“The Greeks displayed an insight almost as pregnant and original
as their discovery of the power of reason. The universe is
mathematically designed, and through mathematics man can
penetrate to that design.” —Morris Kline
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tions upon which all of Western tradition rests from the

time of the Enlightenment (c. 1775 to 1825). First, all
genuine questions can be answered, and if a question cannot be
answered, then it is not a question. Second, all answers are
knowable, and they can be discovered by means that can be
learned and taught. Third, all answers must be compatible.
These are the general presuppositions of the rationalist West-
ern tradition, whether Christian or pagan, whether theist or
atheist.

Three propositions have been identified as the founda-

The following mathematical excursion demonstrates that
these propositions can never be fully realized. We endeavor to
trace out how the belief in the efficacy of reason in explaining
everything from Nature to our present day society evolved
from the time of the Greeks to our present era. The vehicle to
describe this passage will be the evolution of the idea of math-
ematical certainty.

Greek heritage of discussion and Euclid’s Elements

Around 560 B.C., the lonian philosophers, including
Thales, Anaximander and Anaximenes, started speculating
about Nature. They initiated a search for general principles
beyond observation and tried to formulate general theorems
that would explain the universe. These philosophers believed
people could understand the universe by reason alone. Thales,

considered the father of geometry, was the earliest to formulate
general mathematical laws for measuring and to prove general
geometrical propositions on angles and triangles, an approach
that was later followed by Euclid. However, the first major
group to offer a mathematical plan of Nature was the
Pythagoreans, a school led by Pythagoras (c. 585-500 B.C.).
Later Aristotle (384-322 B.C.) argued that the investigations
of Nature should deduce general principles from observa-
tions—the inductive phase—and then explain the observations
by deducing them from the general principles—the deductive
phase.

By the time of Euclid (323-285 B.C.), Greeks valued intel-
lectual inquiry for itself, and they were interested in the nature
of a logical argument regardless of the subject it would be
applied to. Their goal was to rationally explain why things are
the way they are. The Greeks were soon confronted with a fun-
damental question: can all knowledge be verified? Aristotle,
for one, answered in the negative. He said there are self-
evident truths that cannot be explained. Moreover, in geome-
try, Aristotle said a proposition is proved when it is shown to
logically follow from such truths and other proven proposi-
tions. That is, he described a method for determining when an
argument had been proved in an axiomatic way. Euclid knew
of these intellectual developments and magnificently incorpo-
rated them into his text the Elements, written about 300 B.C.

Timeline is not to scale.

Euclid — Elements
summarized and organized
Greek mathematics.

Thales — First to prove general
geometric propostions.

Kant — Declared Euclidean space
is pure product of thought and
no other possible geometry
since only one way to think.

Leibniz — Suggests a
mathematical language of
reasoning can be derived.

580-571 B.C. 300291 B.C.
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From that time forward, it has been recognized as a prototype
for how mathematics should be written: well-thought-out
axioms, precise definitions, carefully stated theorems, and log-
ically coherent proofs.

Formulation of the axioms or postulates is the most critical
step in building an axiomatic system. From the axioms, it must
be possible to deduce the interesting and important properties
of the objects of study. The Greeks distinguished between gen-
eral truths (axioms) and truths about geometry (postulates). In
either case, the statements were to be intuitively self-evident
and be acceptable without question. Through time, mathe-
maticians began to find assumptions used in proofs in the £le-
ments that were not explicitly stated in the axioms and postu-
lates. These findings did not lessen the value of Euclid’s
mathematics, but merely highlighted shortcomings in the
axiomatic method of the Elements that needed to be detailed
and corrected. Credit for completely and successfully axioma-
tizing Euclid’s geometry is given to David Hilbert,

Euclid’s fifth postulate states that: If a straight line falling
on two straight lines makes the interior angles on the same side
less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which the angles are less than
two right angles. This postulate may be better understood by
considering one of its equivalent forms: Through a given point,
not on a given line, only one parallel can be drawn to the given
line. Almost immediately, this postulate, also called the paral-
lel postulate, became controversial. Many did not find it to be
self-evident, and because of its complexity, they thought it
required a proof. Thus began a saga that was to last for over
two millennia in which countless mathematicians tried to
derive the parallel postulate from the others—all with no suc-
cess. These futile efforts, though, began to have unexpected
and important consequences in all of mathematics. See the
timeline summary starting with Figure 1.

Non-Euclidean Geometry

Beginning in the eighteenth century, some mathematicians
began to try indirect methods to settle the controversy sur-
rounding the parallel postulate. Their investigations however
led to new questions concerning the consistency and com-
pleteness of axiomatic systems. An axiomatic system is con-

sistent if a statement and its negation cannot both be proven to
be true from the axioms; a statement is independent of given
axioms if it is impossible to either prove or disprove the state-
ment from the other axioms; an axiomatic system is complete
if every statement or its negation can be proven from the
axioms.

In 1733, Girolamo Saccheri attempted a proof by contra-
diction of the parallel postulate. He did not derive a logical
contradiction, but instead derived a contradiction of facts he
believed to be true about the geometry of the real world. His
results were a prelude to those of Carl Gauss, Nicolai
Lobachevsky and John Bolyai that would follow almost one
hundred years later. Lobachevsky, in 1829, showed the fifth
postulate could not be proved by the first four, and furthermore
that replacing it by a contrary one resulted in a consistent
geometry (assuming Euclidean geometry is consistent). Bolyai
also did this independently and almost simultaneously. Gauss
preceded both of their efforts in developing a non-Euclidean
geometry but he chose not to publish his results in part because
of the poor reception he knew it would receive. Even
Lobachevsky seemed to acknowledge as much when he chose
to call his an “imaginary geometry.” The important discovery
of a non-Euclidean geometry did not receive much recognition
until 1854, when G. F. B. Riemann generalized the concept of
geometry and showed that various others are possible. Later
on, his abstract ideas made Einstein’s theory of general rela-
tivity in physics possible. Also, it was eventually seen that two-
dimensional non-Euclidean geometry was simply the Euclid-
ean geometry of some curved surfaces, spheres and
pseudospheres.

With the discovery of non-Euclidean geometries, it came to
be realized that mathematics could deal with completely
abstract systems of axioms, which no longer had to correspond
to beliefs based on real world experiences. New methods were
necessary to distinguish the difference between a statement
being true and being provable. The most important considera-
tion for an axiomatic system was whether or not it was consis-
tent. Indeed, attempts to prove that non-Euclidean geometries
were invalid were essentially attempts to show that they were
inconsistent. Eventually, mathematicians came to accept the
validity of non-Euclidean geometries.

Riemann — Generalized
concept of non-Euclidean
geometry. Showed various

Lobachevski — First
published non-Euclidean

Beltrami — Showed
non-Euclidean geometry is
consistent if Euclidean is. (The

Frege — First attempt to
reduce mathematics to

geometry. geometries are possible. non-Euclidean geometries statements and formal logic .
| ' were later shown consistent.) |
1
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At the beginning of the twentieth century, mathematicians
set out to find an axiomatic system for Euclidean geometry in
which the theorems of Euclid could be proved and which
would stand up to the more strenuous rigor of the times. An
important contributor to this goal was David Hilbert (1862-
1943), one of the most important mathematicians of the centu-

ry.

Hilbert’s Problems and the Consistency of
Mathematics

At the second International Congress of Mathematicians in
1900, Hilbert described twenty-three open problems to set the
tone of mathematics for the twentieth century; they have been
of central importance in mathematics since then. By this time,
not only the parallel postulate, but other important assump-
tions were being called into question. Hilbert addressed sever-
al of these issues in his problems. (As of 2005, it is generally
agreed that sixteen of the problems have been successfully set-
tled, and that four of the remaining seven may be considered
“solved” in some sense [See Benjamin Yandell’s The Honors
Class: Hilbert's Problems and Their Solvers].)

Hilbert’s first problem dealt with the continuum hypothesis,
which 1s a statement in set theory. When two sets have the
same number of elements, they are said to have the same car-
dinality. In the 1880s, Georg Cantor (1845-1918) showed that
the set of natural numbers cannot be matched up one-to-one
with the set of points on a line segment, and consequently that
there is more than one kind of infinity. In fact, he showed there
is an endless chain of ever larger infinite sets, of ever larger
cardinality. The question then arose as to whether there was a
set of points with cardinality that lies between the cardinality
of the natural numbers, X, and the cardinality of the points on
a line segment, ¢, this is the continuum hypothesis. This ques-
tion will be dealt with shortly. Bertrand Russell soon realized
that Cantor’s notion of a set leads to contradictions or para-
doxes in set theory. To avoid these, axiomatic set theory was
developed.

There is a famous axiom in set theory, the axiom of choice
(AC), which was used implicitly by mathematicians for years
before it was explicitly described. Many did not find the AC to
be self-evident and, just as the parallel postulate, it too became

controversial. It states that for any collection of nonempty
mutually exclusive sets, finite or infinite, there is a set that con-
tains a representative member from each set. The AC with the
Zermelo-Fraenkel (Z-F) axiomatic set theory is the basis of
modern mathematics. In 1938, Kurt Godel proved that if set
theory without the AC is consistent, then set theory with the
AC is also consistent. Moreover, Godel proved that if set the-
ory without the continuum hypothesis is consistent then it is
also consistent with it as an axiom. And, just as it is possible to
choose between different geometries in which the parallel pos-
tulate may or may not be true, it is possible to choose between
different set theories in which the axiom of choice may or may
not be true.

Naturally, axiomatic systems, in particular Z-F, with or
without the axiom of choice or the continuum hypothesis lead
to different mathematics. The decision as to which system to
adopt cannot be made lightly. Theorems that require the AC
are fundamental in modern analysis, topology and abstract
algebra; for example, the theorem that any infinite set has a
countable infinite subset. On the other hand, by adopting the
AC, results such as the Banach-Tarski paradox can be derived,
which says that one can divide up a golf ball into a finite num-
ber of pieces and merely by rearranging them make up a solid
sphere the size of the earth!

In his second problem, Hilbert addressed the problems of
consistency and completeness in mathematics. Based on the
dominance of the axiomatic method in the 1800s, Hilbert felt
that all mathematics should be put on a sound basis using the
axiomatic method. This meant that in each field of mathemat-
ics, a set of axioms must be formulated from which the facts of
the field could be proved. In 1904, he was able to construct an
arithmetic model of Euclidean geometry. He and others then
set out to show the consistency of arithmetic, using a finite
scheme, from which it would follow that Euclidean geometry
was consistent. All efforts towards achieving this goal were
halted in 1931 by the unexpected results of Kurt Godel. In his
first Incompleteness Theorem, he shows that in any axiomatic
system rich enough to include the arithmetic of the natural
numbers, it is possible to prove some false statements implying
the system is inconsistent; or it is not possible to prove some
true statements implying the system is incomplete. Moreover,

Frege — (& later Russell-1913)
Attempted to find an axiomatic
foundation of mathematics
based on pure logic.

Hilbert — Showed if
no contradictions in
arithmetic then also
none in geometry.

Brower — Challenged application of Aristotelian logic to mathemat-
ics (rejected law of excluded middle for infinite sets). (Godel's incom-
pleteness theorem is to an extent a denial of the law of the exclud-
ed middle.) Also in 1908 Zermelo developed axiomatic treatment of
set theory. (Later Z-F becomes basis of modern mathematics.)
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in his second Incompleteness Theorem, Godel shows that the
question of whether an axiomatic system is consistent cannot
be determined within the system. Thus, it is impossible to
attain some of Hilbert’s goals. See the associated timeline in
Figures 2, 3, and 4.

More on Godel’s Incompleteness Theorems

Godel’s landmark results are important on several different
levels. For one, the formal systems in which he worked are
rich enough to derive all of classical mathematics. And yet
within such a system, statements can be formulated that are
not decidable in the system. This shortcoming remains even
with the addition of more axioms to the system, no matter how
many are added. Thus, Gédel showed there are limits to the
axiomatic approach, in particular, with regards to verifying the
consistency of arithmetic in a finite manner as proposed by
Hilbert. As noted by Garrett Birkhoff, “This can mean only
two things: either the reasoning by which a proof of consis-
tency is given must contain some argument that has no formal
counterpart within the system, i.e., we have not succeeded in
completely formalizing the procedure of mathematical induc-
tion; or hope for a strictly ‘finitistic’ proof of consistency must
be given up altogether.” In 1936, Gerhard Gentzen used trans-
finite induction to prove the consistency of arithmetic. It there-
fore remains a matter of debate as to whether a sound enough
basis has been achieved for arithmetic.

Beginning in the 1920s, matters became more interesting in
the field of mathematical logic when the Lowenheim-Skolem
(L-S) theory was developed. As noted by Morris Kline,
“Whereas Godel’s incompleteness theorem tells us that a set of
axioms is not adequate to prove all the theorems belonging to
the branch of mathematics that the axioms intend to cover, the
L-S theorem tells us that a set of axioms permits many more
essentially different interpretations than the one intended. The
axioms do not limit the interpretation or models. Hence math-
ematical reality cannot be unambiguously incorporated into
axiomatic systems.” That is, if we try to uniquely capture arith-
metic in a formal axiomatic system, we cannot be certain that
we are describing the natural numbers or one of infinitely
many different but equivalent interpretations.

As for the continuum hypothesis, it was completely

resolved in 1963 by Paul Cohen with his construction of a non-
Cantorian set theory. While Godel had earlier shown that the
continuum hypothesis cannot be disproved, Cohen showed that
neither can it be proved. Thus it is now known that the contin-
uum hypothesis is independent of the other Z-F axioms.

In summary, it has been shown that various foundations of
mathematics can be constructed using the Z-F axioms with or
without the addition of the AC or the continuum hypothesis, or
their negations. Moreover, each of these is consistent if Z-F is
consistent, and they result in different bodics of mathematics.
The major consequence that emerges from these several con-
flicting approaches is that there is now not one but many math-
ematics. To paraphrase George Santayana, “one might say
today, there is no universally accepted body of mathematics
and the Greeks were its founder.” See Figure 5.

Mathematical Uncertainty and Computer Science

In the proofs of his Incompleteness Theorems, Godel
exchanged problems about the provability of statements to
equivalent problems about the computability of functions from
the natural numbers to the natural numbers. This method
required that he abstractly formalize the concept of a
computable function. Thereafter, other mathematicians such as
Alan Turing continued these investigations. In hindsight, these
results can be viewed as establishing in theory the possibility
that a machine could be programmed to perform various com-
putations.

Once computers were built, many new fields of study came
into existence, including computational complexity. Of interest
here is whether a difficult problem, such as the Traveling
Salesman problem, can be solved efficiently on a computer, or
in more practical terms, whether such difficult problems can be
solved within a reasonable time span on a computer. Similar to
the successful approach utilized for the parallel postulate, the
notion of an impossibility proof was utilized in the study of
this problem. In 1971, Stephen Cook constructed a “highly
artificial and obscure problem of propositional logic” that
seemingly cannot be solved on a computer. But his problem
has a most unusual property: if it could be effectively solved
on a computer then so could any other equivalent problem,
such as the Traveling Salesman problem. This remains an open

Gddel — Proved any formal
system strong enough to
include arithmetic of integers
is either incomplete or
inconsistent.

Turing — Solved Hilbert's 23rd problem and showed
there is no single way to disprove all logical statements.
In the same year, A. Church independently showed
there is no single method to determine whether any
statement in mathematics is provable or even true.

Godel — Proved if Z-F axioms for
set theory are consistent then they
continue to be consistent when
the Axiom of Choice is added.
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question and is related to one of the Millennium Problems
announced in 2000; these are meant to influence the direction
of mathematics in the 21st century as Hilbert’s did in the 20th
century. A recap of these ideas is given in the timeline in Fig-
ure 5.

Conclusion

The Greeks were the first to attempt a rational explanation
of Nature and the nature of the universe. The crucial tool in
their investigations was mathematical reasoning. They
assumed, and these assumptions are accepted by many even to
this day, that (1) all questions about Nature and the universe
can be answered by reason; (2) all answers are knowable and
can be discovered; and (3) all answers are compatible. This
mathematical excursion demonstrates that these goals can
never be fully realized. The foregoing analysis of some “obvi-
ous” mathematical concepts has produced a cascade of never
ending complications. As our investigations have shown, the

quest to determine the validity of some long-held beliefs in
mathematics can generate new mathematical concepts and
ideas of more importance than the resolution of the original
question. The truth as we see it today is this: “The laws of
nature do not determine uniquely the one world that actually
exists.” —Hermann Weyl [ ]

For Further Reading

For a general history of mathematics, see Victor Katz’'s A
History of Mathematics. There are some interesting discus-
sions of the L-S theory in Morris Kline’s Mathematics. the
Loss of Certainty. More discussion of logic in mathematics can
be found in Howard Del.ong’s A Profile of Mathematical
Logic. The Traveling Salesman Problem and the more general
problem of determining if P = NP is noted by Keith Devlin in
The Millennium Problems. The complete timeline was created
using The Timetables of Science by Alexander Hellmans and
Bryan Bunch, and also using Morris Kline’s book.

Baker, Gill & Solovay — Showed that two classes of
problems can be equivalent with one set of assump-
tions and not equivalent with another set of assump-
tions, even if both sets of asssumptions are consistent.

1974

Steven Cook — Showed that a large range of problems
solvable on a Turing machine are exactly the same
difficulty. This opened the door to the discovery that
many problems thought to be distinct are essentially
the same problem.

1971

@ ~0-

Paul Cohen —The continuum hypothesis (& also the Axiom of Choice) is (are)
independent of the axioms of set theory, if the latter is consistent. So there are at least
two types of mathematics possible—one which says CH is true, and one which says
it is false. His results also mean that in the Z-F axiom system the Axiom of Choice and
the continuum hypothesis are undecideable. In particular for the continuum hypoth-
esis Cohen’s result means there can be a transfinite number between X and ¢, even
though no set of objects is known which have such a transfinite number.

Godel — Proved continu-
um hypothesis consistent

T. Rado — Discovered the
first actual noncomputable

with the axioms of set function.
theory.
|
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