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The usual form of the Fundamental Theorem of Calculus is as follows: 

THEOREM1. k t  f be Riemann integrable on [ a ,  b ]  and let g be a function such that 
g t (x>=f ( x )  on [ a ,  bl .  Then 

Unfortunately, this theorem only applies to Riemann integrable functions that are 
derivatives. Thus it cannot even be used to integrate the following simple function 

It is the purpose of this note to present a theorem that does apply to every 
integrable function. In stating our result we will need the following definitions. 

Definition 1. The function f :  [ a ,  b ]  -+ R satisfies a Lipschitz condition if there 
exists M > O such that 

If(.) - f ( y ) l < ~ l x- yl for all x and Y in [ a , b I .  

Definition 2. A set E of real numbers has measure zero if for each E > 0 there is a 
finite or infinite sequence {I,} of open intervals covering E and satisfying C,II,I < E 

where II,I is the length of I,. If a property holds except on a set of measure zero, it is 
said to hold almost everywhere. 

In [2]the author gave an elementary proof of the following result. 

LEMMA.I f f :  [ a ,  b ]  -+ R satisfies a Lipschitz condition and f ' ( x )  = 0 except on a set 
of measure zero, then f is a constant function on [ a ,  b ] .  

The proof required no measure theory other than the definition of a set of measure 
zero. This lemma was then used to prove that a bounded function that is continuous 
almost everywhere is Riemann integrable. We will use it here to establish our general 
form of the Fundamental Theorem of Calculus. 

THEOREM2. k t  f be Riernann integrable on [ a ,  b ]  and let g be a function that 
satisfies a Lipschitz condition and f w  which g t ( x )  =f ( x )  almost everywhere. Then 

Proof: Let F ( x )  = / ,"f( t)  dt .  Since f is bounded, F satisfies a Lipschitz condition. 
From the fact that j' is continuous except on a set of measure zero (see [3]for an 
elementary proof), it follows that F t ( x )=f ( x )  almost everywhere. (This shows that 
every Riemann integrable function is almost everywhere the derivative of a function 
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satisfying a Lipschitz condition.) It follows at once that 

almost everywhere. In addition F -g satisfies a Lipschitz condition. By the lemma 
there exists a real number k such that F ( x ) = g ( x ) + k on [ a ,  b ] .  Setting x = a we 
have k = -g (a ) .  Finally, setting x = b ,  we get 

which completes the proof. 
Note that Theorem 2 includes Theorem 1 since any function that has a bounded 

derivative satisfies a Lipschitz condition. 
Let us now integrate the following function. Define 

Since f is bounded and continuous except on S U {Oj, a set of measure zero, it is 
Riemann integrable. Let g ( x ) = x 3 / 3  + x .  Then g satisfies a Lipschitz condition and 
we have that g l ( x )= x 2 + 1=f ( x )  almost everywhere. Therefore, 

In this case g l ( x )# f ( x )  on an infinite set and yet Theorem 2 can still be used. 
In closing, we give a useful corollary of Theorem 2. 

COROLLARY. be Riemann integrable on [ a ,  b ]  and let g  be a  continuous Let f  
function such that g l ( x )  =f ( x )  except on a  countable set. Then 

Proof: To use Theorem 2 we need only show that g satisfies a Li~schitz condition. 
Since f is integrable there exists M > O such that I f ( x ) l <  M  for all x in [ a ,b].Thus 
- M  g g l ( x )g M except on a countable subset of [ a ,  b ] .  Let h ( x ) =Mx -g ( x ) .  Since 
h is continuous on [ a ,b ]  and h l ( x )= M - g l ( x )>, 0 except on a countable set, it 
follows from a result in [ I ]that h is increasing on [ a ,  b ] .  Thus for c and d in [ a ,b]  
with c < d we have h ( c ) < h ( d ) which gives g ( d )  -g ( c ) <M ( d  - c ) .  Similarly, we 
can show that -M ( d  - c ) g g ( d ) - g ( c )  and therefore I g ( d ) -g ( c ) l g  M ( d  - c ) .  
Thus g satisfies a Lipschitz condition and the proof follows immediately from 
Theorem 2. 
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