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Optimization is the branch of mathematics concerned
with finding the best way to complete a task. Certain-
ly, some tasks are easy, and we need not rely on opti-

mization to tackle them. But many others are much more dif-
ficult, so much so that we may have very little hope of
completing them satisfactorily—let alone optimally—without
optimization. 

For example, suppose a friend of ours does volunteer work
for a Meals-on-Wheels program. Once a week she bikes to the
Meals-on-Wheels headquarters and picks up  meals and a list
of twenty names and addresses. She then gets in the Meals-on-
Wheels van, delivers the meals, and returns to headquarters.
Her goal is to drop off the meals in an order that will minimize
the number of miles she’ll travel, as this will minimize fuel
consumption, pollutant emissions, and the amount of time
she’ll spend on the job. 

Is her task—planning the route she’ll take—an easy one? It
depends. If all of the addresses are on the same road, then it is
extremely easy; the optimal route will be obvious to anyone
who takes a look at a map. But if not, it can be extremely dif-
ficult, especially in the case in which the addresses appear to
have been scattered about the city at random. (Why? Why not
just list and evaluate every single route? The answer is that
there are 20!    2.43×1018   routes, one for every permutation of
the 20 addresses. Even if our friend has a laptop that can eval-
uate one trillion (1012) routes per second, she’ll have to run it
for about 28 days if she wants to find the optimal route via
complete enumeration!) Incidentally, this task is an instance
of the Traveling Salesman Problem (TSP), one of the most dif-
ficult, important, and well-studied problems in the optimiza-
tion field. 

Optimization has a seemingly unlimited number of appli-
cations. It has been put to good use in a large number of
diverse disciplines: advertising, agriculture, biology, business,
economics, engineering, manufacturing, medicine, telecom-
munications, and transportation (to name but a few). In this
article, we showcase its amazing utility by describing some
applications in the area of art, which at first glance would seem
to have no use for it whatsoever! 

Photomosaics
A photomosaic is, as the name suggests, a mosaic compris-

ing photographs. When we examine a photomosaic from up
close, we are able to identify each individual “building-block”

photograph. When we back away from it, we lose this ability,
but we gain something else: our eyes somehow manage to
merge the arrangement of photographs into a recognizable
image. For example, in Figure 1, using digits 1, 2, 3, 5, and 8,
we see Fibonacci in a photomosaic with dimensions 34 ×  55.

In this section, we describe how to use optimization to cre-
ate an m ×   n photomosaic (one with m rows and n columns of
building-block photographs) that resembles a given target
image from photographs that belong to a given set F of
building-block photographs. Usually, each photograph f ∈ F is
square (a k × k array of pixels) and can be used no more than
some given number uf times, with no rotations or reflections.
(In our opinion, the best photomosaics have uf  = 1 for each f ∈
F.) To keep things simple here, we assume that each photo-
graph is black-and-white, and we denote the average bright-
ness of photograph f by bf ∈[0,1], where 0 stands for a com-
pletely black photograph and 1 stands for a completely white
one. 

Accordingly, we begin by partitioning both our target image
and our initially blank canvas into m rows and n columns of
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Figure 1. Photomosaic of Fibonacci using numbers 1,2,3,5, and 8.
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congruent squares. We denote the brightness of the row-i-
column-j square—square (i, j)—of our target image by βij,
using the same 0-to-1, black-to-white scale we use for the bf s.
Our task amounts to placing photographs from F onto our
canvas, one photograph per square. Our goal is to pick the pho-
tographs and place them on the canvas in such a way that the
arrangement of photographs resembles our target image as
closely as possible. 

This task is very well suited to optimization. When trans-
lated into the language of mathematics, it becomes an integer
program (IP), an optimization problem with a linear objective
function, linear constraints (inequalities and/or equations), and
variables that take on integer values: 

Note that we have a binary variable xfij for each photograph
f ∈ F and each square (i, j) of our canvas. We interpret xfij = 1
to mean that we should place photograph f in square (i, j), and
xfij = 0 to mean that we definitely should not make this partic-
ular placement. 

The idea behind the objective function is fairly simple: Sup-
pose we place photograph f in square (i, j) (i.e., we set xfij = 1).
If the brightness of f is equal to the brightness of square (i, j)
in our target image, we’ve dealt with square (i, j) as well as
anyone could have. But if not (the more likely case), we should
charge ourselves a cost. A reasonable cost is (bf – βij)

2, the
square of the discrepancy between the brightness values.
Hence the objective function is the total cost we charge our-
selves. Our goal is to make this cost as small as possible. 

The constraints are even easier to interpret. The first set of
constraints ensures that no photograph f ∈ F is used more than
uf times. The second set of constraints guarantees that each
square (i, j) of our canvas receives exactly one photograph. 

Although integer programming is NP-hard (which means
that there is likely to be no efficient algorithm that can solve
any integer programming problem), some classes of integer
programs are quite easy to solve. The Photomosaic IP, being an
integer programming formulation of an instance of the Assign-
ment Problem, is very easy to solve. It turns out that if we were
to “forget” that the variables must take on integer values and
solve the integer program as a linear program (LP)—replacing
each xfij ∈ {0,1} with 0 ≤ xfij ≤  1—we would be certain to get

lucky: the optimal solution to this linear program is guaranteed
to be integer-valued! Moreover, there are efficient non-LP-
based algorithms for solving instances of the Assignment
Problem. 

Thus, from an optimization standpoint, photomosaics are
easy to make! (But note that this does not imply that it is easy
to make a good photomosaic. Optimization cannot help us
solve the difficult task of selecting a set F of building-block
photographs that will fit well with—or perhaps provide
commentary on—the target image.) 

Historical Note
Of the numerous artists who have constructed photomo-

saics, Robert Silvers is the most well known. His algorithm,
which is described in his 1996 MIT MS Thesis, Photomo-
saics: Putting Pictures in Their Place, is not based on treating
the Photomosaic Problem as an Assignment Problem. It is a
greedy algorithm. Silvers writes, “Currently [my] mosiacs are
made from the top down. The negative consequences of this
are that the quality of matches is worse at the bottom of the
mosaic than at the top because the best images are used up
first.” 

Domino Artwork
In this section we describe how to create a portrait out of

complete sets of double-nine dominoes, as in Figure 2. Here,

Photomosaic IP

minimize  b xf ij fij
j

n

i

−( )
=

∑ β
2

1==∈

==

∑∑

∑∑ ≤

1

11

m

f F

fij
j

n

i

m

fx usubject to    for  each 

for each 

f F

x i m j n

x

fij
f F

fi

∈

= ≤ ≤ ≤ ≤
∈

∑ 1 1 1,

jj f F i m j n∈ ∈ ≤ ≤ ≤ ≤{ , } , ,0 1 1 1 for each Figure 2. A domino portrait of Venus from Botticelli’s “The Birth of
Venus” created with nine complete sets of double-nine dominoes.
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our task is to place s sets of double-nine dominoes on the can-
vas—with each domino positioned either horizontally or ver-
tically, covering precisely two squares of the canvas—in such
a way that the resulting arrangement resembles the target
image as closely as possible. 

Note that in place of a set of building-block photographs F,
we have a set of double-nine dominoes D = {d = (d1, d2) : 0 ≤
d1 ≤ d2 ≤9}, and we need to use each domino d ∈D exactly s
times. Since domino d = (d1, d2) is black and has d1 white dots
painted on one square and d2 white dots painted on the other,
domino d = (d1, d2) can be thought of as a domino-shaped
photograph, half of which has brightness d1 and half of which
has brightness d2, with both brightness values measured on a
0-to-9, black-to-white scale. 

Also note that since there are 55 dominoes per set, we need
to make sure that when we partition the target image and
canvas into m rows and n columns of congruent squares, m
and  n satisfy mn = 110s. The portrait in Figure 2 has m = 33,
n = 30, and s = 9. 

Finally, note that it is convenient here to denote the
brightness of the row-i-column-j square of our target image by
an integer 0 ≤ βij ≤  9 (or if we want higher resolution, with a
real number –0.5 ≤ βij ≤ 9.5 ). A completely black square will be
given a brightness of 0 (or –0.5), and a complete white square
will be given a brightness of 9 (or 9.5). 

Recall that constructing a photomosaic requires us to make
a yes-no decision for each possible assignment of a photo-
graph f to a square (i, j) of the canvas, and that in our Photo-
mosaic IP we modeled this via binary variables xfij. Con-
structing a domino portrait is more complicated in that we
need to make a yes-no decision for each possible assignment
of a domino d to a pair of adjacent squares of the canvas. But
if we construct the set of all adjacent pairs of squares 

we can then proceed as we did before: we can introduce a
binary variable xdp for each domino d in D and each pair p in
P. We interpret xdp = 1 to mean that we should place domino d
on the board in such a way that it covers the squares in pair p;
we interpret xdp = 0 to mean that we shouldn’t do this. And we
quickly arrive at the following integer program:  

Domino IP
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The objective function measures the total cost of the
resulting arrangement of dominoes; cdp is the cost of placing
domino d so that it covers the squares in pair p. Our method for
computing cdp is easy to understand, but hard to capture in a
concise formula. Suppose we place domino d = (3,5) so that it
covers the squares of pair p = {(10,10), (10,11)} and the
squares have brightness values of β10,10 =  6 and β10,11 = 4. If
we place the domino with its ‘3’ in square (10,10) and its ‘5’ in
square (10,11), we’ll charge ourselves a cost of (3–6)2 + (5–4)2

= 10. If we place the domino with its ‘3’ in square (10,11) and
its ‘5’ in square (10,10), we’ll do much better, incurring a cost
of only (3–4)2 +(5–6)2 = 2. In this example, cdp = min {10,2}
= 2. In general, if d = (d1, d2), and P = {(i1, j1), (i2, j2}, we have

As for the constraints, they are very easy to understand. The
first set makes sure that all of the dominoes are placed on the
canvas. The second set makes sure that each square of the
canvas is covered by exactly one domino. 

At first glance, the Domino Problem appears to be another
instance of the Assignment Problem. After all, we are
assigning dominoes to pairs of adjacent squares of the canvas,
making sure that each domino is used s times. But note that
instead of requiring that each pair of adjacent squares receives
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Figure 3. Michaelangelo’s “David” using diamond-shaped tiles
with edge constraints.
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at most one domino, we require something stronger: that each
square be covered by exactly one domino. Consequently, the
Domino Problem is actually an instance of an Assignment
Problem with side constraints. 

When one adds side constraints to an easy-to-solve prob-
lem, several things can happen. The best-case scenario is that
the problem remains easy to solve (i.e., one can find an effi-
cient algorithm for solving instances of the “new” problem).
The next-to-best-case scenario is that the problem becomes
hard to solve in theory, yet is still easy to solve in practice (i.e.,
there exist some instances that appear to require an enormous
amount of time to solve, but most instances encountered on a
day-to-day basis are easily handled). The worst-case scenario
is that the problem becomes hard to solve, both in theory and
in practice. The Domino Problem falls into the second
category. 

Historical Note
Ken Knowlton, one of the pioneers of the field of computer

graphics, was the first artist to construct mosaics using
complete sets of dominoes, though his techniques differ from
what we describe here.

Other Tiles
Another possibility is to use tiles instead of dominoes or

building-block photographs and require that the edges of
neighboring tiles match. We can use, for example, square tiles
that have precisely two white and/or black strands drawn on
them, with exactly one end of a strand exiting each side of the
square. The resulting mosaics resemble Celtic knot drawings,
as in Figure 3. 

Here, we have a binary variable xtij for each tile t and each
square (i, j) of the canvas, and we interpret xtij = 1 to mean that
we should place tile t in square (i, j) and xtij = 0 to mean that we
shouldn’t. Our objective is to minimize the total cost of our tile
arrangement, and we have two sets of constraints: constraints
that ensure that each square receives exactly one tile, and con-
straints that guarantee that the edges of neighboring tiles
match. As in the case of the Domino Problem, we end up with
an Assignment Problem with side constraints. 

Continuous Line Drawings
We can also use optimization to create continuous line

drawings. The idea is very simple: First, we place dots down
on a blank canvas in such a way that the group of dots
resembles the target image. Next, we construct an instance of
the TSP, viewing the dots as a collection of cities. Here, the
salesman is assumed to be able to travel as the crow flies, so
city-to-city distances are given by the Euclidean formula.
Next, we use a good TSP heuristic (the Lin-Kernighan
heuristic from the Concorde TSP package by Applegate,

Bixby, Chvátal, and Cook) to obtain a high quality (but not
necessarily optimal) solution to the TSP instance. Finally, we
draw the salesman’s tour. 

The resulting picture is a continuous line drawing. Since
the TSP instance is Euclidean, the tour will not intersect itself.
(Can you see why?) It will be topologically equivalent to a
circle! 

Further Reading
R.A. Bosch, “Constructing domino portraits,” in Tribute to

a Mathemagician, ed. B. Cipra et al., A.K. Peters, 2004, 251-
256. 

R. Bosch and A. Herman, “Continuous line drawings via
the traveling salesman problem,” Operations Research Letters
3 (2004) 302-303. 

C.S. Kaplan and R. Bosch, “TSP Art,” Proceedings of
Bridges 2005: Mathematical Connections in Art, Music and
Science (2005) 301-308. 

Figure 4. This continuous line drawing of Leonardo DaVinci’s “Mona Lisa”
uses 10,000 cities and is topologically equivalent to a circle.

All figures provided by Robert Bosch, dominoartwork.com. All rights reserved.
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