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Right now, without 
moving from your 
seat or from where 
you are standing, look 
at your surroundings. 

Not just left and right but all the 
way around to whatever is directly 
behind you too. Look at the ceiling 
or the sky. Look at the floor below, 
or maybe it’s a desk or a laptop 
below your nose. What you can see 
from your single point of view is a 
viewable sphere. Perhaps it helps to 
picture an imaginary sphere sur-
rounding your head with imagery 
printed on it that matches your 
surroundings.

Of course, we need to refine this 
idea slightly in order to make it 
precise. A sphere has a single center, 
and you probably have two eyes. 
So stay very still, shut one eye, and 
imagine a sphere centered at the 
optical center of your open eye—the 
point where the light rays converge 

on their way to your retina. The 
radius of this imaginary sphere is not 
so important; let’s just make it large 
enough so that your entire head is on 
the inside, and small enough so that 
it lies between you and every object 

you can be painted, or at least 
projected conceptually, to create a 
well-defined viewable sphere.

With the advent of digital photo-
graphy and continuously improving 
photo-stitching software, panoramas 
that capture the entire viewable 
sphere have become more and more 
commonplace. 

To shoot an all-around panorama, 
a photographer takes a series of 
overlapping photographs in every 
direction from the exact same point 
in space—the optical center of the 
lens. It helps to have a wide-angle 
lens and a specialized tripod for this 
purpose. The photographer then 
imports these photos into software 
that can stitch them together into a 
seamless panorama.

These viewable spheres can be 
explored interactively. You might 
be familiar with applications such 
as Google Street View or panorama 
viewers that give online virtual 
walk-throughs of new homes, hotel 
rooms, or cruise ships. Others have 

MATHEMATICS 
MEETS PHOTOGRAPHY

Part I 
The Viewable Sphere

To shoot an all-around 
panorama, a  

photographer takes a 
series of overlapping 
photographs in every 

direction from the  
exact same point  

in space.

within sight. Then for each point in 
the scene around you, even those be-
hind you, the line segment from that 
point to the center of your open eye 
will intersect the sphere in a unique 
point. In this way, the scene around 

Globe Workshop, by Lloyd Burchill
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created actual physical spheres with 
the panorama printed on them. 
Dick Termes, for instance, paints 
viewable spheres in what he calls 
“six-point perspective” because the 
viewable sphere contains all six van-
ishing points (two for each of three 
orthogonal directions).

However, a flat image is in many 
ways more accessible and practical 
than these computer-dependent ap-
plications. If we can find a mathe-
matical mapping, or projection, that 
can map points from a sphere to a 
plane, then these viewable sphere 
panoramas can be printed and 
shared, hung on the wall, shown on 
a flat computer display, or included 
in a book or in Math Horizons. We 
need a function that takes points 
on the viewable sphere as input and 
outputs locations in the two-dimen-
sional plane.

Luckily, cartographers and as-
tronomers have been addressing  
this problem for millennia. What 
keeps cartography both interest-
ing and diffcult is a theorem  
by Riemann, which states that any 
mapping from a sphere to a plane 
will introduce some sort of dis-
tortion. Cartographers are natu-
rally concerned with which sorts of 
distortions a projection introduces 
and whether a projection is suit-
able for the map-user’s purpose. For 
instance, a specific projection might 
fail to preserve area, distances, 
angles, orientation, or any combina-
tion of these.

To get an idea of how projections 
are created or chosen for a purpose, 
consider an example. The Mercator 
projection is well suited for naviga-
tion because a straight line on a 
Mercator map corresponds to a 
path a ship would take while keep-
ing its compass bearing constant. 
However, the Mercator map is not 
ideal if equal area is a concern be-
cause of the large changes in scale, 
especially near the poles.

Let’s consider the equirectangular 
projection as a candidate to map 
viewable spheres. Even by cartogra-
phy standards, it is old, attributed 
to Marinus of Tyre, circa 100 A.D. 

In this projection, the meridians 
(lines of longitude) are set as equally 
spaced vertical lines, and the parallels 
(lines of latitude) are equally spaced 
horizontal lines. For an equirectan-
gular projection, you map a point 
from a sphere to a plane by simply 
renaming longitude and latitude to x 
and y, respectively. The left and right 
edges correspond to a single meridian 
line, while the top and bottom edges 
correspond to the North Pole and 
South Pole, respectively. 

The format yields an image 
with a 2:1 aspect ratio because it 
takes 360 degrees to go all the way 
around the world longitudinally, 
but only 180 degrees to go from 
the North Pole to the South Pole. 
The equirectangular projection is 
so straightforward and useful that 
it has become the de facto standard 
native format for storing digital ver-
sions of viewable spheres. 

A word of warning: In addition to 
cartography jargon such as merid-
ians, parallels, equators, and poles, 
our discussion may include panora-
ma terminology such as zenith (the 
point on the viewable sphere directly 
above the observer), nadir (the point 
below), and the horizon line.

Looking at the equirectangu-
lar projection above, we see that 
everything is oriented well (things 
that are pointed upward in the 
visible sphere are pointing upward 
in the equirectangular projec-
tion). However, as we can see, the 
equirectangular projection is not 
very well suited for viewing the 
parts of the panoramas near the 
zenith or the nadir. There is a 
rather nasty horizontal stretching 
at the top and the bottom of the 
projection. 

Granted, these parts often com-
prise uninteresting flooring, grass, 
sky, or ceiling. But the features that 
are there are unrecognizable and 
can detract from the panorama’s 
aesthetics. We want to look for 
projections that produce panora-
mas where no features are skewed 
or stretched. Do such projections 
exist? Under a reasonable interpre-
tation of the phrase “no features are 
skewed or stretched,” the answer is 
a resounding yes!

Conformal Mappings 

When looking at different attri-
butes of projections, one property 
seems to be better suited for pho-
tographic content than others: con-
formality. Mathematically speaking, 
conformal mappings are mappings 
that preserve angles at a local level. 
For instance, if two curves meet at, 
say, a 45-degree angle on the view-
able sphere, then their images in 
the plane under a conformal map-
ping will also meet at 45 degrees. 

Sébastian Pérez-Duarte, www.flickr.com/photos/sbprzd

Qualitatively speaking, 
conformal maps 

ensure that the imagery 
does not get sheared  

or skewed.
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To be conformal, a mapping must 
preserve every angle on the view-
able sphere.

Qualitatively speaking, conformal 
maps ensure that the imagery does 
not get sheared or skewed; there is 
no squishing and stretching of the 
sort that we see near the top and 
bottom of an equirectangular projec-
tion. (While delightfully simple, 
equirectangular projections are not 
conformal.) As a consequence of pre-
serving angles, it can be shown that 
any squishing or stretching that does 
happen under a conformal mapping 
occurs in all directions uniformly. 
This ensures that small features 
retain their shapes, even though 
we can expect some variations 
in scale and orientation. In other 
words, small-scale details will keep 
their overall shape and appearance, 
but large-scale shapes might grow, 
shrink, bend, or become distorted in 
some manner. This change of scale is 
not as problematic for photographic 
content as it is for maps perhaps 
because your eye tends to accept 
larger and smaller details as closer 
and farther away, respectively.

The conformal stereographic 
projection is about as old as the 
equirectangular projection. It is 
attributed to Ptolemy in the sec-
ond century A.D. It is one of the 
most popular projections for view-
able spheres. If we imagine the 
viewable sphere itself as a translu-
cent ball resting on a white floor, 
we could place a light bulb at the 
zenith of the sphere and then look 
at the floor. The imagery on the 
floor is the stereographic projec-
tion of the sphere. (See figure 
1). This mathematical function 
lives up to its name as an actual 
projection. 

The stereographic projection 
of a viewable sphere is striking. 

see panoramas that are taken from 
a point directly above a decorative 
floor element.

The horizon, which forms the 
equator of the viewable sphere, gets 
projected onto a circle. Everything 
below the horizon lands inside the 
circle, and everything above the 
horizon lands outside it. The pho-
tographic details at the horizon are 
such that the horizontal plane of 
the ground underfoot is parallel to 
the viewer’s line of sight. So when 
this horizon is mapped to a circle, 
it gives the appearance of being the 
edge of a sphere viewed head on, as 
you can see in figure 2.

Sébastian Pérez-Duarte, www.flickr.com/photos/sbprzd

Everything below the horizon is 
transformed to the interior of a 
circular region reminiscent of the 
little planet from Saint-Exupéry’s 
Little Prince. So it is no surprise 
that these projections have been 
dubbed “Little Planets.”

In a stereographic projection, the 
nadir of the panorama is moved 
to the center of this little planet 
sphere. Because the nadir is so 
prominent, it is not uncommon to 

Figure 1.  
Stereographic  

projection transforms 
the spherical image  
to a flat one.

Figure 2. Stereographic projection of a 
viewable sphere centered above an infinite 
checkerboard plane.

Lines to Circles

Stereographic projection can be 
better understood by seeing what 
it does to something as simple as 
a line in the original scene. What 
happens to the edge of a sidewalk 
or building, or to the edges of the 
magazine that you are now reading?

Recall that we first project the 
three-dimensional scene onto the 
viewable sphere. We then apply  
stereographic projection to the spher-
ical image. We need to follow a line 
in the original scene through these 
two stages. For the first stage, start 
with any line in the scene that does 
not contain the center O of the view-
able sphere. It will be projected to a 
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Figure 3. A line in the scene becomes a great 
circle on the viewable sphere.

Further Reading

Examples of panoramic imagery 
abound at Flickr.com; search for 
“stereographic” or “equirectangular.” 

Carlos Furuti maintains an excel-
lent website cataloguing properties 
of various cartographic projections: 
visit www.progonos.com/furuti/
MapProj/CartIndex/cartIndex.html.

The geometry of stereographic 
projection, and in particular the 
fact that circles map to circles, is 
explained beautifully in chapter 

three of Tristan Needham’s book, 
Visual Complex Analysis (Oxford 
University Press, 1999).

If you want to try making your 
own panoramas, the (free, open 
source) Hugin stitching software is 
a good place to start. Smartphone 
apps such as Autostitch and 
Photosynth are gaining popularity 
and are very simple to use.

 
—David Swart  

and Bruce Torrence

Figure 4. Stereographic  
projection maps circles that 
do not contain the zenith  
to circles.

http://dx.doi.org/10.4169/mathhorizons.19.1.14

great circle on the viewable sphere, as 
shown in figure 3. To see why, simply 
note that the line together with the 
center O determine a plane. Since 
this plane passes through the center 
of the viewable sphere, it intersects 
the sphere in a great circle. 

For the second stage, we are left 
with the task of determining what 
happens to a great circle under 
stereographic projection. We will 
see that there are two distinct cases: 
those great circles on the sphere that 
pass through the zenith and those 
that do not. 

The first case is simple. Any great 
circle containing the zenith must also 
contain the nadir. Such circles are 
meridians; as such, they correspond 
to lines under stereographic projec-
tion. Every such line passes through 
the nadir at the center of the final 
image, and we could reasonably call 
them radial lines. Since vertical lines 
in the original three-dimensional 
scene are portions of meridians on 
the viewable sphere, we conclude 
that vertical lines in the three-di-
mensional scene map to radial lines 
in the stereographic projection. More 

generally, any line meeting the hori-
zon at a right angle corresponds to 
a meridian on the viewable sphere, 
and thus maps to a radial line in the 
stereographic projection. Can you 
see the radial lines in figure 2?

The second case is slightly less 
simple. It can be shown that any 
circle (great or otherwise) on the 
surface of the sphere, that does not 
pass through the zenith, will map 
under stereographic projection to 
another circle. See figure 4, and 
consult the Needham reference in 
the Further Reading section for de-
tails. This implies that lines in the 
original scene that are not meridi-
ans on the viewable sphere will map 
stereographically to circles. Lines 
that intersect the horizon at nearly 
a right angle (great circles that are 
nearly meridians on the viewable 
sphere) will map stereographically 
to large circles. Lines that are closer 
to horizontal will map to smaller 
circles. The smallest circle in the 
stereographic projection that cor-
responds to a line in the original 
scene is the horizon circle; no great 
circle on the sphere projects stereo-
graphically to something smaller.

So we have answered the question 
of what happens to linear features in 
the three-dimensional scene. Every 
straight line in the original scene 

becomes, under stereographic projec-
tion, either a portion of a radial line 
or some portion of a circle, according 
to whether or not the original line 
corresponds to a meridian on the 
viewable sphere. Moreover, it is easy 
to see that any sphere projects in 
a circle on the viewable sphere and 
maps to a circle via stereographic 
projection. 

Now close one eye again, and look 
for lines in the scene around you. 
Which of them correspond to merid-
ians on the viewable sphere, and so 
become radial lines in the stereo-
graphic projection, and which are 
skew to the horizon, and so become 
circles instead? Can you imagine 
what the little planet version of your 
current surroundings would look like? 
See The Zip-Line on page 30 for a 
stereographic visualization challenge.

Stay tuned for the second part 
of this article, to appear in the 
next issue. We will address a host 
of other conformal projections in 
a systematic way by making use 
of a seminal idea of Riemann’s: we 
identify the standard stereographic 
image with the complex plane. By 
composing stereographic projection 
with a second conformal map from 
the complex plane to itself, myriad 
visual effects are possible. n
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