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E very year waves of illnesses sweep 
through college campuses. This seems 
a natural result of sleep-deprived 
college students living, working, and 
playing together. Such outbreaks 

suggest questions: How many people will become 
infected? How can illnesses be contained? And 
crucially: How is mathematics involved?

Mathematical epidemiology is the study of model-
ing diseases, often using compartmental models. We 
can use such models to learn from past outbreaks 
and investigate theoretical future outbreaks. 

In this article we present models that were inspired 
by two real-life outbreaks at a small residential col-
lege campus: H1N1 influenza in 2009 and, surprising-
ly, mumps in 2016.  

Compartmental Models
Consider an illness in a population. Suppose that at 
time t, each person belongs to one of three subsets, 
or compartments, of the population: the susceptible 
compartment—people who have not contracted the 

illness but could get it; the infectious compartment—
people who have the illness and can spread it to 
susceptible individuals; and the removed compart-
ment—people who are immune and not spreading 
the illness. The sizes of these compartments are 
given by S(t), I(t), and R(t), respectively (time is 
measured in days throughout this article); hence, 
this is known as an SIR model.

Individuals can move from one compartment to 
another, so the sizes of the compartments change 
over time. “Change” suggests a derivative, and indeed 
the change in each compartment’s size is written as a 
differential equation. We can express the SIR model 
as the system of differential equations

or as the model diagram in figure 1. 
We will discuss the details of this model in the next 

section, but for now, consider these general obser-
vations. The model has only outward flow from S, 
meaning  so the susceptible population cannot 
increase. Similarly, R has only inward flow and cannot 
decrease. However, I has both inflow βSI and outflow 
γI. If  then the infected population is increas-
ing, such as at the start of an outbreak. If  
then  meaning there are more recoveries 
than new infections; the outbreak may be nearing its 
end. Think about what it could mean when  
that is, when there is no net change in I.
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Figure 1. SIR compartmental model diagram.
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Different outbreaks may require different models. 
The choices of compartments, numbers of arrows, 
and formulas associated with each arrow can all 
change, depending on the outbreak’s biology and 
the modeler’s focus. Yet the connection between 
diagram and equations stays consistent: one dif-
ferential equation per compartment, each arrow 
showing flow into one compartment and/or flow out 
of another compartment. 

Here is some useful epidemiological vocabulary: We 
define incidence as

and prevalence as 

Data is often presented in terms of the incidence 
numerator, which is modeled as βSI. Notice that the 
prevalence numerator is I(t). 

The basic reproduction number  plays many 
roles in modeling. It is the average number of new 
disease cases caused by a single infectious person in 
an otherwise susceptible population. When  
the disease initially spreads, and when  the 
disease dies out. Epidemiologists gather data to 
estimate  for diseases like influenza and mumps 
(L. Edelstein-Keshet, Mathematical 
Models in Biology, Random House, 1988).

With these ideas in mind, we use the SIR 
model for a common campus outbreak: the 
flu.

Influenza
The SIR model in figure 1 is a good choice 
for a basic flu model. The novel virus 
strain in 2009 meant every student was 
initially considered susceptible (except the 
first infectious student). Once a student 
contracted the flu, the time till that 

person could infect others was quite short, so we 
leave this time period out of our model—students 
move directly from susceptible to infectious. (In the 
mumps section, we introduce a compartment for 
infected, noninfectious students.) Students who are 
no longer contagious have gained immunity to that 
flu strain, so they go to the removed compartment 
and stay there (see the Centers for Disease Control 
and Prevention’s website on the H1N1 flu, http://
bit.ly/CDCH1N1Flu).

Each differential equation term has a flu-related bio-
logical interpretation. The γI term governs movement 
from the I compartment to the R compartment. For 
H1N1, the infectious period could be as many as five 
to seven days, though the period of highest infectivity 
lasts just two to three days. If we assume a three-day 
infectious period, then in a typical day, about  of the 
members of I move to R, which indicates  

The model’s βSI term describes interaction be-
tween susceptible and infectious individuals. The 
student population was a fixed 1,714 throughout 
the flu outbreak. When I is very small—one or two 
students, say—βSI is relatively small. As the flu 
spreads, a still-sizable S population, multiplied by an 
I population in the dozens (or more), is much larger. 
Later in the outbreak, S has decreased, and some 
people have moved to R, making βSI again smaller. 

Figure 2 shows a modeled infectious population 
(the smooth curve) compared with real prevalence 
values computed from campus health center inci-
dence data by assuming students were infectious for 
three days. The model sets   

  and  
In real life, not every flu sufferer seeks treatment. 

Indeed, anecdotal evidence from faculty and health 
center employees indicates that there were many 

Figure 2. Influenza model compared with three-day 
prevalence data.

Figure 3. Influenza model compared with double the three-day 
prevalence data, to account for unreported cases.
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unreported cases of the flu. Figure 3 shows a model 
that assumes double the number of reported cases 

 and 
Models can also be fit to data. The residual sum of 

squares (RSS) is one way to measure how close the 
fit is: Given data points y1,y2,…,yn and modeled val-
ues I(1),I(2),…,I(n) at corresponding times 1,2,…,n, 

A model with smaller RSS fits the data more closely 
than a model with larger RSS. 

Once a model is fit to data, it can be used to 
estimate  In the SIR model,  
where S(0) is the initial susceptible population (see 
F. Brauer and C. Castillo-Chavez, Mathematical 
Models in Population Biology and Epidemiology, 
2nd ed., Springer, 2012). The model in figure 2 has 

 Because  disease spreads, but 
 is close enough to 1 that changes in human 

behavior make a difference. Hand washing and social 
distancing reduce β, bringing  closer to 1 and 
reducing new flu cases significantly. (In contrast, in 
the era before vaccinations,  was 12 or greater 
for measles outbreaks—hand washing had much less 
effect!)

We used β to estimate  but given insuffcient  
data to compute β, we can use epidemiologists’  
values to estimate β. This approach makes sense 
when modeling an ongoing outbreak, which hap-
pened when mumps appeared in fall 2016. 

Mumps
Only a few hundred to a few thousand cases of 
mumps occur in the United States each year. When 
the cases do appear, they cluster at places like 
residential college campuses, even when nearly 100 
percent of students have been vaccinated. 

The trajectory of mumps illness contrasts notably 
with that of influenza. (Information in this section 
was obtained from the CDC websites http://bit.ly/
CDCMumpsCases, http://bit.ly/CDCMumpsSigns, 
and http://bit.ly/CDCMumpsTransmission.)

When a susceptible individual contracts mumps, 
there is a long time lag till he or she becomes infec-
tious. Thus, we introduce a new compartment: L, or 
latent. (Note that epidemiologists’ definition of latent 
differs somewhat.) The time from infection till symp-
tom appearance is typically 16 to 18 days. Symptoms 

last about five days. Infectiousness begins about two 
days before symptoms appear and ends about when 
symptoms end. Figure 4 shows one possible diagram.

Most parameters are familiar from the SIR model. 
New is the factor  multiplied by βSI; here, p 
is vaccination effectiveness. If everyone receives two 
doses of the mumps vaccine, then it averages 88 per-
cent effectiveness  across the population. 

Figure 5 shows outbreak data and the curve for 
the modeled R population. Parameters match given 
biological data (   and ); ini-
tial conditions are    
and  The  equation for SIR fits the 
SLIR model too, yielding  
using  (Epidemiologists report that for 
mumps,  is approximately 4 to 7 [see Edelstein-
Keshet]. Given many campus risk factors, we use 
the largest value.) With these parameters and more 
time, the curve for R reaches 40 students. In reality, 
28 students reported sickness. The difference between 
40 modeled and 28 reported cases may be because 
the holiday break halted the outbreak, along with 
incomplete reporting of mumps by students.

Such models enable us to explore various scenarios. 
For instance, what if mumps came to a completely 
susceptible campus? Setting  in the model 
leads to mumps infecting nearly the entire student 
body by late December! Note, however, that before 
vaccination, most people contracted mumps as chil-
dren, and thus they were immune before college. 

How do we know which model to use for which dis-
ease? There is no one correct answer. We can model 
the same outbreak in different ways. Let’s do that. 

A campus may isolate symptomatic students so 
they cannot infect others, so let’s include that in our 
model. The infectious compartment (I ) consists of 
not-yet-symptomatic students who can mix freely 

κL γI L I R(1–p)βSI SFigure 4. SLIR compartmental 
model diagram.

Figure 5. Mumps model compared with data.
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and spread mumps. The isolated compartment (J ) 
contains symptomatic students whose isolation pre-
vents them from spreading mumps. Based on above 
data, students remain in I approximately two days 
and in J approximately five days. 

Moreover, as many as 20 percent of people infected 
with mumps never display symptoms (J. M. Conly, 
B. L. Johnston, “Is Mumps Making a Comeback?,” 
Can. J. Infect. Dis. Med. Microbiol. 18 [2007]: 7–9). 
This suggests an asymptomatic (A) compartment.

Figure 6 shows the resulting SLIJAR model. 
Notice parameter q. When  20 percent of 
students leaving L move to A, and the other 80 
percent move to I. The sum of students leaving 
compartment L,  equals κL, with κ 
computed in a similar way in SLIJAR as in SLIR.

Models with more details can be helpful for under-
standing new aspects of disease spread. For example, 
whereas the formula  for the SLIR 
model shows the importance of length of time spent 
in compartment I, 

(see Brauer and Castillo-Chavez) for SLIJAR shows 
that time spent in both compartments A and I mat-
ters, with weights q and  respectively.

Having more parameters in a model often makes 
a closer fit possible—but is this necessarily better? 
There may not be adequate information for estimat-
ing more parameters or ensuring they are biologically 
reasonable. Additionally, Occam’s razor encourages 
us to use the simplest appropriate model. To balance 
closer data fitting (usually with more parameters) 
with the goals of simplicity and of keeping models bi-
ologically meaningful, modelers use RSS to compute 
the corrected Akaike information criterion (AICc): 

where n is the number of data points, and K is one 
more than the number of model parameters. (For 
several AICc examples, see O. Akman, M. R. Corby, 
E. Schaefer, “Examination of Models for Cholera: 

Insights into Model Comparison Methods,” Lett. 
Biomath. 3 [2016]: 93–118.) The model with lowest 
AICc is considered to have the best combination of 
RSS and number of parameters.

Proper use of AICc requires comparing the same 
data to different models. For the SLIR and SLIJAR 
models, our data set contains people who are infec-
tious and symptomatic, which we compare with the 
I population of SLIR and the  population in 
SLIJAR. With SLIR parameter values from figure 5, 
comparable values for SLIJAR (   

   and  and computing 
β for each model using  the simpler model, 
SLIR, has both lower RSS and lower AICc.

Further Explorations
These compartmental models let us use mathemat-
ics to represent human interactions and simulate 
outbreak scenarios. Explore these models on your 
own. Consider making β piecewise constant (drop-
ping when a campus reacts to an outbreak, say) 
or periodic (showing increased student interaction, 
hence infection, on weekends). Try new diseases, new 
compartmental models, and new data sets. Model 
past diseases, and try to predict the outcomes of new 
outbreaks. And enjoy the close connection between 
mathematics and current campus events! n

This partnership formed at Bates College when Ella 
Livesay took Meredith Greer’s course on mathemati-
cal epidemiology. It continued through the writing of 
this article. And since Ella stayed in Maine post-
graduation, as a consultant in health analytics, we 
are fortunate enough to celebrate in person that the 
article is appearing in Math Horizons. The authors 
thank Chip Ross and Karen Palin for close consulta-
tion and edits on drafts of this article. 
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Figure 6. SLIJAR 
compartmental model diagram.
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