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D avid Hilbert wrote, “The art of doing 
mathematics consists in finding that 
special case that contains all the germs 
of generality.”

Over the past few decades, a grow-
ing group of puzzle enthusiasts known as hypercub-
ists have generalized the Rubik’s Cube in ways that 
traverse a wide expanse of mathematical ground. The 
explorations have been a microcosm of mathematical 
progress. Finding and studying these puzzles provides 
a rich way to approach varied topics in mathematics: 
geometry (higher dimensional, non-Euclidean, projec-
tive), group theory, combinatorics, 
algorithms, topology, polytopes, 
tilings, honeycombs, and more. 

For this group of people, twisty 
puzzles are more than just a casual 
pastime. Elegance is a core principle 
in their quest.

Hypercubes
We can change many properties of 
the classic  Rubik’s Cube, 
such as its shape or twist centers, 
to make new and interesting puzzles 
(see figure 2). But the hypercubing 

Figure 1. The 
5uEiN·s FuEH, 
warped!

group began by changing a more abstract property, 
namely, the dimension. 

Don Hatch and Melinda Green created an exquisite 
working four-dimensional  (or 34) ana-
logue, which they called MagicCube4D. Every proper-
ty of this puzzle is upped a dimension: Faces, stickers, 
and twists are three-dimensional rather than two- 
dimensional. Figure 3 shows the ordinary Rubik’s 
cube and the hyperpuzzle using a central projection 
that reduces the dimension by one; it is as if we are 
looking into a box, with the nearest face hidden. 

)igurH �� �D� 0HgDPin[ usHs D GoGHFDKHGrDl sKDSH rDtKHr tKDn D FuEH� 
�E� 7KH +HliFoStHr &uEH tZists DrounG HGgHs instHDG oI IDFHs�
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The 33 Rubik’s Cube has  stickers that 
can live in a mind-boggling  possible 
states. The hypercubical 34 has  stickers 
and the number of possible puzzle positions explodes 
to an incomprehensible  Calculating this 
number is a challenge that will test your group theory 
mettle!

But as Edwin Abbott wrote in Flatland, “In that 
blessed region of Four Dimensions, shall we linger on 
the threshold of the Fifth, and not enter therein?” 

The group didn’t stop at four dimensions. In 2006, 
a working five-dimensional puzzle materialized with 

 hypercubical stickers and  
states, pushing the boundaries of visualization. 
Figure 4 shows a shadow of a shadow of a shadow of 
the five-dimensional object. Nonetheless, as of mid-
2017, around 70 people have solved this puzzle. 

In June 2010, Andrey Astrelin stunned the group 
by using a creative visual approach to represent a 
seven-dimensional Rubik’s Cube. Yes, it has been 

)igurH �� 3roMHFtion triFNs FDn KHlS us YisuDli]H KigKHr�GiPHnsionDl 5uEiN·s &uEHs� �D� 7KH �3, SroMHFtHG so D tZo�
GiPHnsionDl ´ÁDtlDnGHrµ sHHs fiYH oI tKH si[ FuEH IDFHs� �E� 7KH �4, SroMHFtHG so D tKrHH�GiPHnsionDl EHing sHHs 
sHYHn oI tKH HigKt K\SHrFuEH IDFHs�

Figure 4. A  
sKDGoZ oI D sKDGoZ oI D 
sKDGoZ oI tKH �5� 6tiFNHrs  
DrH littlH K\SHrFuEHs�

)igurH �� 7KH 0DgiF���&Hll, or tKH �' 0HgDPin[, KDs 
��� GoGHFDKHGrDl IDFHs� ,t GHriYHs IroP tKH ����FHll, 
onH oI si[ 3lDtoniF sKDSHs in Iour GiPHnsions� 



solved. Can you calculate the number of stickers on 
the 37? 

You may also enjoy trying to work out the proper-
ties of a two-dimensional Rubik’s Cube. What dimen-
sion are the stickers? 

Of course, we can play the shape-changing game in 
higher dimensions too, yielding a panoply of additional 
puzzles. There are five Platonic solids in three dimen-
sions, but six perfectly regular shapes a dimension up, 
and you can attempt to solve twisty puzzle versions of 
all of them! Figure 5 shows one of the most beautiful 
in its pristine state. 

Shapes in arbitrary dimensions are called polytopes, 
or polychora in four dimensions. In addition to the 
regular polychora, there are many uniform polychora, 
and quite a few have been turned into twisty puzzles. 
Uniform polychora can break regularity in various 
ways. They may have multiple kinds of three-dimen-
sional faces, or the faces may be composed of uniform 
(that is, Archimedean) polyhedra.

Curved Twisty Puzzles
“For God’s sake, I beseech you, give it up. Fear it no 
less than sensual passions because it too may take all 
your time and deprive you of your health, peace of 
mind and happiness in life.”

No, these were not desperate pleas to a hypercubist 
about excessive puzzling adventures. Such were the 
words of Farkas Bolyai to his son János, discouraging 
him from investigating Euclid’s fifth postulate. János 
continued nonetheless, which led him into the wonder-
ful world of hyperbolic geometry. 

We will also not heed the elder Bolyai’s advice. Let’s 
use topology to abstract away a different property of 
Rubik’s Cube—its cubeness. To do so, project the cube 
radially outward onto a sphere (see figure 6a). Notice 
that all the important combinatorial properties remain. 
Furthermore, what were planar slices of the Rubik’s 

Cube are now circles on the sphere’s sur-
face. A twist simply rotates the portion of 
the surface inside one of these twisting cir-
cles. In short, we are viewing the Rubik’s 
Cube as a tiling of the sphere by squares, 
sliced up by circles on the surface. 

Inspired by this example, we can con-
sider other colored regular tilings, and a 
huge number of new twisty puzzles become 
possible, some living in the world of hyper-
bolic geometry!

For two-dimensional surfaces, there are 
three geometries with constant curvature: 
spherical, Euclidean, and hyperbolic. 
These geometries correspond to wheth-

er the interior angles of a triangle sum to greater 
than, equal to, or less than 180 degrees, respectively. 
Intuitively, we can think of the surface of a sphere, a 
flat plane, and a Pringles potato chip as representa-
tive surfaces for these geometries.

Each surface of constant curvature can be tiled with 
regular polygons. The Schläfli symbol encodes regular 
tilings with just two numbers, {p,q}. This denotes 
a tiling by p-gons in which q such polygons meet at 
each vertex. The value  determines the 
geometry: Euclidean when equal to 4, spherical when 
less, and hyperbolic when greater.

For example, {4,3} denotes a tiling by squares 
with three arranged around each vertex, that is, the 
cube. As we saw in figure 6a, this gives a tiling of the 
sphere, and indeed,  

Euclidean geometry is the only one of the three 
geometries that can live on the plane without any 
distortion. A lovely way to represent the other geom-
etries on the plane is via conformal, or angle preserv-
ing, maps. The stereographic projection is a conformal 
map for spherical geometry. Figures 1 and 6b show 
the stereographic projection of the spherical Rubik’s 
Cube onto the plane. For hyperbolic geometry we use 
the Poincaré disk, which squashes the infinite expanse 
of the hyperbolic plane into a unit disk (see figure 10). 

One challenge of turning Euclidean and hyperbol-
ic tilings into twisty puzzles is that unlike spherical 
tilings, which are finite, tilings of these two geometries 
go on forever. To overcome this hurdle, we begin with 
a tiled surface, called the universal cover; choose a 
certain subset of tiles, called the fundamental domain; 
and identify its edges to form a quotient surface. 
Intuitively, we glue the edges of this region together to 
turn the infinite tilings into finite puzzles. Figures 7, 
8, and 9 show a few examples. 

One of the crown jewels of this abstraction is the 
Klein quartic Rubik’s Cube, composed of 24 hepata-

)igurH �� �D� 7KH 5uEiN·s &uEH SroMHFtHG rDGiDll\ onto D sSKHrH \iHlGs 
D tZo�GiPHnsionDl tiling oI tKH sSKHrH� �E� ,t is tKHn stHrHogrDSKiFDll\ 
SroMHFtHG onto tKH SlDnH�
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gons, three meeting at each vertex. 
It has “center,” “edge,” and “corner” 
pieces just like the Rubik’s Cube. 
The universal cover is the {7,3} 
hyperbolic tiling, and the quotient 
surface is a three-holed torus. This 
puzzle contains some surprises; if 
you solve layer by layer, as is com-
mon on the Rubik’s Cube, you’ll be 
left with two unsolved faces at the 
end instead of one. 

All these puzzles and more are 
implemented in a program called 
MagicTile. The puzzle count 
recently exceeded a thousand, with 
an infinite number of possibilities 
remaining.

More Puzzles
There are even more intriguing an-
alogues that we have not yet seen. 
Let me mention two of my favor-
ites. The first is another astonishing 
set of puzzles by Andrey Astrelin 
based on the {6,3,3} honeycomb in 
three-dimensional hyperbolic space, 

 (see figure 11). The faces are 
hexagonal {6,3} tilings, with three 
faces meeting at each edge. Gluing 
via identifications serves to make 
the underlying honeycomb finite in 
two senses: the number of faces and 
the number of facets per face. If we 
take a step back and consider where 
we started, this puzzle has altered 
the dimension, the geometry, and 
the shape compared to the original 
Rubik’s Cube! 

The second is a puzzle created 
by Nan Ma based on the 11-cell, 
an abstract regular polytope com-
posed of 11 hemi-icosahedral cells 
(see figure 11). This is a higher- 
dimensional cousin of the Boy’s surface puzzle in 
figure 9. The 11-cell can only live geometrically 
unwarped in 10 dimensions, but Nan was able to pre-
serve the combinatorics in his depiction.

With so many puzzles having been uncovered, one 
could be forgiven for suspecting there is not much 
more to do. On the contrary, there are arguably more 

avenues to approach new puzzles now than 10 years 
ago. For example, there are no working puzzles in 

 composed of finite polyhedra. There are not yet 
puzzles for uniform tilings of Euclidean or hyperbolic 
geometry, in two or three dimensions. Uniform tilings 
are not even completely classified, so further mathe-
matics is required before some puzzles can be realized. 

)igurH �� $ tZist\ Su]]lH on tKH 
torus DnG its uniYHrsDl FoYHr� 7KH 
IunGDPHntDl GoPDin is outlinHG 
in red.

)igurH �� $ tZist\ Su]]lH on tKH .lHin 
EottlH DnG its uniYHrsDl FoYHr� 7KH 
IunGDPHntDl GoPDin is outlinHG in rHG� 

)igurH �� $ tZist\ Su]]lH on %o\·s 
surIDFH �tKH rHDl SroMHFtiYH SlDnH� 
DnG its uniYHrsDl FoYHr� 7KH 
IunGDPHntDl GoPDin is outlinHG 
in red. 

www.maa.org/mathhorizons : : Math Horizons : : April 2018  21



Melinda Green has been developing a physical puzzle 
that is combinatorially equivalent to the 24. The idea 
of fractal puzzles has come up, but no one has yet 
been able to find a good analogue. 

In addition to the search for puzzles, countless 
mathematical questions have been asked or are ripe 
for investigation. How many permutations do the 
various puzzles have? What checkerboard patterns 
are possible? Which nd puzzles have the same num-
ber of stickers as pieces? How many ways can you 
color the faces of the 120-cell puzzle? What is God’s 
number for these higher dimensional Rubik’s Cubes; 
that is, what is the minimum number of moves in 
which the puzzle can be solved, regardless of start-

ing position? The avenues are limited only by our 
curiosity.

As John Archibald Wheeler wrote, “We live on 
an island surrounded by a sea of ignorance. As our 
island of knowledge grows, so does the shore of our 
ignorance.” n
Further Reading
The MagicCube4D website (superliminal.com/cube/
cube.htm) contains links to all the puzzles in this arti-
cle and to the hypercubing mailing list.

Burkard Polster (Mathologer) produced wonderful 
introductory videos to MagicCube4D and MagicTile 
“Cracking the 4D Rubik’s Cube with simple 3D tricks” 
(youtu.be/yhPH1369OWc) and “Can you solve THE 
Klein Bottle Rubik’s Cube?” (youtu.be/DvZnh7-nslo)
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)igurH ��� .lHin TuDrtiF 5uEiN·s &uEH on tKH K\SHrEoliF 
uniYHrsDl FoYHr� 7KH TuotiHnt surIDFH is D tKrHH�KolHG 
torus�

)igurH ��� $n in�sSDFH YiHZ oI tKH 0DgiF +\SHrEoliF 
7ilH ^�,�,�` Su]]lH in tKrHH�GiPHnsionDl K\SHrEoliF 
sSDFH� 

)igurH ��� 7KH sFrDPElHG 0DgiF ���&Hll�
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