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(In)numeracy

In 1990, a newspaper reported:

Yesterday, Monday October 9, AVRO Television paid attention to analphabetism in The
Netherlands. From data collected for the transmission, it appeared that no fewer than 1 out of
25 people cannot read or write, that is, cannot read or write a shopping list, cannot follow
subtitles on TV, cannot read newspapers, cannot write a letter.

Justimagine, 1 out of 25 people, in a country that sends helpers to developing countries in order
to teach their folks reading and writing! 1 out of 25, which means 25% of our citizens.

How many citizens does The Netherlands have? 14 million? That means that in our highly
developed country no less than three and a half million cannot read or write.

Aren’t you speechless?

Speechless, indeed. Errors such as the one above often are not noticed by our literate, educated
citizens. Innumeracy, or the inability to handle numbers and data correctly and to evaluate state-
ments regarding problems and situations that invite mental processing and estimating, is a greater
problem than our society generally recognizes. According to Treffers (1991), this level of innu-
meracy might not be the result of content taught (or not taught) but rather the result, at least in part,
of the structural design of teaching practices. “Fixing” this problem, however, requires dealing with
several issues: From a mathematical perspective, how do we define literacy? Does literacy relate to
mathematics (and what kind of mathematics)? What kind of competencies are we looking for? Are
these competencies teachable?

Introduction

Before trying to answer the question “What knowledge of mathematics is important?”, it seems wise
first to look at a “comfortable” definition of quantitative literacy (QL). Lynn Arthur Steen (2001)
pointed out that there are small but important differences in the several existing definitions and,
although he did not suggest the phrase as a definition, referred to QL as the “capacity to deal
effectively with the quantitative aspects of life.” Indeed, most existing definitions Steen mentioned
give explicit attention to number, arithmetic, and quantitative situations, either in a rather narrow

way as in the National Adult Literacy Survey (NCES 1993):

The knowledge and skills required in applying arithmetic operations, either alone or sequen-
tially, using numbers embedded in printed material (e.g., balancing a checkbook, completing
an order form).
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or more broadly as in the International Life Skills Survey (ILSS
2000):

An aggregate of skills, knowledge, beliefs, dispositions, habits
of mind, communication capabilities, and problem solving
skills that people need in order to engage effectively in quan-
titative situations arising in life and work.

The problem we have with these definitions is their apparent
emphasis on guantity. Mathematical literacy is not restricted to
the ability to apply quantitative aspects of mathematics but in-
volves knowledge of mathematics in the broadest sense. As an
example, being a foreigner who travels a great deal in the United
States, I often ask directions of total strangers. What strikes me in
their replies is that people are generally very poor in what I call
navigation skills: a realization of where you are, both in a relative
and absolute sense. Such skills include map reading and interpre-
tation, spatial awareness, “grasping space” (Freudenthal 1973),
understanding great circle routes, understanding plans of a new
house, and so on. All kinds of visualization belong as well to the
literacy aspect of mathematics and constitute an absolutely essen-
tial component for literacy, as the three books of Tufte (1983,
1990, 1997) have shown in a very convincing way.

We believe that describing what constitutes mathematical literacy
necessitates not only this broader definition but also attention to
changes within other school disciplines. The Organization for
Economic Cooperation and Development (OECD) publication
Measuring Student Knowledge and Skills (OECD 1999) presents as
part of reading literacy a list of types of texts, the understanding of
which in part determines what constitutes literacy. This list comes
close, in the narrower sense, to describing many aspects of quan-
titative literacy. The publication mentions, as examples, texts in
various formats:

e Forms: tax forms, immigration forms, visa forms, application
forms, questionnaires

e Information sheets: timetables, price lists, catalogues, pro-
grams

e  Vouchers: tickets, invoices, etc.

e Certificates: diplomas, contracts, etc.

e (Calls and advertisements

e  Charts and graphs; iconic representations of data
e Diagrams

e Tables and matrices
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e Lists
e Maps

The definition Steen used in Mathematics and Democracy: The
Case for Quantitative Literacy (2001) refers to these as “document
literacy,” following a definition adopted by the National Center
for Education Statistics (NCES).

Against this background of varying perspectives, I chose for
“mathematical literacy” a definition that is broad but also rather
“mathematical”:

Mathematical literacy is an individual’s capacity to identify
and understand the role that mathematics plays in the world,
to make well-founded judgments, and to engage in mathe-
matics in ways that meet the needs of that individual’s current
and future life as a constructive, concerned and reflective

citizen (OECD 1999).

This definition was developed by the Expert Group for Mathe-
matics of the Programme for International Student Assessment
(PISA), of which I am chair. (I will refer to this document repeat-
edly below.) Later in this essay I further discriminate between the
concepts of numeracy, spatial literacy (SL), quantitative literacy
(QL), and mathematical literacy (ML). I also try to build an ar-
gument that there is a need for consensus on what constitutes basic
mathematical literacy as distinct from advanced mathematical lit-
eracy.

“What Mathematics?” Not Yet the
Right Question

In an interview in Mathematics and Democracy, Peter T. Ewell
(2001) was asked: ““The Case for Quantitative Literacy’ argues
that quantitative literacy (QL) is not merely a euphemism for
mathematics but is something significantly different—Iless formal
and more intuitive, less abstract and more contextual, less sym-
bolic and more concrete. Is this a legitimate and helpful distinc-
tion?” Ewell answered that indeed this distinction is meaningful
and powerful.

The answer to this question depends in large part on the interpre-
tation of what constitutes good mathematics. We can guess that in
Ewell’s perception, mathematics is formal, abstract, and sym-
bolic—a picture of mathemartics still widely held. Ewell continued
to say that literacy implies an integrated ability to function seam-
lessly within a given community of practice. Functionality is
surely a key point, both in itself and in relation to a community of
practice, which includes the community of mathematicians. Fo-
cusing on functionality gives us better opportunity to bridge gaps
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or identify overlaps. In the same volume, Alan H. Schoenfeld
(2001) observed that in the past, literacy and what is learned in
mathematics classes were largely disjointed. Now, however, they
should be thought of as largely overlapping and taught as largely
overlapping. In this approach, which takes into consideration the
changing perception of what constitutes mathematics, mathemat-
ics and mathematical literacy are positively not disjointed.

For Schoenfeld, the distinction most likely lies in the fact that as a
student he never encountered problem-solving situations, that he
studied only “pure” mathematics and, finally, that he never saw or
worked with real data. Each of these is absolutely essential for
literate citizenship, but none even hints at defining what mathe-
matics is needed for ML, at least not in the traditional school
mathematics curricula descriptions of arithmetic, algebra, geom-
etry, and so on.

Again, in Mathematics and Democracy, Wade Ellis, Jr. (2001) ob-
serves that many algebra teachers provide instruction that con-
stricts rather than expands student thinking. He discovered that
students leaving an elementary algebra course could solve fewer
real-world problems after the course than before it: after complet-
ing the course, they thought that they had to use symbols to solve
problems they had previously solved using only simple reasoning
and arithmetic. It may come as no surprise that Ellis promotes a
new kind of common sense—a quantitative common sense based
on mathematical concepts, skills, and know-how. Despite their
differences, however, Schoenfeld and Ellis seem to share Treffers’
observation that innumeracy might be caused by a flaw in the
structural design of instruction.

These several observers seem to agree that in comparison with
traditional school mathematics, ML is less formal and more intu-
itive, less abstract and more contextual, less symbolic and more
concrete. ML also focuses more attention and emphasis on rea-
soning, thinking, and interpreting as well as on other very math-
ematical competencies. To get a better picture of what is involved
in this distinction, we first need to describe what Steen (2001)
called the “elements” needed for ML. With a working definition
of ML and an understanding of the elements (or “competencies,”
as they are described in the PISA framework) needed for ML, we
might come closer to answering our original question—what
mathematics is important?— or formulating a better one.

Competencies Needed for ML

The competencies that form the heart of the ML description in
PISA seem, for the most part, well in line with the elements in
Steen (2001). The competencies rely on the work of Niss (1999)
and his Danish colleagues, but similar formulations can be found
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in the work of many others representing many countries (as indi-
cated by Neubrand et al. 2001):

1. Mathematical thinking and reasoning. Posing questions char-
acteristic of mathematics; knowing the kind of answers that
mathematics offers, distinguishing among different kinds of
statements; understanding and handling the extent and limits
of mathematical concepts.

2. Mathematical argumentation. Knowing what proofs are;
knowing how proofs differ from other forms of mathematical
reasoning; following and assessing chains of arguments; hav-
ing a feel for heuristics; creating and expressing mathematical
arguments.

3. Mathematical communication. Expressing oneself in a variety
of ways in oral, written, and other visual form; understanding
someone else’s work.

4. Modeling. Structuring the field to be modeled; translating
reality into mathematical structures; interpreting mathemat-
ical models in terms of context or reality; working with mod-
els; validating models; reflecting, analyzing, and offering cri-
tiques of models or solutions; reflecting on the modeling
process.

5. Problem posing and solving. Posing, formulating, defining,
and solving problems in a variety of ways.

6. Representation. Decoding, encoding, translating, distinguish-
ing between, and interpreting different forms of representa-
tions of mathematical objects and situations as well as under-
standing the relationship among different representations.

7. Symbols. Using symbolic, formal, and technical language and
operations.

8. Tools and technology. Using aids and tools, including technol-
ogy when appropriate.

To be mathematically literate, individuals need all these compe-
tencies to varying degrees, but they also need confidence in their
own ability to use mathematics and comfort with quantitative
ideas. An appreciation of mathematics from historical, philosoph-
ical, and societal points of view is also desirable.

It should be clear from this description why we have included
functionality within the mathematician’s practice. We also note
that to function well as a mathematician, a person needs to be
literate. It is not uncommon that someone familiar with a math-
ematical tool fails to recognize its usefulness in a real-life situation
(Steen 2001, 17). Neither is it uncommon for a mathematician to
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be unable to use common-sense reasoning (as distinct from the
reasoning involved in a mathematical proof).

As Deborah Hughes Hallett (2001) made clear in her contribu-
tion to Mathematics and Democracy, one of the reasons that ML is
hard to acquire and hard to teach is that it involves insight as well
as algorithms. Some algorithms are of course necessary: it is diffi-
cult to do much analysis without knowing arithmetic, for exam-
ple. But learning (or memorizing) algorithms is not enough: in-
sight is an essential component of mathematical understanding.
Such insight, Hughes Hallett noted, connotes an understanding
of quantitative relationships and the ability to identify those rela-
tionships in an unfamiliar context; its acquisition involves reflec-
tion, judgment, and above all, experience. Yet current school cur-
ricula seldom emphasize insight and do lictle to actively support its
development at any level. This is very unfortunate. The develop-
ment of insight into mathematics should be actively supported,
starting before children enter school.

Many countries have begun to take quite seriously the problems
associated with overemphasizing algorithms and neglecting in-
sight. For example, the Netherlands has had some limited success
in trying to reform how mathematics is taught. To outsiders, the
relatively high scores on the Third International Mathematics and
Science Study (TIMSS) and TIMSS-R by students in the Neth-
erlands appear to prove this, but the results of the Netherlands in
the PISA study should provide even more proof.

The Netherlands has been helped in moving away from the
strictly algorithmic way of teaching mathematics by the recogni-
tion that mathematical abilities or competencies can be clustered:
one cluster includes reproduction, algorithms, definitions, and so
on; another cluster encompasses the ability to make connections
among different aspects or concepts in mathematics to solve sim-
ple problems; and a third cluster includes insight, reasoning, re-
flection, and generalization as key components (de Lange 1992,
1995). In designing curricula and assessments as well as items for
international examinations, this clustering approach became a
mirror reflecting back to us what we thought constituted good
mathematics in the sense of competencies. To a large extent, this
approach also prevented the very present danger of viewing the
National Council of Teachers of Mathematics (NCTM) goals—
reasoning, communication, and connections—as merely rhetoric
(Steen 2001). Eventually, this clustering of mathematical compe-
tencies found its way into the present OECD PISA study (1999)
as well as into a classroom mathematics assessment framework (de
Lange 1999) and an electronic assessment tool (Cappo and de

Lange 1999).

Finally, we want to make the observation that the competencies
needed for ML are actually the competencies needed for mathe-
matics as it should be taught. Were that the case (with curricula
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following the suggestions made by Schoenfeld and Hughes Hal-
lett and extrapolating from experiences in the Netherlands and
other countries), the gap between mathematics and mathematical
literacy would be much smaller than some people suggest it is at
present (Steen 2001). It must be noted, however, that in most
countries this gap is quite large and the need to start thinking and
working toward an understanding of what makes up ML is barely
recognized. As Neubrand et al. (2001) noted in talking about the
situation in Germany: “In actual practice of German mathematics
education, there is no correspondence between the teaching of
mathematics as a discipline and practical applications within a
context” (free translation by author).

What Is Mathematics?

To provide a clearer picture of literacy in mathematics, it seems
wise to reflect for a moment on what constitutes mathematics.
Not that we intend to offer a deep philosophical treatment—there
are many good publications around—but it is not unlikely that
many readers might think of school mathematics as representing
mathematics as a science. Several authors in Mathematics and De-
mocracy (Steen 2001) clearly pointed this out, quite often based on
their own experiences (Schoenfeld, Schneider, Kennedy, and El-
lis, among others). Steen (1990) observed in On the Shoulders of
Giants: New Approaches to Numeracy that traditional school math-
ematics picks a very few strands (e.g., arithmetic, algebra, and
geometry) and arranges them horizontally to form the curriculum:
first arithmetic, then simple algebra, then geometry, then more
algebra and, finally, as if it were the epitome of mathematical
knowledge, calculus. Each course seems designed primarily to
prepare for the next. These courses give a distorted view of math-
ematics as a science, do not seem to be related to the educational
experience of children, and bear no relevance for society. A result
of this is that the informal development of intuition along the
multiple roots of mathematics, a key characteristic in the devel-
opment of ML, is effectively prevented. To overcome this misim-
pression about the nature of mathematics left by such courses, we
will try to sketch how we see mathematics and, subsequently, what
the consequences can be for mathematics education.

Mathematical concepts, structures, and ideas have been invented
as tools to organize phenomena in the natural, social, and mental
worlds. In the real world, the phenomena that lend themselves to
mathematical treatment do not come organized as they are in
school curriculum structures. Rarely do real-life problems arise in
ways and contexts that allow their understanding and solutions to
be achieved through an application of knowledge from a single
content strand. If we look at mathematics as a science that helps us
solve real problems, it makes sense to use a phenomenological
approach to describe mathematical concepts, structures, and

ideas. This approach has been followed by Freudenthal (1973)
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and by others such as Steen (1990), who state that if mathematics
curricula featured multiple parallel strands, each grounded in ap-
propriate childhood experiences, the collective effect would be to
develop among children diverse mathematical insight into the
many different roots of mathematics. Steen then suggested that we
should seek inspiration in the developmental power of five deep
mathematical ideas: dimension, quantity, uncertainty, shape, and
change. The OECD PISA mathematics expert group has adapted
these, creating four phenomenological categories to describe what
constitutes mathematics: quantity, space and shape, change and
relationships, and uncertainty.

Using these four categories, mathematics content can be orga-
nized into a sufficient number of areas to help ensure a spread of
items across the curriculum, but also a small enough number to
avoid an excessively fine division—which would work against a
focus on problems based in real-life situations. Each phenomeno-
logical category is an encompassing set of phenomena and con-
cepts that make sense together and may be encountered within
and across a multitude of quite different situations. By their very
nature, each idea can be perceived as a general notion dealing with
a generalized content dimension. This implies that the categories
or ideas cannot be sharply delineated vis-a-vis one another.
Rather, each represents a certain perspective, or point of view,
which can be thought of as possessing a core, a center of gravity,
and a somewhat blurred penumbra that allow intersection with
other ideas. In principle, any idea can intersect with any other
idea. (For a more detailed description of these four categories or
ideas, please refer to the PISA framework (OECD 2002).)

Quantity. This overarching idea focuses on the need for quantifi-
cation to organize the world. Important aspects include an under-
standing of relative size, recognition of numerical patterns, and
the ability to use numbers to represent quantifiable attributes of
real-world objects (measures). Furthermore, quantity deals with
the processing and understanding of numbers that are represented
to us in various ways. An important aspect of dealing with quan-
tity is quantitative reasoning, whose essential components are de-
veloping and using number sense, representing numbers in vari-
ous ways, understanding the meaning of operations, having a feel
for the magnitude of numbers, writing and understanding math-
ematically elegant computations, doing mental arithmetic, and
estimating.

Space and Shape. Patterns are encountered everywhere around us:
in spoken words, music, video, traffic, architecture, and art.
Shapes can be regarded as patterns: houses, office buildings,
bridges, starfish, snowflakes, town plans, cloverleaves, crystals,
and shadows. Geometric patterns can serve as relatively simple
models of many kinds of phenomena, and their study is desirable
at all levels (Griinbaum 1985). In the study of shapes and con-
structions, we look for similarities and differences as we analyze
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the components of form and recognize shapes in different repre-
sentations and different dimensions. The study of shapes is closely
connected to the concept of “grasping space” (Freudenthal
1973)—Ilearning to know, explore, and conquer, in order to live,
breathe, and move with more understanding in the space in which
we live. To achieve this, we must be able to understand the prop-
erties of objects and the relative positions of objects; we must be
aware of how we see things and why we see them as we do; and we
must learn to navigate through space and through constructions
and shapes. This requires understanding the relationship between
shapes and images (or visual representations) such as that between
a real city and photographs and maps of the same city. It also
includes understanding how three-dimensional objects can be
represented in two dimensions, how shadows are formed and
interpreted, and what perspective is and how it functions.

Change and Relationships. Every natural phenomenon is a mani-
festation of change, and in the world around us a multitude of
temporary and permanent relationships among phenomena are
observed: organisms changing as they grow, the cycle of seasons,
the ebb and flow of tides, cycles of unemployment, weather
changes, stock exchange fluctuations. Some of these change pro-
cesses can be modeled by straightforward mathematical functions:
linear, exponential, periodic or logistic, discrete or continuous.
But many relationships fall into different categories, and data
analysis is often essential to determine the kind of relationship
present. Mathematical relationships often take the shape of equa-
tions or inequalities, but relations of a more general nature (e.g.,
equivalence, divisibility) may appear as well. Functional think-
ing—that is, thinking in terms of and about relationships—is one
of the fundamental disciplinary aims of the teaching of mathemat-
ics. Relationships can take a variety of different representations,
including symbolic, algebraic, graphic, tabular, and geometric. As
a result, translation between representations is often of key impor-
tance in dealing with mathematical situations.

Uncertainty. Our information-driven society offers an abundance
of data, often presented as accurate and scientific and with a de-
gree of certainty. But in daily life we are confronted with uncertain
election results, collapsing bridges, stock market crashes, unreli-
able weather forecasts, poor predictions of population growth,
economic models that do not align, and many other demonstra-
tions of the uncertainty of our world. Uncertainty is intended to
suggest two related topics: data and chance, phenomena that are
the subject of mathematical study in statistics and probability,
respectively. Recent recommendations concerning school curric-
ula are unanimous in suggesting that statistics and probability
should occupy a much more prominent place than they have in
the past (Cockroft 1982; LOGSE 1990; MSEB 1993; NCTM
1989, 2000). Specific mathematical concepts and activities that
are important in this area include collecting data, data analysis,
data display and visualization, probability, and inference.
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The Real World

Although we now have “answers” to what constitutes ML, what
the needed skills or competencies are, and what mathematics is,
we still are not in a position to give an answer to what mathematics
is needed for ML. The reason is simple: mathematics curricula
have focused on school-based knowledge whereas mathematical
literacy involves mathematics as it is used in the real world.

An important part of mathematical literacy is using, doing, and
recognizing mathematics in a variety of situations. In dealing with
issues that lend themselves to a mathematical treatment, the
choice of mathematical methods and representations often de-
pends on the situations in which the problems are presented.
Teachers of mathematics often complain that students have diffi-
culty applying the mathematics they have learned in different
contexts. As Hughes Hallett (2001) correctly observed, non-
science students often dislike contexts involving physics applica-
tions in mathematics because they do not understand the physics.
Building from this, I think we need to examine the wisdom of
confronting nonscience students with mathematics applications
that need specific science literacy at a nonbasic level. As has been
pointed out before, to effectively transfer their knowledge from
one area of application to another, students need experience solv-
ing problems in many different situations and contexts (de Lange
1987). Making competencies a central emphasis facilitates this
process: competencies are independent of the area of application.
Students should be offered real-world situations relevant to them,
either real-world situations that will help them to function as
informed and intelligent citizens or real-world situations that are
relevant to their areas of interest, either professionally or educa-
tionally.

By situation, we mean the part of the student’s world in which a
certain problem is embedded. It is very convenient and relevant to
the art of teaching for ML to see situations as having certain
distances in relation to the student (de Lange 1995; OECD 1999,
2002). The closest distance is the student’s personal life; next is
school (educational) life, then work (occupational) and leisure,
followed by the local community and society as encountered in
daily life. Furthest away are scientific situations. It might be de-
sirable to enlarge the distance domain as the age of the students
increases, but not in a strict way.

Steen (2001, 9-15) itemized an impressive list of expressions of
numeracy, most of which can be seen as having a certain “dis-
tance” from “citizens.” Under personal life we include, depending
on age, games, daily scheduling, sports, shopping, saving, inter-
personal relations, finances, voting, reading maps, reading tables,
health, insurance, and so on. School life relates to understanding
the role of mathematics in society, school events (e.g., sports,
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teams, scheduling), understanding data, computers, and so on.
Work and leisure involves reasoning, understanding data and sta-
tistics, finances, taxes, risks, rates, samples, scheduling, geometric
patterns, two- and three-dimensional representations, budgets,
visualizations, and so on. In the local community, we see the
intelligent citizen making appropriate judgments, making deci-
sions, evaluating conclusions, gathering data and making infer-
ences, and in general adopting a critical attitude—seeing the rea-
soning behind decisions.

Last, we come to science situations. To function as an intelligent
citizen, individuals need to be literate in many fields, not only in
mathematics. The use of scientific situations or contexts in math-
ematics classes should not be avoided per se, but some care must
be taken. If we try to teach students the right competencies but use
the wrong context, we are creating a problem, not solving it. A
good but rather unscientific example concerns work with middle-
school students in the United States. The designed lesson se-
quence had archeology as a context. Archeologists sometimes use
rather straightforward but quite unexpected and rather “subjec-
tive” mathematical methods in their research—just the kind of
mathematics middle school students can handle. The question,
therefore, was not whether the students could do the mathematics
but whether the context was engaging enough in this short-atten-
tion-span society. The students were highly engaged because of
the unexpectedness of what they were learning and the relevance
of the methods used. As we learned in this instance, connecting to
the students’ real world can be a complex but highly rewarding
journey.

What has become clear in dealing with mathematics in context
over the past 25 years is that making mathematics relevant by
teaching it in context is quite possible and very rewarding, despite
the many pitfalls. We note that much more experience and re-
search is needed, but based on previous experiences we also note
that teaching for both mathematical literacy and relevant mathe-
matics at almost the same time might very well prove feasible.

A Matter of Definitions

Having set the context, it seems appropriate now to make clear
distinctions among types of literacies so that, at least in this essay,
we do not declare things equal that are not equal. For instance,
some equate numeracy with quantitative literacy; others equate
quantitative and mathematical literacy. To make our definitions
functional, we connect them to our phenomenological categories.

Spatial Literacy (SL). We start with the simplest and most ne-
glected, spatial literacy. SL supports our understanding of the
(three-dimensional) world in which we live and move. To deal
with what surrounds us, we must understand properties of objects,
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the relative positions of objects and the effect thereof on our visual
perception, the creation of all kinds of two- and three-dimen-
sional paths and routes, navigational practices, shadows—even
the art of Escher.

Numeracy (N). The next obvious literacy is numeracy (N), fitting
as it does directly into quantity. We can follow, for instance,
Treffers’ (1991) definition, which stresses the ability to handle
numbers and data and to evaluate statements regarding problems
and situations that invite mental processing and estimating in
real-world contexts.

Quantitative Literacy (QL). When we look at quantitative literacy,
we are actually looking at literacy dealing with a cluster of phe-
nomenological categories: quantity, change and relationships, and
uncertainty. These categories stress understanding of, and math-
ematical abilities concerned with, certainties (quantity), uncer-
tainties (quantity as well as uncertainty), and relations (types of,
recognition of, changes in, and reasons for those changes).

Mathematical Literacy (ML). We think of mathematical literacy as
the overarching literacy comprising all others. Thus we can make
a visual representation as follows:

Mathematical Literacy
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Advanced Mathematical Literacy and Basic Mathematical Literacy.
Another possibly fruitful way to make distinctions within the field
of mathematical literacy is to think about the “community of
practitioners” in somewhat more detail. Being mathematically
literate means different things according to the needs of the com-
munity, both as a group and as individuals. It may be a good idea,
although well beyond the comfort zone for many, to speak of basic
mathematical literacy (BML), a level expected of all students up to
age 15 or so, independent of their role in society. Individual coun-
tries or communities should be able to define in some detail what
this actually means in the local culture. After age 15, however, as
students begin to think of their future careers, they should, ac-
cordingly, acquire advanced mathematical literacy (AML), defined
by their need to fit into their community of practice. Because of
the many different communities of practice in a given society,
defining the general content for career-related AML may be un-
wise, if not impossible. But defining an early career-entry AML for
high school students and undergraduates might be appropriate, as
might defining a general AML for adult life in society, linking its
development, support, and enhancement to continuing education
for adults.

%tive Literacy

Spatial Literacy Numeracy

f f

Space and Shape Quantity

Change and Relationships

Uncertainty
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Examples: The Mathematics
Necessary for Development of ML

Examples from real curricula offer the best illustrations of math-
ematics that meet at least some of the requirements of ML. It will
come as no surprise, perhaps, that the examples offered here,
andour frame of reference, will be the Netherlands, but with an
eye to the U.S. situation.

In the 1970s, it became increasingly clear that there was a serious
mismatch in the Netherlands between what many students
needed and what was offered to them in mathematics curricula, a
mismatch still present in many curricula. Traditional curricula,
for example, include calculus taught in a way that seldom leads to
any understanding of its power or usefulness and seldom either
develops students’ ability to reason with it as a tool or develops it
with an eye to mathematical or scientific proof. Few mathematics
educators see any merit in this approach (see de Lange 1994). Yet
despite the fact that calculus has few easily accessible applications
outside the exact sciences, it has survived “for all,” albeit in very
different shapes, in upper secondary curricula.

This mismatch is particularly acute for the majority of students
who do not want to pursue university study in the exact sciences
but who need mathematics for economics, biological sciences,
language, arts, social sciences, and so on. More generally, this
mismatch affects all future members of our society, which de-
pends so heavily on mathematics and technology. In the early
1980s, a specific curriculum was developed in the Netherlands to
meet the need for more general, socially relevant mathematical
knowledge (ML). The political reasons were simple and clear: all
students needed mathematics, but what they needed to study was
the mathematics required to function well in society and the con-
cepts and areas relevant to their future work and study. As part of
this change, curricula differing in mathematical content, level of
formality, context, and even (to a certain extent) pedagogy were
created to fit the needs of different clusters of students beyond the
age of 14. To convey the nature of this change, we give below
some concrete examples of this mathematics, presented in the
order of our phenomenological categories.

QUANTITY

The Defense Budget. In a certain country, the defense budget was
$30 million for 1980. The total budget for that year was $500
million. The following year, the defense budget was $35 million,
whereas the total budget was $605 million. Inflation during the
period between the two budgets was 10 percent.

(@) You are invited to hold a lecture for a pacifist society. You
want to explain that the defense budget has decreased this
year. Explain how to do this.
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(b) Youareinvited to lecture to a military academy. You want to
claim that the defense budget has increased this year. Ex-
plain how to do this (de Lange 1987).

This problem has been thoroughly researched with 16-year-old stu-
dents. Itillustrates very well the third cluster on reflection and insight.
Students recognized the literacy aspect immediately and quite often
were able to make some kind of generalization; the heart of the solu-
tion lies in recognizing that the key mathematical concepts here are
absolute and relative growth. Inflation can of course be left out to
make the problem accessible to somewhat younger students without
losing the key conceptual ideas behind the problem, but doing so
reduces the complexity and thus the required mathematization. An-
other way to make the item simpler is to present the data in a table or
schema. In this case, students have no preliminary work to carry out
before they get to the heart of the matter.

SPACE AND SHAPE

Casting Shadows. We first show an example of basic spatial literacy
that reflects a well-known daily experience, but one in which
people seldom realize what they see. The variety of shadows cast
by the sun (or a light bulb) is an interesting starting point for a
wide array of mathematical questions that have a much wider
impact than people initially realize. Students first are introduced
to a picture of an outdoor lamp surrounded by posts (Feijs 1998):

They then are asked to draw the shadows created by the lamp
(Top View A) and also the shadows cast by the sun (Top View B):
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This example not only illustrates aspects of mathematical literacy
as it deals with the world in which we live but also can stimulate
thinking about deeper mathematical ideas that are not immedi-
ately evident, for example, parallel and central projection, vision
lines, blind spots, and ratios.

The second example dealing with space and shape is taken from the
curriculum for students preparing for study in the exact sciences.

Equal Distances. The economies of some countries depend on
their fishing industries. Other countries are interested in the ocean
for reasons of oil drilling rights. How do we establish “fair” rules
about who gets what and for what reasons? If we are considering a
straight canal with two different countries on both sides, it seems
obvious: the line through the middle of the canal forms the
boundary because it is the line with equal distances to both coun-
tries. The political and societal relevance of this and similar ques-
tions is immediately clear. But how many people understand the
logic and common sense behind the rules?

The part of geometry that deals with equal distances is sometimes
called Voronoi geometry. It is an area of mathematics that has
relevance to practical (and very often political) problems and also
offers experience in useful mathematical reasoning. Unlike the
previous example, which illustrated Basic ML, this one is for se-
nior high school students, taken from students’ materials at a

Dutch high school.

Theillustration shows the Netherlands portioned by use of a Voronoi
diagram: all cities (city centers) are equidistant to the borders.
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(a) What do you know about the distances from A to Middelburg,
from A to Den Haag and from A to Den Bosch?

(b) Explain why a Voronoi diagram with three points can never
look like the following diagram (Goddijn 1997, taken out of

context and order).

These examples form the starting point for a sequence of very
interesting space and shape mathematics that is very relevant from
a societal point of view (e.g., fishing rights, oil-drilling rights). But
Voronoi diagrams have much more to offer in the mathematical
sense. For example, although the last question above is not of
immediate relevance to fishing or oil-drilling rights, it requires
coherent, competent, and consistent reasoning, which is at least as
important as the first questions for intelligent citizens to function
in their societies.

CHANGE AND RELATIONSHIPS

Cheetabs and Horses. Some animals that dwell on grassy plains are
safeguarded against attacks by their large size; others are so small
that they can protect themselves by burrowing into the ground.
Still others must count on speed to escape their enemies.

An animal’s speed depends on its size and the frequency of its
strides. The tarsal (foot) bone of animals of the horse family is
lengthened, with each foot having been reduced to only one toe.
One thick bone is stronger than a number of thin ones. This single
toe is surrounded by a solid hoof, which protects the bone against
jolts when the animal is galloping over hard ground. The powerful
leg muscles are joined together at the top of the leg so that just a
slight muscle movement at that point can freely move the slim
lower leg.

Quantitative Literacy: Why Numeracy Matters for Schools and Colleges

The fastest sprinter in the world is the cheetah. Its legs are shorter
than those of a horse, but it can reach a speed of more than 110
km/h in 17 seconds and maintain that speed for more than 450
meters. The cheetah tires easily, however, whereas a horse, whose
top speed is 70 km/h, can maintain a speed of 50 km/h for more
than 6 km.

A cheetah is awakened from its afternoon nap by a horse’s hooves.
At the moment the cheetah decides to give chase, the horse has a
lead of 200 meters. The horse, traveling at its top speed, still has
plenty of energy. Taking into consideration the above data on the
running powers of the cheetah and the horse, can the cheetah
catch the horse? Assume that the cheetah will need around 300
meters to reach its top speed. Solve this problem by using graphs.
Let the vertical axis represent distance and the horizontal axis time

(Kindt 1979, in de Lange 1987).

As Freudenthal (1979) lamented:
This story of the cheetah seems rather complex. There is an
abundance of numbers ... and nowhere an indication of
which operation to perform on which numbers. Indeed, is
there anything like a solution? The only question to be an-
swered is, “Does the cheetah catch up with the horse?” It is
“yes” or “no”—no numbers, no kilometers, no seconds. Is

that a solution in the usual sense? (free translation by author).

According to Freudenthal, this is what mathematics is all about,
especially mathematics for ML. This example also shows how we
can introduce students to calculus. Calculus needs to be perceived
as “the science that keeps track of changes,” as a student once
characterized it. A qualitative discussion about rates of change can
be very illuminating for students and at the same time enable
mathematics to contribute to ML. It prevents students from per-
ceiving calculus as that part of mathematics in which “you take the
exponent, put it in front, and the new exponent is one less than the
original one.” Another student in the course in a nonmathemat-
ics-related major, who was not very successful in traditional math-
ematics, answered: “Differentiation is about how to keep check on
rates of change.” Part of the importance of ML can be seen in the
gap between these two answers.

Tides. Natural phenomena should play a vital role in mathematics
for ML. For a country like the Netherlands, with 40 percent of its
area below sea level, the tides are very important. The following
protocol is taken from a classroom of 16-year-olds (de Lange
2000):
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Student A:
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Let’s look at the mean tidal graph of Flushing. What Teacher:  Explain.
are the essentials?
Student C: Well, that’s simple: the maximum is 2 meters, the
High water is 198 cm, and low is =182 cm. low is —2 meters, and the period is around 12 hours
33 minutes or so. That’s pretty close, isn’t it?
And? [pause]
Teacher: [to the class] Isn’t it?
So it takes longer to go down than up.
Student D:  No, I don’t agree. I think the model needs to show
What do you mean? exactly how high the water can rise. I propose 190
sin (x/2) + 8. In that case, the maximum is exactly
Going down takes 6 hours 29 minutes, up only 5 198 cm, and the minimum exactly —182 cm. Not
hours 56 minutes. bad.
OK. And how about the period? Teacher: Any comments, anyone? [some whispering, some
discussion]
6 hours 29 and 5 hours 56 makes 12 hours 25
minutes. Student E: I think it is more important to be precise about the
period. 12 hours 33 minutes is too far off to make
Now, can we find a simple mathematical model? predictions in the future about when it will be high
water. We should be more precise. I think 190 sin
[pause] Maybe 2 sin x. [(pi/6.2)x] is much better.
What is the period, then? Teacher: What's the period in that case?
2 pi, that means around 6.28 hours [pause] 6 hours Student F:  12.4 hours, or 12 hours 24 minutes, only 1 minute
18 minutes [pause] oh, I see that it must be 2x, or, off.
no, x/2.
Teacher: Perfect. What model do we prefer? [discussion]
So?
Student G: 190 sin [(pi/6.2)x] + 8.

2 sin (x/2) will do.
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The discussion continued with “What happens if we go to a dif-
ferent city that has smaller amplitudes and where high tides come
two hours later? How does this affect the formula? "Why is the
rate of change so important?*

Why do we consider this a good example of mathematics for ML?
Given the community in which this problem is part of the curric-
ulum, the relevance for society is immediately clear—and the
relevance is rising with global temperatures. The relevance also
becomes clear at a different level, however. The mathematical
method of trial and error illustrated here not only is interesting by
itself, but the combination of the method with the most relevant
variables also is interesting: in one problem setting we are inter-
ested in the exact time of high water, in another we are interested
in the exact height of the water at high tide. Intelligent citizens
need insight into the possibilities and limitations of models. This
problem worked very well for these students, age 16, and the fact
that the “real” model used 40 different sine functions did not
really make that much difference with respect to students’ percep-
tions.

UNCERTAINTY

Challenger. 1f we fail to pose problems properly or fail to seek
essential data and represent them in a meaningful way, we can very
easily drown in data. One dramatic example concerns the advice
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of the producer of solid rocket motors (SRM) to NASA concern-
ing the launch of the space shuttle Challenger in 1986. The rec-
ommendation issued the day before the launch was 7ot to launch
if the temperature was less than 53 degrees Fahrenheit; the low
temperature (29 degrees) that was predicted for the day of the
launch might produce risks. As beautifully laid out by Tufte
(1997), the fax supporting the recommendation was an excellent
example of failed mathematical and common-sense reasoning.
Instead of looking at the data on all 24 previous launches, the fax
related to only two actual launches (giving temperatures, with
ensuing damage to rubber O-rings). NASA, of course, refused to
cancel the launch based on the arguments found in the fax. Simple
mathematics could have saved the lives of the seven astronauts.

The scientists at Morton Thiokol, producer of the O-rings, were
right in their conclusion but were unable to find a correlation
between O-ring damage and temperature. Let us look at the prob-
lem systematically. The first thing to do if we suspect a correlation
is to look at all the data available, in this case, the temperatures at
the time of launch for all 24 launches and the ensuing damage to
the O-rings. At that point, we then order the entries by possible
cause: temperature at launch, from coolest to warmest. Next, for
each launch, we calculate the damage to the O-rings and then
draw a scatter plot showing the findings from all 24 launches prior

to the Challenger.
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In this graph, the temperature scale extends down to 29 degrees,
visually expressing the extraordinary extrapolation (beyond all
previous experience) that had to be made to “see” the launch at 29
degrees. The coolest flight without any O-ring damage was at 66
degrees, some 37 degrees warmer than that predicted for the Chal-
lenger; the forecast of 29 degrees was 5.7 standard deviations
distant from the average temperature on previous launches. This
launch was completely outside the engineering database accumu-
lated in 24 previous flights. The result: the O-rings had already

failed before the rocket was launched.

What Mathematics Education
Supports the Development of ML?

These examples, taken from the classroom, show what kinds of
problems students need to work with to learn good mathematics
while at the same time becoming mathematically literate. In a
general sense, we agree with Steen (2001) that deploying mathe-
matics in sophisticated settings such as modern work-based tasks
gives students not only motivation and context but also a concrete
foundation from which they can later abstract and generalize. As
these examples show, however, it is not necessary to restrict our-
selves to work-based settings. Not every setting lends itself equally
to the successful development of mathematical concepts. The im-
portance of choosing appropriate contexts is well documented
(e.g., de Lange 1987; Feijs in press), and the issues involved in
selecting situations to develop mathematical concepts are quite
different from those involved in choosing contexts “just” for ap-
plication. This is a very tricky area, and much more research is
needed before we can make general statements, but the view ex-
pressed here is not innovative in any sense. For example, in 1962,
some 75 well-known U.S. mathematicians produced a memoran-
dum, “On the Mathematics Curriculum of the High School,”
published in the American Mathematical Monthly:

To know mathematics means to be able to do mathematics:
to use mathematical language with some fluency, to do prob-
lems, to criticize arguments, to find proofs, and, what may be
the most important activity, to recognize a mathematical
concept in, or to extract it from, a given concrete situation

(Ahlfors et al. 1962).

It is precisely this “most important activity” that is the essence of
the philosophy of mathematics education in the Netherlands,
mainly because of the influence of Hans Freudenthal, who in
1968 observed that the goals of teaching mathematics as a socially
useful tool could only be reached by having students start from
situations that needed to be mathematized. Many mathematics
educators and researchers have since supported this view, among
them Lesh and Landau (1986), who argued that applications
should not be reserved for consideration only after learning has
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occurred; they can and should be used as a context within which
the learning of mathematical concepts takes place.

Our first observation about the mathematics needed to support
ML is that mathematical concepts should be learned through solving
problems in appropriate settings, with opportunities for progressive
mathematization and generalization. It should be noted that cer-
tain areas in mathematics lend themselves better than others to
these purposes. For instance, matrices and graphs, introduced into
curricula in the Netherlands in the 1980s, lend themselves very
nicely to modeling and representation without the burden of too
much specialized language or too many formulas.

A desirable consequence of starting with real settings is the bonus
of connected and integrated mathematics. The same problem, but
especially the more complex ones, often can be solved in many
different ways. Sometimes students choose a more algebraic
method, sometimes a more geometric one; sometimes they inte-
grate these, or produce something completely unexpected. Our
second observation, then, is that the mathematics that is taught not
only should be connected to other mathematics but also should be
embedded in the real world of the student.

Our third observation is that the goals of education should not be
Jormulated exclusively in subject areas but should also include com-
petencies. This holds as well for areas within mathematics: we
should not think along the subject lines of arithmetic, algebra,
geometry, among others, but about mathematical competencies.
This point of view forms the backbone of the PISA Framework for
Mathematics, supported by more than 30 countries, including the
United States.

The fourth observation is a trivial but important one: mathematics
literacy will lead to different curricula in different cultures. ML will
need to be culturally attuned and defined by the needs of the
particular country. This should be kept in mind as we attempt to
further determine what mathematics is needed for ML. (We also
note that the technology gap will have a serious impact on the type
of mathematics competencies that define being mathematically
literate in a given country.)

The fifth observation is that, given the goals of ML, the content of
curricula will have to be modernized at least every five to 10 years.
Mathematics is a very dynamic discipline. The culture, and thus
the relation between mathematics and society, changes very
quickly as well. (In the Netherlands, the curricula for mathematics
have a life span of about seven years.)

The sixth observation is that we might be able to reach some degree
of consensus about the meaning of basic mathematical literacy. A
good starting point, as Steen, Schoenfeld, and many others have
pointed out, could be the revised NCTM standards (NCTM
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2000). The standards, however, stick relatively close to tradition
and clearly reflect the difficult process of trying to please everyone.
As a result, they can serve only as a starting point, not as a defin-
itive framework for ML.

The seventh observation is that 7 can neither describe a curriculum
Jfor ML nor even identify the relevant mathematics in any detail.
Some things are clear: from kindergarten on, we should focus on
competencies; right from the start we should pay attention not
just to arithmetic but to all four phenomenological categories; we
should rethink completely the role of algebra; we should design
the longitudinal development of mathematical concepts in a very
coherent way (at least for students from 4 to 15 years of age); and
we should formulate in some detail what it means to be mathe-
matically literate in the basic sense. In this, the results from PISA
might help us in a modest way. I also suggest that we should not
shy away from new mathematical developments (e.g., discrete
dynamic modeling).

The examples I have presented, if properly interpreted and extrap-
olated, together with these several observations, give the interested
reader an impression of the mathematics needed for ML. But
designing such a curriculum, let alone teaching it, is a completely
different story.

Reflections

[ have not answered the question I was asked to address, namely,
what mathematics is important for ML? But I have attempted to
offer some directions: the desired competencies, not the mathe-
matical content, are the main criteria, and these are different at
different ages and for different populations. From a competencies
perspective, mathematics for ML can coexist with calculus—or
even better, should coexist with a calculus track—but with op-
portunities to develop intuition, to explore real-world settings, to
learn reasoning, and so on. It goes without saying that the line of
reasoning I have tried to follow holds for all ages, including uni-
versity students. We also need mathematicians to become math-
ematically literate—as such, they are much better prepared to
participate in society at large and, even more important, can con-
tribute in a constructive and critical way to the discussion about
mathematics education. We all need to understand how impor-
tant, how essential, ML is for every student, and mathematicians
in particular need to understand that ML will contribute to a
better perception about what constitutes mathematics and how
important that field is to our lives.

We have not addressed several other questions. One of the most
important is: How do we teach mathematics for ML? What are the
pedagogical arguments and didactics of mathematics for ML? But
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that question needs an article by itself, as in fact do most of the
issues I have discussed here.

But let me end positively. If the experiences in my own country,
the experiments we carried out in the United States, and the
observations we made worldwide are any indication, there is a
good chance that we can achieve ML. The issue is very complex,
however, and we have a long and challenging way to go.
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