
APRIL 2011 • MATH HORIZONS • WWW.MAA.ORG/MATHHORIZONS 27

Built in the Norman Gothic style,
the ivy-covered, limestone-sided
Regents Hall of Mathematical

Sciences stands quietly on the campus
of St. Olaf College in Minnesota. The
inside of the building, however, is
modern, with newly remodeled offices,
study spaces, computer labs, and 
high-tech classrooms. The top floor,
with a pitched ceiling and gabled
windows overlooking the campus and
the surrounding countryside, is a large,
open space where students gather to
study, socialize, and relax.

Aiming to draw attention to mathemat-
ics past and present, Professor
Emeritus of Mathematics Loren Larson
decided this space called for a special
piece of mathematical art: a three-
dimensional knight’s tour. Now, several
months after the grand opening of the
building, the finished piece, titled
Synergy, hangs ever so delicately from
the ceiling. The structure is
remarkably complex, but
the interconnections among
individual pieces seem to
work together to form a
coherent whole. Many who
wander by are mystified:
what does this colorful
display of carefully interwoven wooden
sticks represent?

A Brief Tour of Knight’s Tours
On an ordinary 8 ! 8 chessboard, a
knight moves two squares horizontally
or vertically and one square in the
perpendicular direction. The number 
of possible knight moves from a given
square—eight at most—depends on
the location of the square within the
chessboard. A knight’s tour is a
sequence of 64 knight moves that visits
each square exactly once. A knight’s

tour that begins and ends at the same
square is called closed. Figure 1 shows

a closed knight’s tour on a standard
chessboard; squares are numbered in
the order they
are visited.

Why would a
knight’s tour
grace the halls
of a mathemat-
ics building?
One of the first
papers analyz-
ing knight’s
tours was by

Euler, in 1759. Euler presented several
knight’s tours, some closed, on the

standard 8 ! 8
chessboard.
“Although the number
of these routes is not
infinite, it will always
be so great that one
could never exhaust
it,” Euler wrote.

Indeed, the problem of counting closed
knight’s tours was solved only 
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A Knight’s Tour de Force

Figure 1.  A closed knight’s tour on the 8 ! 8 chessboard.

When his student constructed a model of a
three-dimensional knight’s tour using hail
screen and yarn, Larson’s idea to construct 
a larger-scale wooden version was born.

“Synergy” by Loren Larsen, on display at St. Olaf College.
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in 1997, when Brendan McKay
computed the number as
13,267,364,410,532. McKay’s 
result corrected a 1996 paper, 
which had overstated the total 
at 33,439,123,484,294.

Since Euler, several algorithms for
finding closed knight’s tours have been
proposed, including one described in
1823 by H. C. von Warnsdorff. At each
stage, the knight moves to the available
square that has the fewest possible
following moves. Ties are broken by
randomly choosing one of the eligible
squares. While Warnsdorff’s algorithm
is not guaranteed to produce a knight’s
tour, the result is usually close enough
so that a slight modification will create
a tour.

Warnsdorff’s algorithm can also be
applied to find knight’s tours of 
nonstandard chessboards, including
some that are not square. It is not hard
to show that closed knight’s tours do
not exist for boards whose dimensions
are 1 ! n and 2 ! n. As a fun exercise,
one can also show that no closed
knight’s tours exist for boards of
dimension 3 ! 6, 3 ! 8, and 4 ! n. 
In 1991 Allen Schwenk showed that 

as long as one of the
dimensions of the
board is even, every
other m ! n chess-
board allows a closed
knight’s tour.

Constructing 
a Knight-mare
Larson wanted his
creation to be big and
bold, but intricate and
precise: he would 
construct a giant three-
dimensional closed
knight’s tour of an 
8 ! 8 ! 8 chessboard.
Three-dimensional
knight’s moves are
much like those in two
dimensions—a knight

moves two squares in any possible
direction and one square in any
perpendicular direction. The number 
of three-dimensional moves a knight
can make is higher than the number of
two-dimensional moves. For example,
if the knight starts in a corner, there are
only two possible two-dimensional
moves, but six possible three-dimen-
sional moves (see figure 2). The
maximum number of three-dimensional
moves a knight can make from any
given square is 24.

Larson’s interest in three-dimensional
knight’s tours dates
back to January 1975,
when he offered a
course on chess and
mathematics. In one
student project, Noreen
Herzfeld found a closed
knight’s tour on a three-
dimensional 8 ! 8 ! 8
chessboard by writing a
computer program
using Warnsdorff’s
algorithm. When
Herzfeld constructed a
model of this tour using
heavy-duty window

screen and yarn, Larson’s idea to con-
struct a larger-scale wooden version
was born. Herzfeld, now a professor of
theology and computer science at St.
John’s University in Collegeville,
Minnesota, has become a prominent
author on technology and religion. With
Herzfeld nearby as a reminder and
retirement successfully under way,
Larson could finally implement his plan.

Larson knew how complex and difficult
the venture would be. Constructing a
closed, 512-move knight’s tour made
the scale of the project daunting. Since
each knight’s move lies in a plane
perpendicular to one of the coordinate
axes, the construction would involve 
24 different grids, 8 for each of the 3
axis directions. Each knight’s move
would be represented by a wooden
stick, and the sticks joined end-to-end,
in order. In addition to showing the
complexities of a three-dimensional
tour, Larson wanted to highlight 
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Figure 2.  The six possible three-dimensional moves from 
a corner of an 8 !! 8 !! 8 board.

Cataloguing the 512 knight moves.

The complicated crossings required each stick to be
uniquely carved and notched.
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Warnsdorff’s algorithm by displaying
the order in which the 512 moves 
were made. He therefore decided to
dye each stick a slightly different 
color, progressing gradually from 
yellow to maroon, with shades of
orange, apricot, and crimson in
between. Larson used soft pine, a
wood that easily takes on bright, vivid
colors.

Because the completed piece would
hang on a cable, overall stability was a
crucial consideration. Because the 512
sticks needed to cross each other
repeatedly, Larson had to cut differently
shaped notches into almost every stick.
To ensure that the pieces fit properly,
he used vectors representing the
directions of each move and dot
products to calculate the appropriate
angles. Cutting accurate angles at the
end of each stick was too complicated
for Larson’s machines, so he was
forced to finish carving each element
by hand. Each of the 512 sticks took
about an hour to craft, Larson
estimates, and some were trickier than
others.

Once the sticks were cut and sanded,
the coloring process began. Helped 
by his grandson Jakob, Larson dyed
each stick separately. Then came the
arduous task of gluing everything
together. “We began at the top, using
gravity to work with us rather than

against us, by tying the
top layer of sticks to a
screen with pipe clean-
ers,” Larson recalls.
“From there, we worked
down through the cen-
ter, hanging sticks from
the top by cords or
propping them up from
the bottom, and then
out towards the faces.” 

The final steps were to
construct a walnut frame
and to enlist some
friendly St. Olaf profes-
sors to help carry the
structure up the steep hill from Larson’s
workshop to its final destination.

Although the finished sculpture is
beautiful in its own right, Larson sees
the piece as symbolic of the neural
connections implicit in mathematical
problem solving. The orange and yellow
sticks represent understanding of the
problem and possible approaches.
Gradually the focus narrows toward the
central ideas and converges to the
heart of the problem, represented by a
spherical tangle of red sticks in the
middle.

Gazing up at the finished creation,
former Math Horizons editor Deanna
Haunsperger called it a “Knight-mare.”
Larson estimates the construction

process consumed
around 1,000 hours of
labor. Still, Larson recalls,
the project was anything
but tedious. Momentary
frustrations and technical
challenges aside, “the
variability in the
construction of the
pieces kept the project
from feeling like
production work.” Was
the project worth all the
effort? Larson’s response
is simple: “As in much of

mathematics, the sustaining motivation
was artistic—the satisfaction gained
from the problem solved, the piece
completed.”

Further Reading

Euler’s early work on knight’s tours 
can found in “Solution d’une curieuse
que ne paroit soumise à aucune
analyse,” which is part of Mémoires 
de l’Académie Royale des Sciences et
Belles Lettres de Berlin, Année 1759,
15 (1766). Martin Loebbing and Ingo
Wegener’s original (and incorrect)
estimate of the number of knight’s
tours on a standard chessboard
appeared in a 1996 article in the 
Electronic Journal of Combinatorics,
and Brendan McKay published his 
correction in a technical report on the
computer science homepage at the
Australian National University. A. J.
Schwenk’s article “Which Rectangular
Chessboards Have a Knight’s Tour?”
was published in Mathematics 
Magazine 64 (1991).
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Shading the sticks to reflect the order of the moves.

Loren Larsen and his grandson Jakob working on the
final stages.
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