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In what follows, we define N to be {1, 2, 3, . . .}, the set of positive integers.

1 Why composition of polynomials works
The following result appears in multiple places (see for instance [5], and also
Section XII.1 of [2]):

Theorem 1.1. To get the next polynomial pn(x) from pn−1(x) and qn(x),
replace every x in pn−1(x) with qn(x). In other words:

pn = pn−1 ◦ qn.

Proof. Consider a monomial rkxk, where rk ∈ [0, 1]; suppose that this is one
term of the polynomial pn−1(x). This monomial then records the probability
(after the first (n−1) machines) of having exactly k coins; that probability would
be rk. Now, suppose that we do indeed have exactly k coins, and place them all
into machine Mn. Each coin now represents a random variable, as it either wins
or loses when placed into Mn. By assumption, these random variables are all
independent. We are interested in the sum of these random variables, meaning
the total number of coins after all plays on Mn are complete.

If A and B are independent random variables, then their sum (A + B) is
distributed according to the convolution of the probability distributions of A
and B. It so happens that the convolution rule is exactly the same as the rule
for multiplication of polynomials. If A takes values a1, a2, . . . with probabilities
s1, s2, . . . respectively, and B takes values b1, b2, . . . with probabilities t1, t2, . . .
respectively, and A,B are independent, then for each u,

P (A+B = u) =
∑
i,j

sitj

{
1, if u = ai + bj

0, else.

Meanwhile if f(x) =
∑

six
ai and g(x) =

∑
tjx

bj , then for each u, the
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coefficient on xu, in the product f(x)g(x), is also

∑
i,j

sitj

{
1, if u = ai + bj

0, else.

By induction on k it follows that, given k independent random variables
X1, . . . , Xk, all identically distributed according to the probability generating
function qn(x), the sum X1+· · ·+Xk follows the probability generating function
qn(x)

k. Finally we weight this result by rk and add it to the weighted results
from all the other monomials, according to the law of total probability. The
result is precisely pn−1(qn(x)).

Essentially the same proof still works even if we have multiple variables
x1, x2, . . . , xm, standing for various “types” of coins. Also, we may replace
“polynomial” everywhere with “formal power series”—however, the above proof
does require all exponents to be nonnegative integers.

2 A proof that we go broke with probability 1

Conjecture 2.1. Let p0(x) = x, and for each n ∈ N, let

qn(x) =
xn+1 + (n− 1)

n
,

and for each n ∈ N, let
pn(x) = pn−1(qn(x)).

Then
lim
n→∞

pn(0) = 1.

This section is devoted to showing that Conjecture 2.1 is true. Notice that,
by induction, all pn and qn are polynomials with nonnegative coefficients and
at least one non-constant coefficient strictly positive; hence all pn and qn are
strictly increasing on [0, 1]. Below, we use this result repeatedly.

Proposition 2.2. For all n ∈ N, and for all x ∈ [0, 1],

qn+1(x) ≥ qn(x).

Further, if x ∈ [0, 1) then qn+1(x) > qn(x).

Proof. Certainly qn(1) = 1 for all n, so assume 0 ≤ x < 1. The following
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statements are equivalent:

qn+1(x) > qn(x)

xn+2 + n

n+ 1
>

xn+1 + n− 1

n

nxn+2 + n2 > (n+ 1)xn+1 + n2 − 1

nxn+2 − nxn+1 > xn+1 − 1

nxn+1(x− 1) > xn+1 − 1

nxn+1 <
1− xn+1

1− x

nxn+1 < 1 + x+ x2 + · · ·+ xn.

But 0 ≤ x < 1, so
x ≥ x2 ≥ . . . ≥ xn ≥ xn+1,

and therefore

nxn+1 ≤ x+ x2 + · · ·+ xn < 1 + x+ x2 + · · ·+ xn.

Proposition 2.3. For each n ∈ N, there exists a unique Qn ∈ [0, 1) such that
qn(Qn) = Qn.

Proof. Let hn(x) = xn+1−nx+n−1. Then hn(x) = 0 if and only if qn(x) = x.
We know that hn(1) = 0, and synthetic division yields

hn(x) = (x− 1)((xn + xn−1 + · · ·+ x) + 1− n).

Let gn(x) = xn+xn−1+ · · ·+x+1−n, so we want to show that gn has a unique
zero in [0, 1). Uniqueness is clear because g′n is positive on (0, 1), so it suffices
to show existence. But gn(0) = 1− n ≤ 0 while gn(1) = 1 > 0, so gn has a zero
in [0, 1) by the Intermediate Value Theorem. We call this number Qn.

Proposition 2.4. Let n ∈ N. For all x ∈ [0, 1),

x < qn(x) ⇐⇒ x < Qn,

and
x = qn(x) ⇐⇒ x = Qn.

Proof. Let x ∈ [0, 1). First suppose x < qn(x). We calculate that q′n(1) > 1,
so by continuity there exists ε > 0 such that q′n > 1 on (1 − ε, 1]. Recall that
qn(1) = 1 so by the Mean Value Theorem, qn(t) < t for all t ∈ (1 − ε, 1). In
particular x ≤ 1 − ε. But now by the Intermediate Value Theorem qn has a
fixed-point in (x, 1 − ε/2). By uniqueness, this fixed-point must be Qn, hence
x < Qn. For the other direction, suppose x ≥ qn(x). Then since 0 ≤ qn(0), by
the Intermediate Value Theorem there exists a fixed-point of qn in [0, x]; hence
x ≥ Qn.
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The second equivalence is simply existence and uniqueness of Qn. (We
include the statement here to show that the strict inequalities in the first
equivalence can be replaced with non-strict inequalities, and/or reversed, as
desired.)

Proposition 2.5. For all n ∈ N,

Qn ≥ 1− 2

n2
.

Proof. Using Proposition 2.4, the following inequalities are equivalent:

1− 2

n2
≤ Qn

1− 2

n2
≤ qn

(
1− 2

n2

)
1− 2

n2
≤
(
1− 2

n2

)n+1
+ n− 1

n

n− 2

n
≤
(
1− 2

n2

)n+1

+ n− 1

1− 2

n
≤
(
1− 2

n2

)n+1

1− 2

n
≤ 1−

(
n+ 1

1

)(
2

n2

)
+

(
n+ 1

2

)(
4

n4

)
− . . .±

(
n+ 1

n+ 1

)(
2n+1

n2(n+1)

)
2

n2
≤
(
n+ 1

2

)(
4

n4

)
−
(
n+ 1

3

)(
8

n6

)
+ . . .±

(
n+ 1

n+ 1

)(
2n+1

n2(n+1)

)
.

But the right-hand side is an example of a (finite) Alternating Series. Cer-
tainly its terms alternate in sign, and we claim that they are monotone decreas-
ing in absolute value. Proof of claim: Let ak be the signed term ±

(
n+1
k

) (
2k

n2k

)
from the right-hand side, beginning with k = 2, and for k > n + 1 let ak = 0.
For all k > n + 1 we have ak = 0 = ak+1; hence |ak+1| ≤ |ak| for those k. For
2 ≤ k ≤ n+ 1, we have∣∣∣∣ak+1

ak

∣∣∣∣ =
(
n+1
k+1

)
(2)(

n+1
k

)
(n2)

=
2(n+ 1− k)

(k + 1)n2
≤ 2n

3n2
< 1.

Therefore by the explicit bounds in the Alternating Series Test, the right-hand
side is bounded below by its second partial sum, so we are done if we can show
that

2

n2
≤
(
n+ 1

2

)(
4

n4

)
−
(
n+ 1

3

)(
8

n6

)
.

Multiplying both sides by 6n6 to clear denominators, it is equivalent to show
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that

12n4 ≤ 12n2(n+ 1)(n)− 8(n+ 1)(n)(n− 1)

0 ≤ 12n3 − 8(n3 − n)

0 ≤ 4n3 + 8n.

Clearly this last inequality holds for all n ∈ N.

Remark. The above proof can also be modified to show that Qn ≤ 1− 1
n2 , but

we will not really need an upper bound on Qn (other than Qn < 1).

Corollary 2.6.
lim

n→∞
Qn = 1.

Proof. This follows from the Squeeze Theorem, since 1− 2
n2 ≤ Qn ≤ 1.

Proposition 2.7. For each n ∈ N,

Qn < Qn+1.

Proof. We have
Qn+1 = qn+1(Qn+1) > qn(Qn+1),

by Proposition 2.2, since Qn+1 is strictly less than 1 by its original definition in
Proposition 2.3. But Qn+1 > qn(Qn+1) ⇐⇒ Qn+1 > Qn, by Proposition 2.4.

Proposition 2.8. There exists L ≤ 1 such that

lim
n→∞

pn(0) = L.

Proof. We said that pn(0) is the probability of being broke after machine Mn.
But if we are broke after Mn, then we are still broke after Mn+1. Therefore

pn(0) ≤ pn+1(0),

for all n. But also, pn(0) ≤ 1 for all n, since each pn(0) is a probability.
Therefore by the Monotone Convergence Theorem,

lim
n→∞

pn(0)

exists, and is at most 1.

Definition 2.9. We define L to be the limit in Proposition 2.8.

Proposition 2.10. Let x ∈ [0, 1), and n ∈ N, and write qkn to mean the
composition of k copies of qn. Then:

(i) If x < Qn, then x < qn(x) < Qn.
(ii) If x > Qn then x > qn(x) > Qn.
(iii) If x = Qn then x = qn(x) = Qn.
(iv)

lim
k→∞

qkn(x) = Qn.
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Proof. Statement (iii) is clear. For (i), suppose that x < Qn. Then

x < qn(x)

by Proposition 2.4, and
qn(x) < qn(Qn)

because qn is strictly increasing on [0, 1]. The proof of statement (ii) is similar.
It remains to prove statement (iv). By (i), (ii), and (iii), the sequence

(x, qn(x), qn(qn(x)), . . . , q
k
n(x), . . .)

is monotone, and it is bounded by 0 and 1. Let G be the limit of this sequence.
Then

G = lim
k→∞

qkn(x) = qn

(
lim
k→∞

qk−1
n (x)

)
= qn(G)

by continuity, so G is a fixed-point of qn. If the sequence is decreasing then
G ≤ x < 1; if it is increasing then G ≤ Qn < 1. Either way, G is a fixed-point
belonging to [0, 1), so G = Qn.

Thus, applying qn results in movement toward Qn, and repeatedly applying
qn moves a point arbitrarily close to Qn.

Proposition 2.11. The sequence

(p1(Q1), p2(Q2), . . . , pn(Qn), . . .)

is monotone increasing, and convergent.

Proof. Let n ≥ 2. Then

pn−1(Qn−1) = pn−1(qn−1(Qn−1)) ≤ pn−1(qn(Qn−1)) = pn(Qn−1) ≤ pn(Qn),

by Propositions 2.2 and 2.7, and the sequence is bounded above by 1.

Proposition 2.12.
lim
n→∞

pn(Qn) = L.

Proof. For each n ≥ 2, we know that limk→∞ qkn(0) = Qn > Qn−1, by Propo-
sitions 2.7 and 2.10 (iv). Thus for each n ≥ 2 we may choose Kn ∈ N such
that qmn (0) > Qn−1 for all m ≥ Kn; then let k1 = 1, and for n ≥ 2 let
kn = max (Kn, kn−1). Now by Proposition 2.2, for all n ≥ 2,

pn−1(Qn−1) ≤ pn−1(q
kn+1
n (0)) = ((q1 ◦ q2 ◦ . . . ◦ qn−1) ◦ (qn ◦ qn ◦ . . . ◦ qn))(0)

≤ ((q1 ◦ q2 ◦ . . . ◦ qn−1) ◦ (qn ◦ qn+1 ◦ . . . ◦ qn+kn
))(0)

= pn+kn(0)

≤ pn+kn(Qn+kn).
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Thus for each n ≥ 2,

pn−1(Qn−1) ≤ pn+kn
(0) ≤ pn+kn

(Qn+kn
). (1)

But (pn+kn
(Qn+kn

)) is a subsequence of (pn(Qn)), because we required kn+1 ≥
kn ≥ 1, and (pn(Qn)) is convergent by Proposition 2.11. Therefore (pn+kn

(Qn+kn
))

and (pn(Qn)) must share the same limit, say T . Thus in Inequality 1, the two
outside terms approach T as n → ∞, while the middle term approaches L. By
the Squeeze Theorem, L = T .

Theorem 2.13.
L = 1.

That is, Conjecture 2.1 is true.

Proof. Given n ∈ N, let Ln(x) be the linear approximation to pn(x), taken at
base point a = 1. That is,

Ln(x) = p′n(1)(x− 1) + pn(1)

= (n+ 1)(x− 1) + 1.

Since p′′n is nonnegative on (0, 1), we claim that

pn(x) ≥ Ln(x)

for all x ∈ [0, 1). Proof of claim: we show the contrapositive, that if pn(x) <
Ln(x) for some x ∈ [0, 1), then there exists d ∈ (0, 1) such that p′′n(d) < 0.
Suppose that x ∈ [0, 1) and pn(x) < Ln(x). By the Mean Value Theorem, there
exists c ∈ (x, 1) such that

p′n(c)− L′
n(c) =

pn(x)− Ln(x)− (pn(1)− Ln(1))

x− 1

=
pn(x)− Ln(x)

x− 1
.

Therefore p′n(c)− L′
n(c) > 0, since both the top and bottom of the fraction are

negative. Now by the MVT again, there exists d ∈ (c, 1) such that

p′′n(d)− L′′
n(d) =

p′n(c)− L′
n(c)− (p′n(1)− L′

n(1))

c− 1
.

But Ln is linear so its second derivative is 0 everywhere; meanwhile L′
n(1) =

p′n(1) by definition of Ln. Thus

p′′n(d) =
p′n(c)− L′

n(c)

c− 1
.

Above, we had p′n(c)− L′
n(c) > 0, so p′′n(d) < 0. This proves the claim.
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So we conclude that pn(x) ≥ Ln(x) for all x ∈ [0, 1). Therefore for all n ∈ N,

pn(Qn) ≥ Ln(Qn) ≥ Ln

(
1− 2

n2

)
,

since Ln is increasing (and using Proposition 2.5). Thus for all n,

1 ≥ pn(Qn) ≥ (n+ 1)

(
− 2

n2

)
+ 1 = 1− 2n+ 2

n2
.

By the Squeeze Theorem, pn(Qn) → 1; hence L = 1 by Proposition 2.12.

3 A fair(ish) game where you don’t necessarily
go broke

In this section we examine a sequence of machines which approach fairness,
but where going broke has probability < 1. Below, we’ll say that “round n”
means the procedure of putting all your coins into machine n, and collecting
your winnings.

Consider a sequence of slot machines where the nth machine returns either
2 coins, with probability αn, or 0 coins with probability 1−αn. The probability
of never going broke is certainly at least as large as the probability of always
having at least n+ 1 coins after playing the nth machine. And this probability
is at least as large as the infinite product

Q =

∞∏
n=1

P
(
win at least n+ 1 coins in round n

∣∣start round n with n coins
)
,

for if we ever win strictly more than n + 1 coins in a round n, we can either
(1) discard the excess, or (2) put it into a separate “account” which we can
play separately on the side. If anything, choice (2) will improve our chances of
reaching a given number of coins in the future, relative to choice (1).

Let Xn be the number of coins after playing rounds 1 through n. We want
to find αn such that αn → 1

2 but Q > 0. If

P
(
Xn ≥ n+ 1

∣∣Xn−1 = n
)
≥ 1− 1

(n+ 1)2
(2)

for all n ≥ 1, then Q will be at least
∞∏

n=1

(
1− 1

(n+ 1)2

)
=

∞∏
n=1

(
n(n+ 2)

(n+ 1)2

)
=

(
1 · 3
2 · 2

)(
2 · 4
3 · 3

)(
3 · 5
4 · 4

)
· · · = 1

2
> 0.

Of course (provided that αn > 0 for all n) it actually suffices to show that
Inequality 2 holds for all sufficiently large n; it need not be true immediately at
n = 1.
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Now Xn is a random variable, given by Xn = 2Yn, where Yn is the number
of wins in round n. We assume that round n begins with exactly n coins; hence
Yn ∼ Binomial(n, αn). We have

P (Xn ≥ n+ 1) = P

(
Yn ≥ n+ 1

2

)
≥ P

(
Yn >

n+ 1

2

)
= 1−P

(
Yn ≤ n+ 1

2

)
so we wish to show that P

(
Yn ≤ n+1

2

)
≤ 1

(n+1)2 (for all sufficiently large n). We
set αn = n+1

2n +dn, and try to find dn satisfying all desired properties, including
dn → 0.

We will choose dn ≥ 0, so that n+1
2 ≤ nαn. Let Zn = n − Yn, so Zn is the

number of failures out of n trials, and Zn ∼ Binomial(n, 1− αn). Then

E(Zn) = n(1− αn) = n− n+ 1

2
− ndn =

n− 1

2
− ndn,

so
P

(
Yn ≤ n+ 1

2

)
= P

(
Zn ≥ n− 1

2

)
= P (Zn − E(Zn) ≥ ndn) .

Recall that dn ≥ 0. If dn > 0 then by Hoeffding’s Inequality (Theorem 2 of [4]),

P

(
Zn − E(Zn)

n
≥ dn

)
≤ exp

(
−2n2 (dn)

2

n

)
= exp

(
−2n

(
d2n
))

.

(On the other hand if dn = 0 then exp
(
−2n

(
d2n
))

= exp(0) = 1, so the same
bound holds trivially in this case.)

Now take dn = min
(
1− n+1

2n , 1
n1/4

)
, so dn ≥ 0 for all n, and dn → 0, and

2n(d2n) = 2
√
n for large n (specifically, n ≥ 20). Finally

1

exp (2
√
n)

≤ 1

(n+ 1)2
(3)

for all n ≥ 0, so Q > 0. (To verify Inequality 3: we show that 2
√
x ≥ 2 ln(x+1)

for all x ∈ [0,∞). The two sides are equal at x = 0, and we claim that
d
dx

√
x ≥ d

dx ln(x + 1), for all x > 0. It is equivalent to show that x + 1 ≥ 2
√
x

for all x > 0; this is equivalent to (
√
x− 1)2 ≥ 0.)

Remark. Indeed, for all ε > 0, we can find N ∈ N such that (1−Q)N < ε. Thus
by beginning with one coin, then playing a machine that returns N coins with
probability 1, and then following it up with the (αn) sequence of machines, we
can guarantee that the probability of eventually going broke is less than ε, even
though αn → 1

2 so the machines approach fairness.
Remark. Above, we only needed Hoeffding’s Inequality for the case of a binomial
random variable. This narrower result appears as Lemma 1 in [7], and it is
a direct consequence of Theorem 1 in [1]; both of these sources predate [4].
In addition, Theorem 1 in [4] would be sufficient for our purposes. However,
Theorem 2 in [4] is stated in a form which is convenient for us, and [4] gives a
complete, self-contained proof of the more general result.
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Remark. Above, we used Hoeffding’s Inequality instead of, say, the normal ap-
proximation to the binomial distribution (Central Limit Theorem). The prob-
lem with the Central Limit Theorem approximation

P

(
Yn ≤ n+ 1

2

)
= P

(
Y n − αn ≤ n+ 1

2n
− αn

)
= P

(
Y n − αn√
nαn(1− αn)

≤ −dn√
nαn(1− αn)

)

≈ Φ

(
−dn√

nαn(1− αn)

)

≤ Φ

(
−dn√
n/4

)
,

where Y n = Yn/n and Φ is the cumulative distribution function for the standard
normal distribution, is that the “≈” relation is not very tight: the error is
bounded by a term on the order of 1√

n
, which will dominate the desired bound

of 1
(n+1)2 , regardless of what bounds we may find for the Φ term. (This is the

Berry-Esséen Theorem; see for instance [3], section XVI.5.)
Remark. Let

αn =
n+ 1

2n
+min

(
1− n+ 1

2n
,

1

n1/4

)
= min

(
1,

n+ 1

2n
+

1

n1/4

)
,

and consider a sequence of slot machines, where the nth machine has PGF

qn(x) = αnx
2 + (1− αn)x

0.

Let us solve for the fixed-points of qn. By the Quadratic Formula, the fixed-
points are

x = 1, x =
1− αn

αn
.

Let Hn = (1 − αn)/αn = 1/αn − 1. Since 1/2 < αn ≤ 1, we find that 0 ≤
Hn < 1. Therefore each qn has a unique fixed-point Hn ∈ [0, 1), and since
limn→∞ αn = 1/2, we get

lim
n→∞

Hn =
1− 1/2

1/2
= 1.

Thus the sequence of minimal fixed-points approaches 1, but the probability of
going broke does not approach 1.

4 Code for simulating the “infinite slot machines”
game

The following code is written in the programming language R [6]. Instead of sim-
ulating every individual coin as a Bernoulli random variable, it is (much) more
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efficient to simulate an entire round of coins, as a binomial random variable.

##############

# Note: Change these values to desired quantities.

number_of_trials_simulated <- 100000
monitor <- 5000

# Setting number_of_trials_simulated to 100000 means that it will
# simulate 100000 separate, independent trials of playing the
# sequence of machines.

# Setting monitor to 5000 means that, in each trial, it will show you
# the current status after every 5000th round. This also means that
# if you go broke before the 5000th round, then it won't show any
# output for that trial of the game.

# Set monitor to 0 if you don't want to see any output printed while
# the code is running.

##############

result <- function(n, coins){
return((n+1) * rbinom(1, coins, 1/n))

}

one_trial <- function(monitor=0, game_number=1){
#
# The argument monitor is used if you want to view the progress
# while the function is still running. With the default value
# monitor = 0,
# it doesn't show any output while running. But this can make it
# look like the computer is frozen, in the case of games
# that take a very long time.
#
# If you set monitor to, say, 1000, then it will show you the
# current status of the game after every 1000th round. This also
# means that it won't print anything unless the game reaches
# at least the 1000th round.
#
coins <- 1
round <- 0 # number of rounds completed so far
best_coins <- 1
while (coins > 0){
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round <- round + 1
coins <- result(round, coins)
best_coins <- max(best_coins, coins)
if (monitor > 0){

if (round %% monitor == 0){
cat("Current game is:", game_number, "\n")
cat("Current round is:", round, "\n")
cat("Current number of coins is:", coins, "\n")
cat("\n")
flush.console() # otherwise it waits,
# and does all printing at the end

}
}

}
return(c(round, best_coins))

}

repeated_games <- function(num_trials, monitor=0){
d = c()
for (i in 1:num_trials){

d = c(d, one_trial(monitor, i))
}
return(matrix(d, nrow=2, ncol=num_trials))

}

y <- repeated_games(number_of_trials_simulated, monitor)
rounds <- y[1,]
coins <- y[2,]

cat("Total number of games played: ", number_of_trials_simulated, "\n")
cat("Highest number of rounds before going broke: ", max(rounds), "\n")
cat("Highest number of coins achieved: ", max(coins), "\n")
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