi-
cient power to overcome the rigidity of standard-
ized textbooks [59, 66, 22].

The power of technology serves also an epistemo-
logical function by forcing mathematicians to ask
anew what it means to know mathematics. Those
who explore the impact of technology on educa-
tion indict introductory mathematics courses for
imparting to students mostly skills that machines
can now do more accurately and more efficiently. It
is certainly true that typical indicators of student
performance document primarily that mathemat-
ics students can carry out prescribed algorithms—
just what computers (or calculators) can do. Col-
lege faculty can no longer avoid the deep challenge
posed by computers for undergraduate mathemat-
ics: once calculations are automated, what is left
that can be taught effectively to average students?

Responses to this challenge are taking shape in
experimental programs in many departments of
mathematics. It is, therefore, too early to describe
the impact computing will have on the mathemat-
ics major. Certainly in those courses and tracks
devoted to applied mathematics, computing must
exert a major influence on the shape of the curricu-
lum. In this age it would be unconscionable to offer
a major in applied mathematics, statistics, or oper-
ations research without substantial and fully inte-
grated use of computer methods. Change will come
more slowly in core subjects such as topology, anal-
ysis, and algebra. In each of these subjects there
are impressive computer-based applications (e.g.,
fractals, coding theory, dynamical systems), yet
none of these applications has been central to the
traditional methodology of the subject as taught
in introductory courses. Despite differences in the
pace of change, however, there is no turning back:
computers have dramatically altered the practice
of mathematics. To ensure an effective curriculum
for the twenty-first century, undergraduate math-
ematics should change—both in objectives and in
pedagogy—to reflect the impact of computers on the
practice of mathematics.

Early experiments that make significant use of
computing in undergraduate mathematics courses
show that as the balance of student work shifts
from computation—which machines do better than
humans—to thought, the course becomes more dif-
ficult, more unsettling, and less closely attuned to
student expectations [58]. As the ground rules of

mathematics change from carrying out prescribed
procedures to formulating problems and interpret-
ing results, it will become more important than
ever for faculty to communicate clearly to students
the goals of the curriculum and how they might dif-
fer from what students have been led to believe by
their prior study of school mathematics.

One institution reports that computers have
changed the context of education in significant and
unexpected dimensions:

We constructed a strong computer-experimental
component at all levels. Besides the obvious ad-
vantages for building experience, context, and in-
tuition, there are less obvious payoffs. For exam-
ple, laboratories are places where students spend
lots of time and which become, in reality, their
habitats outside of their dormitory rooms. Stu-
dents form allegiances and friendships in labora-
tories.

Different types of surprises were revealed on an-
other campus that has pioneered use of computers
in advanced courses:

The use of computer software made possible the
introduction of topics previously reserved for grad-
uate students. Examples include the use of MAC-
SYMA, REDUCE, and MACAULEY in commu-
tative algebra and algebraic geometry. For exam-
ple, a 1989 honors thesis gave us strong evidence
of the advances possible in learning mathematics
with the help of computational aids.

Computers change not only how mathematics
is practiced, but also how mathematicians think.
Both changes are unsettling, yet ripe with oppor-
tunity for effective education. Indeed, in the realm
of computing, students and faculty must grope to-
gether towards a new balance of power among the
many components of undergraduate mathematics.

The transition of mathematics from a purely cer-
ebral paper-and-pencil (or chalk-and-blackboard)
discipline to a high technology laboratory science is
not inexpensive. Space must be expanded for labo-
ratories; classrooms and offices need to be equipped
with computers and display devices; support staff
must be hired to maintain both hardware and soft-
ware; faculty must be given time to learn to use
computers, to learn to teach with computers, and
to redesign courses and entire curricula to reflect
the impact of computing. Institutions must plan
not only for an expensive transition, but also for
continued operation at a higher plateau compara-
ble to the traditional laboratory sciences. Colleges
must recognize in budgets, staffing, and space the
fact that undergraduate mathematics is rapidly be-
coming a laboratory discipline.
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Foundations

Because of the highly sequenced nature of the
mathematics curriculum, no student can com-
plete an undergraduate mathematics major with-
out having secured a proper foundation of calculus,
linear algebra, and computing in the first two years
of college. For many students, half of the credits
required for the major are taken in the first two
years. So the nature of mathematical learning in
these years is of crucial importance both for indi-
vidual success in completing a strong mathematics
major, and for programmatic success in building a
critical mass of upper class mathematics majors.

One-third of the first and second year college
students in the United States are enrolled in two-
year colleges, including over two-thirds of Afro-
American, Hispanic, and Native American stu-
dents. It is clear from these figures that any ef-
fort to strengthen the undergraduate mathematics
major, especially to recruit more majors among mi-
nority students, must be carried out in a manner
that includes two-year colleges as a full partner in
preparing the foundation for study in depth.

The tradition of common texts and relatively
standard syllabi for standard mathematics courses
in the first two years has facilitated transfer of
students and credits during these years even as
it has mitigated against the open intellectual en-
vironment many believe to be essential for ef-
fective learning. Now, however, as momentum
builds for reform of courses in the first two years,
and as departments experiment in an effort to
reshape the entire mathematics major, there is
some risk that students from lower socio-economic
backgrounds—the predominant clientele of the
two-year colleges—will find themselves pursuing a
course of study that is inconsistent with the efforts
of four-year colleges to improve the undergraduate
mathematics major.

Some four-year institutions that are engaged in
curricular reform are extending the scope of their
mathematics program to include informal consor-
tia with other nearby institutions. One private
Eastern liberal arts college is building just such
arrangements into its mathematics program:

Plans are underway to create a partnership with
a local community college and a public school sys-
tem to interest students, especially minority stu-
dents, in mathematics.

Many institutions maintain regular ties with lo-
cal high schools or community colleges, but it is

rare to find such arrangements related specifically
to mathematics departments. What is now rare
should become common: To ensure equal opportu-
nity for access to undergraduate mathematics ma-
jors, mathematics departments should work with
nearby two-year colleges to maintain close artic-
ulation of programs.

Connections

Recent studies of the mathematical sciences [7,
8] point to two special features that have charac-
terized twentieth-century research: the extensive
growth in areas of application (no longer just lim-
ited to physics and engineering) and the impressive
unity of mathematical theories (revealed by the fre-
quent use of methods from one specialty to solve
problems in another specialty). Connectedness,
therefore, is inherent in mathematics. It is what
gives mathematics its power, what establishes its
truth, and what reveals its beauty.

Mathematics is widely recognized as the lan-
guage of science. Its enabling role in the develop-
ment of the physical sciences formed the paradigm
of the scientific method. Today it is beginning to
play a similar role in the biological sciences, where
mathematical tools as diverse as knot theory, non-
linear dynamics, and mathematical logic are being
applied to model the structure of DNA, the flow of
blood, and the organization of the brain.

Similar connections have emerged in the human,
social, and decision sciences. Statistical models un-
dergird virtually every study of human behavior;
axiomatic studies have helped establish a rigor-
ous theory of social choice; and multi-dimensional
mathematical analysis is employed widely to model
the multitudinous attributes of economic, psycho-
logical, or social behavior. Today mathematics is
truly the language of all science—physical, biolog-
ical, social, behavioral, and economic.

Even as the connections multiply between ab-
stract ideas of mathematics and concrete embodi-
ments in the world, so too have the internal con-
nections within the mathematical sciences prolifer-
ated. Key theorems and deep problems that link
separate mathematical specialties have provided a
force for vast growth of interdisciplinary research.
Examples abound, including such areas as stochas-
tic differential equations at the interface of prob-
ability theory and analysis; combinatorial geome-
try joining arithmetical methods of discrete math-
ematics to problems of space, shape, and position;
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and control theory that employs tools from analy-
sis, linear algebra, statistics, and computer science
to formulate effective mechanisms of control for au-
tomated processes.

If the undergraduate major does not reveal con-
nections, it has not revealed mathematics. Most
mathematics courses and most mathematics ma-
jors do make substantial contributions to this ob-
jective. Indeed, it is not uncommon for sophomores
to select mathematics as a major instead of chem-
istry or biology precisely because in their mathe-
matics courses they can see more clearly the logical
connections among different parts: in mathematics
they can “figure things out” rather than just mem-
orizing results. (Of course, many students make
the opposite choice, but usually for other reasons.)

At its best, mathematics overflows with connec-
tions, both internal and external. But one must be
honest: undergraduate courses do not always show
mathematics at its best. At their worst, especially
in lower-division courses through which both ma-
jors and non-majors must pass, they reveal math-
ematics as a bag of isolated tricks: problems in
elementary courses are often solved more by recog-
nition of which section of the text they come from
than by any real understanding of fundamental
principles. Dealing with open-ended problem sit-
uations should be one of the highest priorities of
undergraduate mathematics. For example:
• Mathematics teachers could bring in outside

(“real-world”) examples to illustrate applica-
tions of material being studied in regular course-
work.

• Student projects could emphasize connections,
either to fields that use mathematics or from one
part of mathematics to another.

• Greater emphasis on multi-step problems amen-
able to a variety of approaches would wean stu-
dents away from the school tradition of bite-
sized, self-contained problems.

• Problem-oriented seminars provide wonderful
opportunities to explore links between various
branches of mathematics.

Such problems would be pregnant with ambiguity,
ripe with subtle connections, and overflowing with
opportunities for multi-faceted analyses.

Variety

Mathematicians are fond of talking about an elu-
sive concept called “mathematical maturity” that

is the Holy Grail of undergraduate mathematics
[60]. Maturity is one objective of study in depth,
but its meaning must be derived from the context
of a student’s level and goals. Depth itself is a
metaphor for many things. To a mathematician
it signals knowledge, insight, complexity, abstrac-
tion, and proficiency; to some others it connotes
such elusive concepts as ownership, empowerment,
and control. Although most colleges equate study
in depth with the major—a circumstance reflected
also in this report—it is important to recognize
that for some students the major may not achieve
the objectives that many have for study in depth.
For these students, curricular structures other than
the traditional major may better approach their
goals for study in depth.

Many college students study mathematics as an
important adjunct to another field which is their
primary interest (e.g., economics, education, biol-
ogy). Some colleges offer joint majors that com-
bine study of mathematics with study in a related
field, usually tied together with some type of joint
project. The ever-present danger in such options
is that they merely combine two shallow minors
without ever achieving the depth traditionally re-
quired in a major. Notwithstanding this risk, one
must acknowledge that some objectives of study in
depth are well within the range of an effective joint
major, say, in mathematics and biology where se-
nior students employ mathematical models based
primarily on lower division mathematics to model
a biological phenomenon and then test and modify
the model based on laboratory data.

Teacher education poses a special case of partic-
ular significance, since mathematics is one of the
few disciplines taught throughout all twelve grades
of school. It is obviously important for our nation
that school teachers be both competent and en-
thusiastic about mathematics. Special committees
recommend standards for preparation of mathe-
matics teachers [14, 18], and these recommenda-
tions provide one particular perspective on study
in depth.

Prospective secondary school teachers of math-
ematics generally pursue an undergraduate de-
gree that includes a major in mathematics, of-
ten constrained in special ways to ensure breadth
appropriate to the responsibilities of high school
mathematics teachers. However, the appropriate
mathematical preparation of prospective elemen-
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tary and middle school teachers—who commonly
teach several subjects, and sometimes teach the
whole curriculum—is subject to much debate these
days. Many national studies have recommended
that prospective elementary school teachers, like
secondary school teachers, major in a liberal art
or science rather than in the discipline of educa-
tion. However, the traditional mathematics major
is generally inappropriate for teachers at this level,
and today there appears to be virtually no exam-
ple of a viable alternative. Even more vexing is the
question of achieving depth in mathematics appro-
priate to an elementary school teacher within a ma-
jor in some other field. Some interesting ideas can
be found in the “new liberal arts” initiative spon-
sored by the Alfred P. Sloan Foundation which has
attempted to infuse quantitative methods in tradi-
tional liberal arts subjects [38].

Most of the issues, guidelines, and recommenda-
tions in this study focus on the traditional math-
ematics major, which is where most students who
study mathematics in depth are to be found. How-
ever, study in depth can be done at any level
and in many contexts. Mathematics departments
should take seriously the need to provide appropri-
ate mathematical depth for students who wish to
concentrate in mathematics without pursuing a tra-
ditional major.

Self-Esteem

One of the greatest impediments to student
achievement in mathematics is the widespread rep-
utation of mathematics as a discipline for geniuses.
Many facets of school and college practice con-
spire to portray mathematics in “macho” terms:
only those who are bright, aggressive, and inclined
towards arrogance are likely to succeed. Those
who do not instantly understand—including many
thoughtful, reflective, creative students—are made
to feel “deeply dumb,” like outsiders who don’t get
the point of an in-joke.

It is hard to overstate the power of intimidation
to erode students’ self-confidence. Many calculus
teachers recognize the problem: bright freshman
“show-offs”—usually white males—whose ques-
tions are designed not so much to elicit answers
and build understanding as to demonstrate their
superior intelligence to their classmates. The rit-
ual is not unlike the bluffing maneuvers that male
animals employ to claim dominant status in a herd.
Many who are concerned about equality of op-

portunity believe that the widespread display of
“geniusism” as a measure of worth in mathematics
is in part a mask for sexism—an unconscious em-
phasis on behavior intended to preserve the status
quo regarding access to leadership in teaching and
research.

Fortunately there is a growing recognition in the
mathematical community that old traditions must
be replaced with new approaches better suited to
the demographic realities of our age. We need to
recognize that individuals bring very different but
equally valuable strengths to the study of mathe-
matics. A multiplicity of approaches that encour-
age student growth in many different dimensions is
far more effective than a single-minded focus lead-
ing to a linear ranking in one narrow dimension
of “brightness.” Not every value in mathemati-
cal talent can be measured well by timed tests or
intercollegiate competitions; the “Putnam power-
house” is not the only standard by which under-
graduate majors should be judged. (The William
Lowell Putnam Examination, a national contest for
undergraduates, is the Nobel competition of colle-
giate mathematics. It stumps even faculty with
questions so hard that the median national score
for undergraduates is frequently 0.)

Specific efforts to focus the mathematics curricu-
lum on the interests and abilities of all students
can bring dramatic results, as this campus report
shows:

At the time of the first registration for first-year
students, fewer than 20 individuals in the entire
freshman class indicate that mathematics is a pos-
sible major. A year later, the number is in the
50’s, and by the junior year the number is over
100. One reason for this impressive increase in
student interest in a mathematics major is the
departmental position that mathematics is for ev-
eryone, not just the gifted. We attempt to demon-
strate the power and applicability of mathematics
by emphasizing breadth of study during the sec-
ond and third years.

Self-confidence increases when students succeed,
and decreases when they fail. “What students need
to build self-confidence are genuine small successes
of their own” [67]. Initial successes come from rou-
tine homework, but these are insufficient to the
task. More effective are instructional strategies
that engage the student in active learning: open-
ended problems, team work that builds diverse
problem-solving skills; undergraduate research ex-
periences; independent study. Building students’
well-founded self-confidence should be a major pri-
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ority for all undergraduate mathematics instruc-
tion.

Access

Data from many sources [3, 48, 65] show that
women and members of certain minority groups
often discontinue their study of mathematics pre-
maturely, before they are prepared appropriately
for jobs or further school. Afro-American and His-
panic students drop out of mathematics at very
high rates throughout high school and college; only
a tiny fraction complete an undergraduate math-
ematics major [46]. In college, women major in
mathematics almost as often as men do, but they
persist in graduate studies at much lower rates.
(Interestingly, mathematics comes closer to achiev-
ing an even balance of men and women among its
undergraduate majors than virtually any other dis-
cipline; this record of equality disappears, however,
in graduate school.)

Evidence from various intervention programs
shows that the high drop-out rate among minority
students can be reduced [4, 5, 30, 63]. Appropri-
ate expectations that provide challenges without
the stigma of “remediation” together with assign-
ments and study environments that reinforce group
learning have proved successful on many campuses.
Mentoring programs of various types open doors
of opportunity to women and minorities who have
traditionally been under-represented in mathemat-
ically based fields. What becomes clear from these
programs is that the tradition of isolated, compet-
itive individual effort that dominates much math-
ematics instruction does not provide a supportive
learning environment for all students.

Assignments that stress teamwork on problems
chosen to relate to student interests can help many
students succeed in mathematics. The experiences
of students who work in teams to solve large com-
puter science projects and of those who participate
in science research groups show clearly the benefit
of incentives for careful work that is created by the
team atmosphere. Mathematicians must learn that
the teaching strategies they recall as being success-
ful in their own education—and in the education
of a mostly white male professional class—do not
necessarily work as well for those who grow up in
vastly different cultures within the American mo-
saic.

Programs that work for minority students are
built on the self-evident premise that students do

not all learn mathematics in the same way. Class-
room methods must fit both the goals of the ma-
jor (e.g., to help students to learn to communicate
mathematically) and the learning styles of individ-
ual students (e.g., need for peer support and posi-
tive feedback). These same principles apply to all
students, not just to students of color. To pro-
vide effective opportunities for all students to learn
mathematics, colleges must offer a broader spec-
trum of instructional practice that is better attuned
to the variety of students seeking higher education.

Communication

College graduates with majors in mathematical-
ly-based disciplines are often perceived by society
as being verbally inept: the stereotype of the com-
puter hacker who cannot communicate except with
a computer has permeated the business world, and
tainted mathematics graduates with the same rep-
utation. Recognizing the legitimate basis for this
concern in the incomprehensible writing of their
own upper-division students, many mathematics
departments are beginning to emphasize writing
in mathematics courses at all levels.

The forms of writing employed in mathemat-
ics courses include the standard genres used in
other disciplines (expository essays, personal jour-
nals, laboratory reports, library papers, research
reports) as well as some that are particularly rele-
vant to mathematics (proofs, computer programs,
solutions to problems). Many students and pro-
fessors are uneasy about what writing means in a
mathematics class, about how to grade it, and how
to improve it. Few mathematicians know how to
teach students to improve their writing or speak-
ing, although there is increasing professional inter-
est in this issue [31, 37, 61].

One department focuses on communication
throughout the major, and stresses writing and
speaking mathematics in a required senior collo-
quium:

The conclusion of the major features the collo-
quium course “Mathematical Dialogues.” The
emphasis here, as in earlier courses, is on commu-
nication, as well as on the connections among the
different branches of mathematics. Mathematical
Dialogues consists of lectures from invited schol-
ars, discussions, and independent work. Students
are expected to read papers and write reviews, to
listen to talks and to deliver them.

In industry, one of the most important tasks
for a mathematician is to communicate to non-
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mathematicians in writing and orally the math-
ematical formulation and solution of problems.
Each student’s growth in mathematical maturity
depends in essential ways on continual growth in
the ability to communicate in the language of
mathematics: to read and write, to listen and
speak. Students must learn the idioms of the dis-
cipline, and the relation of mathematical symbols
to English words. They need to learn how to inter-
pret mathematical ideas arising in many different
sources, and how to suit their own expression of
mathematics to different audiences. Mathematics
majors should be offered extensive opportunities to
read, write, listen, and speak mathematical ideas at
each stage of their undergraduate study. Indeed,
writing and speaking is the preferred test of com-
prehension for most of the broad goals of study in
depth.

Transitions

As students grow in mathematical maturity
from early childhood experiences to adult employ-
ment, they face a series of difficult transitions
where the nature of mathematics seems to change
abruptly. These “fault lines” that cross the terrain
of mathematics education appear at predictable
stages:

• Between arithmetic and algebra, when letter
symbols, variables, and relationships become im-
portant.

• Between algebra and geometry, when logical
proof replaces calculation as the methodology of
mathematics.

• Between high school and college, when the ex-
pectation for learning on one’s own increases sig-
nificantly.

• Between elementary and upper-division college
mathematics, when the focus shifts from tech-
niques to theory, from solving problems to writ-
ing proofs.

• Between college and graduate school, when the
level of abstraction accelerates at a phenomenal
rate.

• Between graduate school and college teaching,
when the realities of how others learn must take
precedence.

• Between graduate school and research, when the
new Ph.D. must not just solve a serious problem,
but learn to find good problems as well.

Students experience real trauma in crossing

these transitions; many drop out of the mathemat-
ics pipeline as a consequence, often to the detri-
ment of their future study in many disciplines.
Mathematics education at all levels, from grade
school through graduate school, should take as a
goal to smooth out the roughness caused by these
difficult transitions. College mathematics depart-
ments should, in particular, seek to streamline the
transition of students to college, to upper-division
mathematics, and to graduate school.

In college, students often experience a different
type of transitional problem that applies in vir-
tually all courses: to understand the relation be-
tween theory and applications. This is probably
the most common complaint that students and fac-
ulty in collateral disciplines raise about undergrad-
uate mathematics courses: they are often perceived
as being too theoretical and insufficiently applied.
Although in some cases this perception may be
well justified, in many other instances the problem
rests more with insufficient effort to demonstrate
the value of theory to application than with an ac-
tual excess of theory. The problem is not that the
transition from application to theory is inappro-
priate, but that it is often taken without sufficient
effort to build appropriate motivation or connec-
tions. Smooth curricular transitions improve stu-
dent learning and help maintain momentum for the
study of mathematics.

Research

The role of so-called “capstone experiences”
such as undergraduate research, theses, or senior
projects is one of the more controversial ingredi-
ents in discussions of the mathematics major. Typ-
ically, such requirements are common in the hu-
manities and the sciences, especially in more selec-
tive institutions. In the humanities they are viewed
as opportunities for integration; in the sciences, as
opportunities for research. In both science and hu-
manities, capstone requirements offer apprentice-
ships in the investigative methods of the field.

In mathematics, however, there has been lit-
tle consensus about objectives, feasibility, or ben-
efits of this type of requirement. Very few in-
stitutions heeded the 1981 CUPM call for a re-
quired course in mathematical modelling for all
majors. Many mathematicians believe in coverage
as more crucial to understanding: standard theo-
rems, paradigms of proof, and significant counter-
examples in all major areas must be covered before
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a student is ready to advance to the next stage
of mathematical maturity. In this view, learning
what is already known is a prerequisite to discov-
ering the unknown. Moreover, special capstone
courses appear superfluous since each course pro-
vides its own capstone—the fundamental theorem
of calculus, the central limit theorem in statistics,
the fundamental theorem of algebra—which ties
together a long chain of prior study. When forced
to choose between a capstone experience or another
advanced course, advocates of coverage will unhesi-
tatingly choose the latter.

Because of mathematics’ austere definition of
“research”—a definition which, incidentally, rules
out the professional work of more than half the
nation’s mathematics faculty—many mathemati-
cians believe that except in very rare cases, un-
dergraduates cannot do research in mathemat-
ics. Moreover, in most areas of mathematics, stu-
dents cannot even assist in faculty research, as
they do quite commonly in the laboratory sci-
ences. The exceptions in mathematics are prin-
cipally where computer investigation—the math-
ematician’s laboratory—can aid the research ef-
fort. As a consequence, many mathematicians be-
lieve that further coursework would better serve
the goals of integration (because the higher one
progresses in mathematics, the more internal links
one can see) and at the same time help advance
the student towards better preparation for further
study or application of mathematics.

Others feel that any encounter with a substan-
tial problem that a student does not know how
to solve can provide a legitimate and rewarding
research experience. Indeed, many colleges have
used summer experiences with undergraduate re-
search as an effective strategy to recruit students
to careers in the mathematical sciences [26, 56],
and the National Science Foundation is actively
supporting such programs. There are now many
diverse programs offering research experiences for
undergraduate mathematics majors.

In applied areas—especially in statistics, com-
puting, and operations research—it is easier to de-
velop projects that are sufficiently rich and varied
so that students can make progress along various
lines of investigation. Computers now are mak-
ing inroads in theoretical areas of mathematics,
permitting exploration of conjectures that hereto-
fore were beyond the range of any undergraduate.

Students preparing to teach mathematics in high
school also have open an enormous range of appro-
priate projects to translate interesting newer math-
ematics into curriculum appropriate to the schools.
In some cases students may want to undertake re-
search into how people learn mathematics, to ex-
plore for themselves the effectiveness of various in-
structional strategies and the impact of computers
on development of mathematical understanding.

Internships in industry, co-op programs that mix
study with work, and summer research opportuni-
ties in industrial or government laboratories pro-
vide rich environments for breaking down the ar-
tificial barriers of courses and classrooms. They
enable students to integrate mathematics learned
in several different courses; to experience the role of
mathematical models; to extend their mathemat-
ical repertoire beyond just what has been taught;
and to establish mathematical concepts in a con-
text of varied use, applications, and connections.

Experiences of departments with long-standing
traditions of undergraduate research or senior
projects confirm both the value of such work and
the effort required for success:

While these projects require a great deal of time
and effort on the part of students and faculty, we
generally feel that it is well worth it. Most of the
students report that they had worried about the
senior project for their first three years, but had
ultimately found it to be a very worthwhile and
stimulating part of their college experience. All
recommended that this important aspect of the
undergraduate experience be retained.

One department in an institution whose academic
calendar permits extended blocks for full-time
study in one subject requires all majors to com-
plete a major project in the senior year:

The final project in the major field should demon-
strate application of the skills, methods, and
knowledge of the discipline to the solution of a
problem that would be representative of the type
to be encountered in one’s career. Project activ-
ities encompass research, development and appli-
cation, involve analysis or synthesis, are experi-
mental or theoretical, emphasize a particular sub-
area of the major or combine aspects of several
subareas.

Another department uses summers to provide op-
portunities for research experiences: student par-
ticipants range from freshmen to seniors, and en-
gage in a wide variety of mathematical investiga-
tions:

We are convinced that everyone working in math-
ematics can find problems appropriate for un-
dergraduates. Many problems can be attacked
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without any knowledge of the complex machin-
ery which generated them. Mathematicians know
how exciting mathematical research can be. The
best way to generate interest in mathematics is to
provide undergraduates with the chance to expe-
rience that excitement.

Since hard work by itself is insufficient to en-
sure reasonable progress on a mathematical prob-
lem, there is ever-present danger that undergradu-
ates confronted with difficult theoretical problems
will flounder and become discouraged. Strong fac-
ulty intervention can prevent disaster, but exces-
sive supervision undermines the independence that
is supposed to result from the project. Effective
undergraduate research experiences require careful
planning and steady, unobtrusive leadership. One
must carefully choose problems to be suggested to
undergraduates for the research experiences: they
must be tailored to the individual undergraduate.

Effective programs provide stepping stones to
help students progress from routine homework to
independent investigation. For example, one in-
stitution plans a progression leading to the senior
project:

Mathematics majors enroll in a Junior Seminar
where they are asked to read critically two se-
nior projects from earlier years to describe the
strengths and weaknesses of these papers, and to
suggest how they would improve on these papers
had they written them. This Seminar also helps
acquaint these students with appropriate stan-
dards of exposition in mathematics.

The range of opportunities for independent in-
vestigation is so broad and the evidence of ben-
efit so persuasive as to make unmistakably clear
that research-like experiences should be part of ev-
ery mathematics student’s program. Undergradu-
ate research and senior projects should be encour-
aged wherever there is sufficient faculty to provide
appropriate supervision. Effective programs must
be tailored to the needs and interests of individual
students; no single mode of independent investiga-
tion can lay claim to absolute priority over others.
Flexibility of implementation is crucial to ensure
that all experience the exhilaration of discovery
which accompanies involvement with mathemati-
cal research.

Context

Mathematics courses—especially those taken by
majors—have traditionally been taught as purely
utilitarian courses in techniques, theory, and ap-
plications of mathematics. Most courses pay no

more than superficial attention to the historical,
cultural, or contemporary context in which math-
ematics is practiced. Today, however, as math-
ematical models are used increasingly for policy
and operational purposes of immense consequence,
it is vitally important that students of mathemat-
ics learn to think through these issues even as they
learn the details of mathematics itself.

Examples abound of mathematical activity that
leads directly to decisions of great human import.
Software written for the Strategic Defense Initia-
tive depends on mathematical theories of orbital
dynamics for its performance, and on the ability
of logicians and computer scientists to verify that
complex untestable programs will perform cor-
rectly under any possible situation. Debates about
the relation of carbon dioxide buildup to global
warming and consequent implications for govern-
mental and industrial policies center in large part
on different interpretations of statistical and math-
ematical projections. Computer-controlled trading
of stocks, epidemiological studies of AIDS, and im-
plications of various voting rules offer other exam-
ples where mathematics really matters in impor-
tant decisions affecting daily life.

Students of mathematics should be encouraged
to see mathematics as a human subject whose the-
ories often begin in ambiguity and controversy.
It takes decades, sometimes centuries, for schol-
ars to sculpt and polish the precise theories that
are expounded in today’s textbooks. Historical
analogs provide useful yardsticks to students (and
faculty) who seek to understand the limits of what
mathematics can contribute to public policy. As
society comes to rely increasingly on mathemati-
cal analyses—often well-disguised—of social, eco-
nomic, or political issues, mathematics majors
must confront the social and ethical implications
of such activity. All such issues can be enlightened
by appropriate historical case studies, and moti-
vated by compelling debates of our age. All math-
ematics students should engage in serious study of
the historical context and contemporary impact of
mathematics.

One possible strategy to achieve both this ob-
jective and several others as well is to adapt a
modelling project or course to problems of signif-
icant societal impact. In such a setting students
could undertake original investigation, gain expe-
rience in reading, writing, listening, and speaking
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about mathematically rich material, explore his-
torical antecedents and contemporary debates, and
gain experience in team work to address complex,
open-ended problems. For many students a cap-
stone project on a public policy issue would be a
fitting way to relate their mathematics major to
liberal education.

Social Support

The abstract, austere nature of mathematics
provides relatively few intrinsic rewards for the
typical undergraduate who is trying to pursue a
field of study and at the same time learning to es-
tablish and maintain personal friendships. In this
context the social support provided by departmen-
tal activities can be decisive in tipping the bal-
ance either for or against a mathematics major.
Peer group support helps build mathematical self-
confidence and enhances the intrinsic rewards that
come from mathematical achievement.

Virtually all successful mathematics depart-
ments instigate and support a variety of extra-
curricular activities. Examples include mathemat-
ics clubs, student chapters of the Mathematical As-
sociation of America, or chapters of the mathemat-
ics honorary society Pi Mu Epsilon. Another com-
mon feature of successful departments is informal
faculty-led sessions to help students solve problems
posed in collegiate periodicals or to prepare for na-
tional contests such as the Putnam Examination or
the Mathematical Modelling Contest. Banquets,
picnics, and barbecues lend a light touch that help
students become acquainted with each other and
with the faculty of the entire department.

Other activities can enrich students’ experiences
with their courses by providing links to the world
beyond the campus. Undergraduate colloquia with
visiting mathematicians from industry or universi-
ties is one common mechanism. Alumni involve-
ment through career nights or other activities can
help students imagine what they too could do
with their major. Current students will be in-
spired when departments make visible the variety
of accomplishments of their graduates—not only
those who have become mathematicians but also
the majority who have used their undergraduate
mathematics for other ends. Mathematics depart-
ments should exert active leadership in promoting
extracurricular activities that enhance peer group
support among mathematics majors.

Mechanisms for Renewal

Constant vigilance is needed to maintain qual-
ity in any academic department. This is espe-
cially true in mathematics, where the subject is
continually evolving, where external departments
impose their own often-conflicting demands, where
so much teaching effort is devoted to remedial, el-
ementary, and lower division work, and where the
very ability of the discipline to attract sufficient
numbers of students to careers in the mathemati-
cal sciences is now in serious doubt. We focus here
on five mechanisms of renewal:

• Dialogue: To talk with students and col-
leagues.

• Assessment: To measure what is happening.
• Faculty Development: To improve intellec-

tual vitality.
• Departmental Review: To listen to col-

leagues and clients.
• Graduate Education: To provide leadership

for improvement.

The key ingredient is listening—to one’s students,
to one’s discipline, to one’s colleagues, to one’s
friends, and to one’s critics. Departments that
listen—and learn—will thrive.

Dialogue

Departments often know very little about their
students’ views of the undergraduate mathematics
major. That different students pursue mathemat-
ics for very different reasons is clear. Most de-
partments must accommodate students with quite
different purposes, although certain departments
tend to focus their programs on one or another ob-
jective (for example, preparation for jobs, prepara-
tion for teaching, preparation for graduate school).
Many departments, especially small departments,
find it impossible to sustain several different pro-
grams of equal high quality.

Mathematicians also frequently know almost
nothing about the expectations held by their col-
leagues in cognate disciplines for the mathemati-
cal preparation of students with other majors. It
is not uncommon for the three interested parties—
mathematics professors, science faculty advisors,
and students—never to discuss goals or objectives,
but only credit hour requirements. It should come
as no surprise that in the absence of good commu-
nication, misunderstandings flourish.
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Undergraduate mathematics shares many bor-
ders with other subjects and institutions: verti-
cally with high schools below and graduate schools
above; horizontally with science, business, and en-
gineering. Each border is a potential impediment
to the smooth flow of ideas and students. Mathe-
matics departments must work hard to maintain ef-
fective articulation across these many boundaries:

• With high schools whose curriculum is also
changing and whose students will arrive at col-
lege with new expectations.

• With departments in the physical sciences and
engineering whose students use advanced math-
ematics.

• With graduate schools in the mathematical sci-
ences, which attract and retain far too few U.S.
students.

• With employers of bachelors degree graduates
who expect employees who can function effec-
tively in a work environment.

Regular discussion is essential to maintain effec-
tive policies that will satisfy these many boundary
conditions.

To the extent that resources permit, depart-
ments should seek to determine and then accom-
modate different student career interests. This
means that even small departments should provide
mechanisms (e.g., independent study, special sem-
inars) to allow students of diverse interests to re-
ceive a major suitable to their career objectives.
Mathematics is too diverse and student purposes
too different for any single set of eight to ten
courses to meet all needs equally well.

Students too must recognize that the practice
of mathematics is quite different from the text-
book image they usually bring with them from high
school. Often students expect of college math-
ematics merely advanced topics in the spirit of
school mathematics: a succession of techniques, ex-
ercises, and test problems, each explained by the
instructor with sufficient clarity that what remains
for the student is only the requirement of prac-
tice and memorization. Such expectations do little
to foster creativity, independence, criticism, and
perspective—the more important goals of liberal
education.

The different perspectives of mathematics stu-
dent and mathematics professor often approach
caricature. Eager students expect of college classes
directed instruction in tools of the trade with which

they can, upon graduation, get jobs that pay more
than their professors earn. Professors, in contrast,
expect students who are eager to take on challeng-
ing problems and who will learn on their own what-
ever they need to make progress. Students, in this
exaggerated portrait, feel responsible only for what
they have been taught, whereas faculty judge as
truly significant only those things students can do
which they have not been taught.

It is important for mathematics departments to
help faculty and students recognize their own per-
spectives on mathematics and understand the per-
spectives of others. Doing this is not the same as
covering a syllabus of mathematical topics; it in-
volves instead various strategies to enable faculty
and students to discuss mathematics in informal
ways. Such discussions are an important part of
the process by which students grow from the lim-
ited school perspective to the self-directed stance
of a professional.

Announcing or publishing department goals is
not sufficient to achieve this important objective.
What is required is a process that engages all stu-
dents in significant and repeated discussion of indi-
vidual goals throughout their undergraduate study
of mathematics. In particular, careful and indi-
vidualized advising is crucial to students’ success.
Effective advising builds an atmosphere of mutual
respect among faculty and students. Courses, ca-
reer objectives, motivations, fears, celebrations are
all part of advising, and of special importance in
the long, slow process of building students’ self-
confidence.

Assessment

Many would argue that goals for study in depth
can be effective only if supported by a plan for
assessment that persuasively relates the work on
which students are graded to the objectives of
their education. Assessment in courses and of the
major as a whole should be aligned with appro-
priate objectives, not just with the technical de-
tails of solving equations or doing proofs. Many
specific objectives can flow from the broad goals
of study in depth, including solving open-ended
problems; communicating mathematics effectively;
close reading of technically-based material; pro-
ductive techniques for contributing to group ef-
forts; recognizing and expressing mathematical
ideas embedded in other contexts. Open-ended
goals require open-ended assessment mechanisms;
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although difficult to use and interpret, such devices
yield valuable insight into how students think.

Relatively few mathematics departments now
require a formal summative evaluation of each stu-
dent’s major. The few that do often use the
Graduate Record Examination (or an undergrad-
uate counterpart) as an objective test, together
with a local requirement for a paper, project, or
presentation on some special topic. Many insti-
tutions, frequently pressured by mandates from
on high, are developing comprehensive plans for
assessing student outcomes; a few are exploring
innovative means of assessment based on portfo-
lios, outside examiners, or undergraduate research
projects. Here’s one example that blends a cap-
stone course with a senior evaluation:

The Senior Evaluation has two major compo-
nents to be completed during the fall and spring
semesters of the senior year. During the fall
semester the students are required to read twelve
carefully selected articles and to write summaries
of ten of them. (Faculty-written summaries of
two articles are provided as examples.) This work
comprises half the grade on the senior evaluation.
During the fall semester each student chooses one
article as a topic for presentation at a seminar.
During the spring semester the department ar-
ranges a seminar whose initial talks are presented
by members of the department as samples for the
students. At subsequent meetings, the students
present their talks. Participation in the seminar
comprises the other half of the grade for the Senior
Evaluation.

Because of the considerable variety of goals of
an undergraduate mathematics major, it is widely
acknowledged that ordinary paper-and-pencil tests
cannot by themselves constitute a valid assessment
of the major. Although some important skills and
knowledge can be measured by such tests, other
objectives (e.g., oral and written communication;
contributions to team work) require other meth-
ods. Some departments are beginning to explore
portfolio systems in which a student submits sam-
ples of a variety of work to represent just what
he or she is capable of. A portfolio system al-
lows students the chance to put forth their best
work, rather than judging them primarily on areas
of weakness.

The recommendations [41] from the National
Council of Teachers of Mathematics for evalua-
tion and assessment of school mathematics convey
much wisdom that is applicable to college math-
ematics. Assessment must be aligned with goals
of instruction. If one wants to promote higher or-

der thinking and habits of mind suitable for effec-
tive problem solving, then these are the things that
should be tested. Moreover, assessment should be
an integral part of the process of instruction: it
should arise in large measure out of learning envi-
ronments in which the instructor can observe how
students think as well as whether they can find
right answers. Assessment of undergraduate ma-
jors should be aligned with broad goals of the ma-
jor: tests should stress what is most important, not
just what is easiest to test.

Faculty Development

The relation of research and scholarship to fac-
ulty vitality is one of the most difficult issues facing
many departments of mathematics, especially in
smaller institutions. Professional activity is crucial
to inspired teaching and essential to avoid faculty
burn-out. Mathematical research in its traditional
sense plays only a small role in the mechanisms re-
quired to maintain intellectual vitality of a math-
ematics department: only about one in five full-
time faculty in departments of mathematics pub-
lish regularly in research journals, and fewer than
half of those have any financial support for their
research. Clearly the community needs to encour-
age and support a broader standard as a basis for
maintaining faculty leadership both in curriculum
and in scholarship.

The first step is to expand the definition of pro-
fessional activity from “research” to “scholarship,”
more in a manner akin to that currently recognized
in some other academic disciplines. Applied con-
sulting work, software development, problem solv-
ing, software and book reviews, expository writ-
ing, and curriculum development are examples of
activities that serve many of the same purposes as
research: they advance the field in particular direc-
tions, they engage faculty in active original work,
they serve as models for students of how mathe-
matics is actually practiced, and they provide op-
portunities for student projects.

Teaching in new areas is also a form of schol-
arship in mathematics. Unlike many other disci-
plines where faculty rarely teach outside their own
areas of specialty, mathematicians are generally ex-
pected to teach a wide variety of courses. Learn-
ing and then teaching a course far outside one’s
zone of comfort is an effective way to build inter-
nal connections which then spill over in all courses
one teaches. A teacher who is still an active learner
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sets a fine example for students concerning the true
meaning of scholarship.

The second step is to insist on greater commu-
nication about professional activity in mathemat-
ics so that it becomes public. Only the bright
light of public scrutiny by colleagues in various
institutions—not only on one’s own campus—can
affirm the quality and value of professional work.
“Public” need not mean merely publication; lec-
tures, workshops, demonstrations, reports of vari-
ous sorts can serve the same objective. What mat-
ters is that the result become part of the profession,
and be evaluated by the profession. To ensure con-
tinued vitality of undergraduate mathematics pro-
grams, all mathematics faculty should engage in
public professional activity, broadly defined.

Department Review

More than any other academic discipline, math-
ematics is constrained to serve many masters:
the many sciences that depend on mathematical
methods; the demand of quantitative literacy that
undergirds general education; the need to edu-
cate teachers for our nation’s schools; the need
of business and industry for mathematically lit-
erate employees; the expectation of mathemati-
cal proficiency by faculty and students in natu-
ral science, business, engineering, and social sci-
ence; the professional standards of employers for
entry-level technical personnel; and the require-
ments of the mathematical sciences themselves for
well-prepared graduate students. It is an enormous
challenge for a department of mathematics, one
that very few are able to fulfill with distinction
in every dimension.

Because of these diverse demands, it is especially
important that departments of mathematics un-
dergo regular review, with both external and inter-
nal mechanisms to provide evaluation and advice.
External requirements mandate periodic review of
all departments in many colleges and universities,
especially in public institutions. But in other in-
stitutions, department goals are defined implicitly
without self-reflection or benefit of external per-
spectives. At worst, the goals of such depart-
ments are defined by coverage of standard text-
books. Often it takes a crisis—such as when the
engineering or business school complains about cer-
tain courses—for departments to step back and ex-
amine their objectives. Reviews should take place

regularly, not just when some crisis threatens the
status quo.

Client disciplines expect from mathematics de-
partments an amazing repertoire of support ser-
vices for students who will major in other fields
[44]. Some demand a magic bullet—a perfect in-
fusion of just those mathematical methods (and
no more) needed in the other field; others expect
a rigorous filter that will pass on only those stu-
dents who are sufficiently bright to function ably in
upper-division work in other fields. Occasionally,
but all too rarely, an external discipline will require
mathematics primarily to enable students to bene-
fit from the intrinsic values of mathematics: logic,
rigor, analysis, symbol-sense, etc. Since the expec-
tations of other departments are often not clearly
conveyed by the list of mathematics courses that
they recommend or require, regular reviews pro-
vide a good mechanism—but not the only one—to
ensure that different departments at least under-
stand their differing perspectives and objectives.

Virtually all departments receive informal feed-
back from graduates, employers, and graduate
schools. Speaker programs that bring students
and faculty into contact with users of mathemat-
ics serve both to inform students about the broad
world of mathematics beyond their classroom walls
and to provide informal feedback to help regulate
the curriculum and keep it properly tuned to the
needs of graduates. All such informal means of
feedback are valuable and must be encouraged.
However, they are no substitute for formal, reg-
ular, external review. Both external reviews and
informal feedback are needed to assure quality in
departments of mathematics.

There are many advantages to a regular program
of external reviews that should form the basis of all
reviews:

• A broad-based review provides a strategic op-
portunity to document the accomplishments of
a department. Well-structured reviews can ef-
fectively counter external (political) demands for
narrow or inappropriate instruments of assess-
ment such as a multiple-choice examination of
all graduates.

• Reviews provide a structured and neutral forum
for mathematicians to discuss with those who
use mathematics both the mathematical needs
of client disciplines and the common issues that
both mathematics and the client discipline face
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in accommodating changes that are underway in
the mathematics curriculum.

• By involving members of the faculty outside the
department in the review—especially those from
fields that are served by mathematics and those
involved in faculty curriculum committees—a
department of mathematics can help educate
colleagues across the campus about the special
opportunities and challenges of teaching math-
ematics. Ignorance can usually be turned to
understanding through discussions prompted by
the occasion of a regular review.

• By including non-academic reviewers such as in-
dustrial executives, scientists, professionals, and
community leaders, the department can gain
valuable insight into the qualities that will be
expected of graduates who enter the work force.

• Regular reviews encourage faculty members to
think about the department’s program as a
whole, rather than only about the courses they
teach. Such discussions make it more likely that
the curriculum will remain responsive to stu-
dent needs, and to the changing demands of the
mathematical sciences. Reviews provide an ideal
mechanism for the department to assert control
over its own program.

The Mathematical Association of America can pro-
vide advice to departments both about the struc-
ture of effective reviews and about appropriate con-
sultants or reviewers.

Graduate Education

Even though relatively few mathematics majors
go on to receive a graduate degree in the mathe-
matical sciences, the health of college mathemat-
ics is inextricably linked with the status of gradu-
ate education. As the sole agent for advanced de-
grees, graduate schools bear alone the responsibil-
ity for preparing college mathematics teachers; as
the primary locus of mathematical research, grad-
uate schools shape the nature of the discipline, and
hence of the curriculum. Much of the responsibil-
ity for renewing undergraduate mathematics rests
with the graduate schools, since it is they who pro-
vide the primary professional education of those
who are responsible for undergraduate mathemat-
ics: college faculty.

Indicators from many sources [12, 35, 44] suggest
that the match between undergraduate and grad-

uate education in mathematics is not now serving
U.S. interests especially well:

• Too few U.S. mathematics majors choose to en-
ter graduate school in a mathematical science.

• U.S. mathematics students do less well in gradu-
ate school—and drop out more often—than for-
eign nationals.

• Many students finish graduate school ill-equip-
ped for the breadth of teaching duties typically
expected of undergraduate mathematics teach-
ers.

• Relatively few who finish doctoral degrees in
mathematics actually go on to effective research
careers in mathematics.

In the 1970s, as the number of U.S. students
applying to graduate school in mathematics be-
gan to decline, the graduate schools responded by
increasing the number of international students,
most of whom had completed a more intense and
specialized education in mathematics than is typi-
cal of American undergraduates. Hence the level of
mathematics expected of beginning graduate stu-
dents gradually shifted upward to an international
standard that is well above current U.S. under-
graduate curricula. Consequently, the failure or
drop-out rate of U.S. students increased, creating
pressure for more international students and even
higher entrance expectations.

It is time to break this negative feedback loop
by encouraging better articulation of programs
and standards between U.S. undergraduate col-
leges and U.S. graduate schools. Such cooperation
is needed both to enhance the success of U.S. stu-
dents and to enable the graduate schools to bet-
ter match their programs with the needs of the
colleges and universities who employ a majority
of those who receive advanced degrees. Renewal
of undergraduate mathematics will require commit-
ment, leadership, and support of graduate schools.

One good mechanism for such cooperation
would be an exchange of visitors between under-
graduate and graduate institutions so that each
can learn about the needs of the other. Espe-
cially as change occurs in the content and nature
of the undergraduate major, it is very important
that graduate schools maintain programs of study
and research that are appropriately linked to the
undergraduate program in mathematics.
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Summary

Without becoming entangled in specific curricu-
lum and course recommendations—which are the
proper province of other committees of mathemat-
ics professional organizations—we can nevertheless
enumerate several broad principles implied by our
study of the undergraduate mathematics major:

Goals and Objectives

• The primary goal of a mathematical sciences ma-
jor should be to develop a student’s capacity to
undertake intellectually demanding mathemati-
cal reasoning.

• The undergraduate mathematics curriculum
should be designed for all students with an in-
terest in mathematics.

• Applications should motivate theory so that the-
ory is seen by students as useful and enlighten-
ing.

• Mathematics majors should be offered extensive
opportunities to read, write, listen, and speak
mathematical ideas at each stage of their under-
graduate study.

Breadth and Depth

• All students who major in mathematics should
study some sequence of upper division courses
that shows the power of study in depth.

• Every student who majors in mathematics
should study a broad variety of advanced
courses.

• Mathematics departments should take seriously
the need to provide appropriate mathematical
depth to students who wish to concentrate in
mathematics without pursuing a traditional ma-
jor.

• Mathematics majors should complete a minor in
a discipline that makes significant use of mathe-
matics.

Learning and Teaching

• Instruction should encourage students to explore
mathematical ideas on their own.

• Undergraduate students should not only learn
the subject of mathematics, but also learn how
to learn mathematics.

• Those who teach college mathematics should
seek ways to incorporate into their own teaching
styles the findings of research on teaching and
learning.

• Mathematicians should increase their efforts to
understand better how college students learn
mathematics.

• Evaluation of teaching must involve robust indi-
cators that reflect the broad purposes of mathe-
matics education.

Access and Encouragement
• Effective programs teach students, not just

mathematics.
• National need requires greater encouragement

for students to continue their study of mathe-
matics beyond the bachelor’s degree.

• To provide effective opportunities for all stu-
dents to learn mathematics, colleges should of-
fer a broader spectrum of instructional practice
that is better attuned to the variety of students
seeking higher education.

• To ensure for all students equal access to higher
mathematics education, mathematics depart-
ments should work with nearby two-year colleges
to maintain close articulation of programs.

• Smooth curricular transitions improve student
learning and help maintain momentum for the
study of mathematics.

Using Computers
• The mathematics curriculum should change to

reflect in appropriate ways the impact of com-
puters on the practice of mathematics.

• Colleges must recognize in budgets, staffing, and
space the fact that undergraduate mathematics
is rapidly becoming a laboratory discipline.

Doing Mathematics
• Dealing with open-ended problem situations

should be one of the highest priorities of under-
graduate mathematics.

• All undergraduate mathematics students should
undertake open-ended projects whose scope ex-
tends well beyond typical textbook problems.

• Undergraduate research and senior projects
should be encouraged wherever there is sufficient
faculty to provide appropriate supervision.

• Students majoring in mathematics should un-
dertake some real-world mathematical modelling
project.

Students
• Building students’ well-founded self-confidence

should be a major priority for all undergradu-
ate mathematics instruction.
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• Careful and individualized advising is crucial to
students’ success.

• All mathematics students should engage in seri-
ous study of the historical context and contem-
porary impact of mathematics.

• Mathematics departments should actively en-
courage extracurricular programs that enhance
peer group support among mathematics majors.

Renewal
• It is important for mathematics departments to

help faculty and students recognize their own
perspectives on mathematics and understand the
perspectives of others.

• Assessment of undergraduate majors should be
aligned with broad goals of the major; tests
should stress what is most important, not just
what is easiest to test.

• To ensure continued vitality of undergraduate
mathematics programs, all mathematics faculty
should engage in public professional activity,
broadly defined.

• Regular external reviews and informal feedback
are needed to assure quality in departments of
mathematics.

• Renewal of undergraduate mathematics will re-
quire commitment, leadership, and support of
graduate schools.

In most respects both prevailing professional
wisdom and current practice for the mathematics
major reflect well the major goals of AAC’s In-
tegrity. Discussion continues on many campuses
about whether the major should focus inward to-
wards advanced study in the mathematical sciences
or outward towards preparation for diverse careers
in science and management. These discussions are
more about strategies than long-term goals, how-
ever, since either emphasis can advance the broad
AAC goals of coherence, connections, and intellec-
tual development.

Liberal education provides a versatile back-
ground for a life of ever-changing challenges.
Among the many majors from which students can
choose, mathematics can help ensure versatility for
the future. Habits of mind nurtured in an under-
graduate mathematics major are profoundly use-
ful in an enormous variety of professions. The
challenge for college mathematicians is to ensure
that the major provides—and is seen by students
as providing—not just technical facility, but broad
empowerment in the language of our age.
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