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1. INTRODUCTION. Euler proved that the sums

ζ(n) :=
∞∑

k=1

1

kn
= 1 + 1

2k
+ 1

3k
+ 1

4k
+ · · · (1)

for even n ≥ 2 and

L(n, χ4) :=
∞∑

k=0

(−1)k

(2k + 1)n
= 1 − 1

3k
+ 1

5k
− 1

7k
+ − · · · (2)

for odd n ≥ 3 are rational multiples of πn . (See Ayoub [3] for more on Euler’s work
on these and related sums.) This result can be stated equivalently as follows:

S(n) :=
∞∑

k=−∞

1

(4k + 1)n
(3)

is a rational multiple of πn for all integers n = 2, 3, 4, . . . for which the sum converges
absolutely. This is equivalent to (1) and (2) because

S(n) =
{

(1 − 2−n) ζ(n), if n is even;
L(n, χ4), if n is odd.

(4)

For future reference we tabulate for n ≤ 10 the rational numbers π−n S(n), as well as
π−nζ(n) for n even. To this end, we define

S(1) = 1 − 1

3
+ 1

5
− 1

7
+ − · · · = π

4
. (5)

n 1 2 3 4 5 6

π−n S(n) 1/4 1/8 1/32 1/96 5/1536 1/960
π−nζ(n) 1/6 1/90 1/945

n 7 8 9 10

π−n S(n) 61/184320 17/161280 277/8257536 31/2903040
π−nζ(n) 1/9450 1/93555

One standard proof of the rationality of π−n S(n) is via the generating function

G(z) :=
∞∑

n=1

S(n)zn =
∞∑

n=1

( ∞∑
k=−∞

1

(4k + 1)n

)
zn, (6)

in which the inner sum is taken in the order k = 0, −1, 1, −2, 2, −3, 3, . . . . The power
series representing G(z) converges for all z such that |z| < 1. Since the sum of the
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terms with n > 1 converges absolutely, we may interchange the order of summation
in (6), obtaining

∞∑
k=−∞

( ∞∑
n=1

zn

(4k + 1)n

)
= z

(
1

1 − z
− 1

3 + z
+ 1

5 − z
− 1

7 + z
+ − · · ·

)
. (7)

Comparing the latter sum with the partial-fraction expansions for the tangent and cose-
cant, we find that

G(z) = πz

4

(
sec

πz

2
+ tan

πz

2

)
. (8)

Since the Taylor series of z(sec(z) + tan(z)) about z = 0 has rational coefficients, it
follows from (8) that for each n the coefficient S(n) of zn in G(z) is a rational multiple
of πn .

This also lets us compute the rational numbers π−n S(n). The numbers for even and
odd n come from the even and odd parts (πz/4) tan(πz/2) and (πz/4) sec(πz/2) of
G(z). In the literature these are usually treated separately, and their coefficients are
expressed in terms of Bernoulli and Euler numbers Bn and En−1, respectively, which
are related to S(n) by the formulas

B2m = (−1)m−1

22m−1π2m
ζ(2m) = (−1)m−1 2

22m − 1
π−2m S(2m), (9)

E2m = (−1)m

(2m)! 22m+2
π−(2m+1)S(2m + 1). (10)

(The formulas (9) and (10) specify only the Bernoulli and Euler numbers of positive
even order. The odd-order ones all vanish except for B1 = −1/2. This definition, as
well as the initial value B0 = 1, is needed for another important use of these numbers;
namely, the formula

N∑
k=1

kn−1 = 1

n

n∑
m=1

(
n

m

)
Bm N n−m (11)

for summing powers of the first N integers.) A short table of Euler and Bernoulli
numbers of even order follows:

B0 E0 B2 E2 B4 E4 B6 E6 B8 E8 B10

1 1 1/6 −1 −1/30 5 1/42 −61 −1/30 1385 5/66

It is known that all the Euler numbers are integers; we shall give a combinatorial
interpretation of their absolute values (−1)m E2m at the end of this paper.

The sums S(n) continue to attract considerable interest in mathematical disciplines
ranging from Fourier analysis to number theory. Euler’s formulas predate the year
1750, and over the years since Euler’s time, many new proofs of the rationality of
S(n)/πn have been given. But it was only recently that Calabi1 found a proof using
only the formula for change of variables of multiple integrals. For instance, to prove

1The only paper by Calabi that contains this proof is one coauthored with Beukers and Kolk [4]. Never-
theless, the proof is due to Calabi alone; Beukers and Kolk’s contribution to [4] concerns other aspects of that
paper. They were shown this proof by Don Zagier, who also introduced me to it. Note that Kalman [6] also
writes that he first learned of this proof in a talk by Zagier.
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that ζ(2) = π2/6, or equivalently that S(n) = π2/8 for n = 2, Calabi argues as fol-
lows: Write each term (2k + 1)−2 of the infinite sum in (1) as

∫ 1
0

∫ 1
0 (xy)2kdx dy, and

thus rewrite that sum as

∞∑
k=0

1

(2k + 1)2
=

∞∑
k=0

∫ 1

0

∫ 1

0
(xy)2k dx dy (12)

=
∫ 1

0

∫ 1

0

( ∞∑
k=0

(xy)2k

)
dx dy (13)

=
∫ 1

0

∫ 1

0

dx dy

1 − (xy)2
. (14)

(The interchange of sum and integral in (13) is readily justified, for instance by ob-
serving the positivity of each integrand.) Then perform the change of variable

x = sin u

cos v
, y = sin v

cos u
, (15)

under which the integrand in (14) miraculously transforms to 1 du dv, and the region
of integration {(x, y) ∈ R2 : 0 < x, y < 1} is the one-to-one image of the isosceles
right triangle {(u, v) ∈ R2 : u, v > 0, u + v < π/2} (these assertions will be proved
in greater generality later). Thus the value of the integral (14) is just the area π2/8 of
that triangle, Q.E.D.

In general, Calabi writes S(n) as a definite integral over the n-cube (0, 1)n and
transforms it to the integral representing the volume of the n-dimensional polytope

�n :=
{
(u1, u2, . . . , un) ∈ Rn : ui > 0, ui + ui+1 <

π

2
(1 ≤ i ≤ n)

}
. (16)

Note that the ui are indexed cyclically mod n, so

un+1 := u1, (17)

here and henceforth. Since all the coordinates of each vertex of �n are rational mul-
tiples of π , the volume of �n must be a rational multiple of πn . It turns out that there
is another way to interpret S(n) as the volume of �n; this alternative approach re-
quires more analytical machinery, but better explains the appearance of the sum S(n).
We shall also give combinatorial interpretations of S(n) by relating this volume to the
enumeration of alternating permutations of n + 1 letters, and to the enumeration of
cyclically alternating permutations of n letters when n is even. This leads to known
formulas involving Bn and En−1. Our treatment via �n and another polytope relates
those permutation counts directly to S(n) without the intervention of Bernoulli and
Euler numbers or their generating functions.

To keep this paper self-contained, we first review Calabi’s transformation [4] that
proves S(n) = Vol(�n). This elegant proof remains little-known (except possibly for
the case n = 2 shown earlier, which was the second of Kalman’s six proofs of ζ(2) =
π2/6 [6]), and deserves wider exposure. We then give the analytic interpretation of
both S(n) and Vol(�n) as the trace of T n for a certain compact self-adjoint operator T
on the Hilbert space L2(0, π/2). (I thank the referee for bringing to my attention a
similar evaluation of an integral studied by Kubilius [7].) Finally, we relate S(n) and
polytope volumes to the enumeration of alternating and cyclically alternating permu-
tations.
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2. EVALUATING S(n) BY CHANGE OF VARIABLES. Following Calabi [4], we
generalize (15) to the n-variable transformation

x1 = sin u1

cos u2
, x2 = sin u2

cos u3
, . . . , xn−1 = sin un−1

cos un
, xn = sin un

cos u1
, (18)

some of whose properties are established in the following two lemmas.

Lemma 1. The Jacobian determinant of the transformation (18) is

∂(x1, . . . , xn)

∂(u1, . . . , un)
= 1 ± (x1x2 · · · xn)

2, (19)

the sign − or + chosen according to whether n is even or odd.

Proof. The partial derivatives ∂xi/∂u j are given by

∂xi

∂u j
=
{

(cos ui )/(cos ui+1), if j = i ;
(sin ui sin ui+1)/(cos2 ui+1), if j ≡ i + 1 mod n;
0, otherwise.

(20)

Thus the expansion of the Jacobian determinant has only two nonzero terms, one
coming from the principal diagonal j = i , one from the cyclic off-diagonal j ≡ i +
1 mod n. The product of the principal diagonal entries (cos ui )/(cos ui+1) simplifies
to 1, and always appears with coefficient +1. The product of the off-diagonal entries
is

n∏
i=1

sin ui sin ui+1

cos2 ui+1
=

n∏
i=1

x2
i , (21)

and appears with coefficient (−1)n−1, the sign of an n-cycle in the permutation group.
Therefore the Jacobian determinant is given by (19), as claimed.

Lemma 2. The transformation (18) maps the polytope �n one-to-one to the open unit
cube (0, 1)n.

Proof. Certainly if ui , ui+1 are positive and ui + ui+1 < π/2 then

0 < xi = sin ui

cos ui+1
<

sin(π/2 − ui+1)

cos ui+1
= 1. (22)

Likewise we see that, given arbitrary xi in (0, 1), any (u1, . . . , un) in (0, π/2)n satis-
fying (18) must lie in �n. It remains to show that there exists a unique such solution
(u1, . . . , un). Rewrite the equations (18) as

u1 = fx1(u2), u2 = fx2(u3), . . . , un−1 = fxn−1(un), un = fxn (u1), (23)

where fx (0 < x < 1) is the map

fx(u) := sin−1(x cos u) (24)

of the interval (0, π/2) to itself. Since∣∣∣∣ d

du
fx(u)

∣∣∣∣ =
∣∣∣∣− x sin u√

1 − x2 cos2 u

∣∣∣∣ <
x sin u√

x2 − x2 cos2 u
= 1, (25)
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each fxi is a contraction map of the interval [0, π/2]; hence so is their composite,
which thus has a unique fixed point in that interval. This point cannot be at either
endpoint, because fx(π/2) = 0 and fx(0) = sin−1(x) belongs to (0, π/2) for all x in
the interval (0, 1). Therefore fx1 ◦ fx2 ◦ · · · ◦ fxn−1 ◦ fxn has a unique fixed point in
(0, π/2), and the simultaneous equations (23) have a unique solution (u1, . . . , un) for
each (x1, . . . , xn), as claimed.

Thus we see that the volume of the polytope �n is

∫
· · ·
∫

ui >0
ui +ui+1<π/2

1 du1 · · · dun =
∫ 1

0
· · ·
∫ 1

0

dx1 · · · dxn

1 ± (x1 · · · xn)2
(26)

=
∫ 1

0
· · ·
∫ 1

0

∞∑
k=0

(−1)nk(x1 · · · xn)
2k dx1 · · · dxn. (27)

Note that when n is even, the second integral in (26) is improper due to the singularity
at (x1, . . . , xn) = (1, . . . , 1), but the change of variable remains valid because the in-
tegrand is everywhere positive. By absolute convergence we may now interchange the
sum and multiple integral in (27), obtaining

∞∑
k=0

(−1)nk

∫ 1

0
· · ·
∫ 1

0
(x1 · · · xn)

2k dx1 · · · dxn =
∞∑

k=0

(−1)nk

(2k + 1)n
= S(n). (28)

We have thus proved:

Theorem 1. The volume of the polytope �n is S(n) for all n ≥ 2.

Corollary 1.1. S(n) is a rational multiple of πn for all n ≥ 2.

Indeed, the volume of �n is (π/2)n times the volume of the polytope

2

π
�n = {

(v1, v2, . . . , vn) ∈ Rn : vi > 0, vi + vi+1 < 1 (1 ≤ i ≤ n)
}
, (29)

which is clearly a rational number.

Remark. These results hold also when n = 1, though a bit more justification is needed
because the alternating sum (2) no longer converges absolutely when n = 1. In that
case �n reduces to the line segment 0 < u1 < π/4, and the change of variable (18)
simplifies to x1 = tan u1, so we recover the evaluation of

S(1) = 1 − 1

3
+ 1

5
− 1

7
+ − · · · (30)

as the arctangent integral

∫ 1

0

dx

1 + x2
= tan−1(1) = π

4
. (31)
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3. RELATING S(n) TO Πn VIA LINEAR OPERATORS. For u, v in (0, π/2),
define K1(u, v) to be the characteristic function of the isosceles right triangle {(u, v) ∈
R2 : u, v > 0, u + v < π/2} encountered in the introduction, that is,

K1(u, v) =
{ 1, if u + v < π/2;

0, otherwise.
(32)

We may then rewrite the volume of the polytope �n as∫ π/2

0
· · ·
∫ π/2

0

n∏
i=1

K1(ui , ui+1) du1 du2 · · · dun (33)

=
∫ π/2

0
Kn(u, u) du (34)

(recall that un+1 = u1), where

Kn(u, v) =
∫ π/2

0
K1(u, u1)Kn−1(u1, v) du1 (35)

=
∫ π/2

0
· · ·
∫ π/2

0
K1(u, u1) ·

n−2∏
i=1

K1(ui , ui+1) · K1(un−1, v) du1 du2 · · · dun−1

(36)

(the equivalence of these two formulas, and thus also of (33) with (34), is easily es-
tablished by induction on n). We now interpret Kn and the integral (34) in terms of
linear operators on L2(0, π/2). Let T be the linear operator with kernel K1(·, ·) on
L2(0, π/2):

(T f )(v) =
∫ π/2

0
f (u)K1(u, v) du =

∫ (π/2)−v

0
f (u) du. (37)

Then we see from either (35) or (36) that Kn(·, ·) is the kernel of T n:

(T n f )(v) =
∫ π/2

0
f (u)Kn(u, v) du. (38)

The next lemma gives the spectral decomposition of this operator T , and thus also
of its powers T n .

Lemma 3. The transformation T is a compact, self-adjoint operator on L2(0, π/2).
Its eigenvalues, each of multiplicity one, are 1/(4k + 1) (k ∈ Z); the corresponding
orthogonal eigenfunctions are cos((4k + 1)u).

Proof. T is self-adjoint because its kernel is symmetric: K1(u, v) = K1(v, u). Com-
pactness can be obtained from general principles (the functions in the image
{T f : ‖ f ‖ ≤ 1} of the unit ball are a uniformly continuous family), or from the
determination of T ’s eigenvalues. Let λ, then, be an eigenvalue of T , and f a corre-
sponding eigenfunction, so ∫ (π/2)−v

0
f (u) du = λ f (v) (39)
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for almost all v in (0, π/2). Note that λ may not vanish, because then (39) would give
f = 0 in L2(0, π/2). So we may divide (39) by λ, and use the left-hand side to realize
f as a continuous function, and again to show that it is differentiable, with

f
(π

2
− v

)
= −λ f ′(v) (40)

for all v in (0, π/2). Differentiating (40) once more, we find that

λ2 f ′′(v) = −λ
d

dv
f
(π

2
− v

)
= λ f ′

(π

2
− v

)
= − f (v), (41)

whence

f (v) = A cos
v

λ
+ B sin

v

λ
(42)

for some constants A and B. But from (39) we see that f (π/2) = 0; substituting this
into (40) we obtain f ′(0) = 0, so B = 0. The condition f (π/2) = 0 then becomes
cos(π/2λ) = 0 and forces λ to be the reciprocal of an an odd integer, say λ = 1/m.
Now λ and −λ would both give rise to the same function f (v) = cos(v/λ), but only
one of them may be its eigenvalue. To choose the sign, take v = 0 in (39), finding that

λ = λ f (0) =
∫ π/2

0
cos(mu) du = 1

m
sin

mπ

2
= (−1)(m−1)/2

m
, (43)

or equivalently that λ = 1/m with m ≡ 1 mod 4. We then easily confirm that each
of these λ = 1, −1/3, 1/5, −1/7, . . . and the corresponding f (v) = cos(v/λ) satisfy
(39) for all v in (0, π/2), completing the proof of the lemma. Alternatively, having
obtained the eigenfunctions cos(u), cos(3u), cos(5u), . . . , we need only invoke the
theory of Fourier series to show that these form an orthogonal basis for L2(0, π/2) and
then verify that they satisfy (39) with the appropriate λ.

Corollary 3.1. The transformation T n is a compact, self-adjoint operator on
L2(0, π/2). Its eigenvalues, each of multiplicity one, are 1/(4k + 1)n (k ∈ Z), with
corresponding eigenfunctions cos((4k + 1)u).

In particular, once n ≥ 2, the sum of the eigenvalues of T n converges absolutely, so
T n is of trace class (see Dunford and Schwartz [5, XI.8.49, pp.1086–7]), and its trace
is the sum

∞∑
k=−∞

1

(4k + 1)n
= S(n) (44)

of these eigenvalues. But it is known that the trace of a trace-class operator is the
integral of its kernel over the diagonal (a continuous analog of the fact that the trace
of a matrix is the sum of its diagonal entries [5, XI.8.49(c), pp. 1086–7]). Thus the
trace S(n) of T n is given by the integral (34), i.e., by the volume of �n. So we have an
alternative proof of Theorem 1, in which the power sum (44) appears naturally, without
separating the cases of even and odd n.

For future use, we give the orthogonal expansion of an arbitrary L2 function and a
consequence of Corollary 3.1:
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Corollary 3.2. For any f in L2(0, π/2) we have

f =
∞∑

k=−∞
fk cos((4k + 1)u), (45)

with coefficients fk given by

4

π

∫ π/2

0
f (u) cos((4k + 1)u) du. (46)

For each n ≥ 0 we have

∫ π/2

0
f (u) (T n f )(u) du = π

4

∞∑
k=−∞

f 2
k

(4k + 1)n
. (47)

Proof. Formulas (45) and (46) follow as usual from the orthogonality of the eigen-
functions cos((4k + 1)u) and the fact that

∫ π/2

0
cos2((4k + 1)u) du = π

4
(48)

for each integer k. This, together with the eigenvalues of T n given in Corollary 3.1,
yields (47) as well.

4. ALTERNATING PERMUTATIONS, S(n), AND Πn. We shall see that S(n)

is closely related with the enumeration of alternating (also known as “up-down” or
“zig-zag”) permutations of n letters. A permutation σ of

[n] := {1, 2, . . . , n} (49)

is said to be alternating if

σ(1) < σ(2) > σ(3) < σ(4) > < · · · >
<σ(n) (50)

(the last inequality is < or > for n even and odd, respectively); such σ is cyclically
alternating if, in addition, n is even and σ(n) > σ(1) [10].2 Let A(n) be the num-
ber of alternating permutations of [n], and A0(n) the number of cyclically alternating
permutations when n is even. We tabulate these numbers for n ≤ 10:

n 1 2 3 4 5 6 7 8 9 10

A(n) 1 1 2 5 16 61 272 1385 7936 50521
A0(n) 1 4 48 1088 39680

The table suggests a relationship between A(2m − 1) and A0(2m), which we prove
next.

2The term “permutation alternée” was introduced by André [1] (see also [2]) in the paper that first in-
troduced alternating permutations and related their enumeration to the power series for sec x and tan x . This
notion should not be confused with the “alternating group” of even permutations of [n].
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Lemma 4. For all m = 1, 2, 3, . . . , the counts A(2m − 1) and A0(2m) are related by

A0(2m) = m A(2m − 1). (51)

Proof. We construct a 1-to-m correspondence between alternating permutations of
[2m − 1] and cyclically alternating permutations of [2m]. Note first that, if σ is a
cyclically alternating permutation of [2m], then so is(

σ(2 j + 1), σ (2 j + 2), . . . , σ (2 j + 2m − 1)
) = σ ◦ τ 2 j (52)

for each j = 0, 1, 2, . . . , m − 1, where τ is the 2m-cycle sending each i to i + 1 (and
as usual i + 1 and 2 j + 1, 2 j + 2, . . . are taken mod 2m). This partitions the cycli-
cally alternating permutations into sets of m. Now each of these sets contains a unique
permutation σ0 taking 2m to 2m. But such σ0 correspond bijectively to the alternating
permutations (σ0(1), (σ0(2), . . . , σ0(2m − 1)) of [2m − 1]. This establishes the iden-
tity (51).

The number A0(n) of cyclically alternating permutations of [n] is given by the for-
mula

A0(n) = 2n−1(2n − 1)|Bn| (53)

(see, for instance, Stanley [10]). By (9), this is equivalent to

A0(n) =
(

2

π

)n

n! S(n). (54)

The identity (53) is usually obtained by identifying the exponential generating func-
tions, not via S(n) and the zeta function. But A0(n) can also be expressed directly in
terms of the volume of the polytope �n (or rather in terms of the scaled polytope (29)),
thus leading to (54) and showing that the appearance of S(n) there is not merely acci-
dental.

A general principle for enumerating permutations [10] shows that the number of
cyclically alternating permutations of [n] is n! times the volume in the unit cube (0, 1)n

of the region P0(n) determined by the inequalities

t1 < t2 > t3 < t4 > · · · < tn > t1. (55)

(Recall that “cyclically alternating permutations of [n]” can exist only if n is even.)
This is because P0(n) is the order polytope associated to the partial order ≺0 on [n] in
which

1 ≺0 2 �0 3 ≺0 4 �0 · · · ≺0 n �0 1 (56)

and all other pairs in [n] are incomparable. In general, the (open) order polytope as-
sociated by Stanley to a partial order ≺ on [n] is the set of all (t1, . . . , tn) in the unit
cube such that ti < t j whenever i ≺ j ; and the volume of this polytope is an integer
multiple of 1/n!. Specifically, we cite Corollary 4.2 from [10].

Lemma 5. The volume of the order polytope associated to any partial order ≺ on [n]
is 1/n! times the number of permutations σ of [n] such that σ(i) < σ( j) whenever
i ≺ j .
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In other words, the volume is 1/n! times the number of extensions of ≺ to a linear
order on [n]. To see that this is equivalent to the assertion of the lemma, consider that
there are n! linear orders on [n], each determined by the permutation of [n] that sends
the the minimal element to 1, the next one to 2, and so on until the maximal element
is sent to n. This order extends ≺ if and only if σ(i) < σ( j) whenever i ≺ j .

Lemma 5 appears in [10] as part of a corollary to a much more powerful theorem.
For our purposes the following direct proof suffices.

Proof. Decompose the closed unit n-cube into n! simplices, one for each permuta-
tion σ of [n], so that the simplex indexed by σ consists of all t1, . . . , tn in [0, 1] with

tσ−1(1) ≤ tσ−1(2) ≤ · · · ≤ tσ−1(n). (57)

Each of these simplices has the same volume; hence this common volume is 1/n!. The
union of those simplices indexed by σ satisfying σ(i) < σ( j) whenever i ≺ j is the
closure of the order polytope of ≺. Thus the volume of this polytope is 1/n! times
the number of such σ .

Equivalently, and perhaps more intuitively: the volume of the order polytope is the
probability that n independent variables ti drawn uniformly at random from [0, 1] sat-
isfy ti < t j whenever i ≺ j , i.e., that their linear order inherited from [0, 1] extends the
partial order ≺. This, however, is the same as the probability that a randomly chosen
permutation of [n] yields a partial order extending ≺ , because (excepting the negli-
gible case that some ti coincide) the order of the ti determines a permutation, and all
permutations are equally likely.

We return now to the order polytope (55) associated to ≺0. The affine change of
variables

ui =
{ ti , i odd;

1 − ti , i even,
(58)

which has constant Jacobian determinant (−1)n/2, transforms this region (55) to the
familiar polytope vi > 0, vi + vi+1 < 1,3 whose volume we have already identified
with (2/π)n S(n) in two different ways. Thus

A0(n) =
(

2

π

)n

n! S(n) (59)

for all even n.
By Lemma 4, we also recover a formula for A(2m − 1):

A(2m − 1) = A0(2m)

m
= 22m−1(22m − 1)

m
|B2m | = 22m+1

π2m
(2m − 1)! S(2m). (60)

3Richard Stanley notes that this polytope (29) is also a special case of a construction from his paper [10]: it
is the chain polytope associated with the same partial order ≺0. The result in [10] that contains our Lemma 4
asserts that the chain and order polytopes associated with any partial order have the same volume. In general
this is proved by a piecewise linear bijection, but for partial orders of “rank 1” (i.e., for which there are no
distinct a, b, c such that a � b � c), the polytopes are equivalent by a single affine chain of variables. The
partial order ≺0 has rank 1, as does the partial order we define next in (62) to deal with A(n). Stanley’s affine
change of variables for these two partial orders is just our (58); thus this part of our argument is again a simple
special case of his.
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In other words,

A(n) = 2n+2

πn+1
n! S(n + 1) (61)

when n is odd. We next prove this formula directly for all n, whether even or odd.

Theorem 4. The number A(n) of alternating permutations of [n] is given by (61) for
every positive integer n.

Proof. Let ≺ be the partial order on [n] in which

1 ≺ 2 � 3 ≺ 4 �≺ · · · �≺n (62)

and all other pairs in [n] are incomparable. Then A(n) is the number of permutations σ

of [n] such that σ(i) < σ( j) whenever i ≺ j . Accordingly, A(n) is n! times the vol-
ume of the associated order polytope

{(t1, t2, . . . , tn) ∈ Rn : 0 < ti < 1, t1 < t2 > t3 < t4 > < · · · >
< tn}. (63)

The change of variables (58) transforms (63) into the region

{(v1, v2, . . . , vn) ∈ Rn : vi > 0, vi + vi+1 < 1 (1 ≤ i ≤ n − 1)}. (64)

(N.B. This looks like the familiar (2/π)�n , but in fact strictly contains (2/π)�n,
because we do not impose the condition vn + v1 < 1.) On the other hand, under the
further linear change of variable vi = (2/π)ui , the region (64) maps to

{(u1, u2, . . . , un) ∈ Rn : ui > 0, ui + ui+1 < π/2 (1 ≤ i ≤ n − 1)}, (65)

a region whose volume is (π/2)n times larger than that of (64). Thus the volume of
(64) is

(
2

π

)n ∫ π/2

0
· · ·
∫ π/2

0

n−1∏
i=1

K1(ui , ui+1) du1 · · · dun

=
(

2

π

)n ∫ π/2

0
· · ·
∫ π/2

0
Kn−1(u1, un) du1 · · · dun. (66)

Now by (38) the function

un �→
∫ π/2

0
Kn−1(u1, un) du1 (67)

in L2(0, π/2) is the image under T n−1 of the constant function 1. Thus the integral
(66) is (2/π)n times the inner product of 1 and T n−11 in L2(0, π/2). By (47) in Corol-
lary 3.2, this inner product is

π

4

∞∑
k=−∞

c2
k

(4k + 1)n−1
, (68)
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where ck is the coefficient of cos((4k + 1)u) in the orthogonal expansion of 1. Using
(46) of the same corollary, we calculate

ck = 4

π

∫ π/2

0
cos((4k + 1)u) du = 4

π

sin((4k + 1)u)

4k + 1

∣∣∣∣
π/2

0

= 4

π

1

4k + 1
. (69)

Therefore,

An

n! =
(

2

π

)n ( 4

π

)
S(n + 1), (70)

from which (61) follows.

Remark. Some time before publishing [10], Stanley proposed the computation of the
volume of the region in (65) as a MONTHLY problem [9]. The published solution [8]
used generating functions to express the volume in terms of En or Bn+1. But the “Edi-
tor’s Comments” at the end of the solution include the note: “Several solvers observed
that [n! times the volume of the polytope] is the number of zig-zag permutations of
1, 2, . . . , n, . . . .” This suggests that, even if the elementary proof of Lemma 4 is not
yet in the literature, it is obvious enough that these solvers at least implicitly recog-
nized it, and applied it together with the change of variables (58) to relate the polytope
volume to An .

Theorem 2, together with Lemma 4, yields the following amusing corollary: as
m → ∞,

A0(2m)

A(2m)
= m

A(2m − 1)

A(2m)
= π

4

S(2m)

S(2m + 1)
→ π

4
. (71)

That is, a randomly chosen alternating permutation σ of [2m] is cyclically alternating
with probability approaching π/4 ! The convergence is quite rapid, with error falling as
a multiple of 3−2m ; for instance, for m = 5 we already find 39680/50521 ≈ 0.785416,
while π/4 ≈ 0.785398.

When n is even, say n = 2m, the formula (61) simplifies to

A(2m) = (−1)m E2m = |E2m| (72)

by (10). We have thus given a combinatorial interpretation of the positive integer
(−1)m E2m , as promised in the introduction: it is the number of alternating permu-
tations of [2m].
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