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"How many spheres of radius r may simultaneously be tangent to a fixed sphere of 
the same radius?" This question goes back at least to the year 1694, when it was 
considered by Isaac Newton and his contemporary David Gregory. Johann Kepler had 
already shown in 1611 [8] that twelve outer spheres could be arranged around a 
central sphere, and now Gregory claimed that a thirteenth could be added. Newton 
disagreed, but neither man proved his claim, and it was not until 1874 that a proof 
was found, substantiating Newton's conjecture. (R. Hoppe's original proof is described 
in [2]; more recently, proofs have been found by Giinter [7] and by Schiitte and van 
der Waerden [10]. Perhaps the most elegant proof known is the one given by John 
Leech [9]. For a history of the problem, see [6].) 

It's worth noting that the 4-dimensional version of this problem is still unsolved; no 
one knows how to arrange more than twenty-four hyperspheres around a central 
hypersphere, but neither has it been shown that a twenty-fifth cannot be added. In 
higher dimensions the situation is even less well understood, with the remarkable 
exception of dimensions 8 and 24, for which the maximum contact numbers are 
precisely known [1]. 

The source of difficulty in the original Gregory-Newton problem (and the reason it 
took 180 years to be solved) is that there is almost room for a thirteenth sphere; the 
twelve spheres of Kepler can be pushed and pulled in all sorts of ways, and it's 
credible that some sort of fiddling could create a space big enough to accommodate an 
extra sphere. 

This note will deal with a related question, in the spirit of Erno Rubik: if we label 
the twelve spheres and roll them over the surface of the inner sphere at will, what 
permutations are achievable? The answer is surprising, and the proof requires only 
the rudiments of analytic geometry and group theory. One fringe benefit of this 
enterprise is that it leads to a natural coordinatization of the vertices of the regular 
icosahedron. 

An equivalent formulation of the problem is gotten by considering only the centers 
of the spheres: we imagine twelve vertices, free to move on a sphere of fixed radius 
R = 2r about a fixed origin but subject to the constraint that no two vertices may ever 
be closer together than R. We will find it convenient to switch back and forth 
between the two formulations. For definiteness, put r = 1, 1 = 1. 

To begin, we must prescribe an initial configuration for the outer spheres. One 
possibility that springs to mind is to arrange the twelve vertices to form a regular 
icosahedron. As we'll see, any two distinct vertices of the icosahedron inscribed in the 
unit sphere are at least 
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units apart, so not only is this configuration possible, but no two of the outer spheres 
touch (see FIGURE 1). It is clear that any rigid motion of the icosahedron about its 
center can be achieved by a joint motion of the spheres; and so, since the rotational 
symmetries of the icosahedron comprise the alternating group A5 [5, pp. 49-50], the 
number of icosahedral arrangements of the spheres accessible from this starting 
configuration is at least IA51 = 60. 

FIGURE 1 

But there is another way of placing the twelve spheres around one, and moreover, 
this arrangement extends to a sphere-packing of three-space. Let the lattice A consist 
of all points (a/X;, b/xl2, c/l42) with a, b, c integers and a + b + c even. Then no 
two points of A are closer than 1, and so the points of A may serve as the centers of 
non-overlapping spheres of radius 2 (see FIGURE 2). This is the cubic close-packing 
discovered by Kepler. Each vertex has twelve nearest neighbors, and in particular the 
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neighbors of (0, 0, 0) are 

(+11/2, ? 11/2, ?) 

(1C + , O, + 11/2) 

(O, ? 11/2, ? 112) . 

These vertices form a cuboctahedron (see FIGURE 3(a)). Its rotational symmetry 
group, like that of the cube and the octahedron, is S4; one may concretely picture the 
S4 action as permuting the four pairs of antipodal triangular faces. Hence at least 
IS4 -24 cuboctahedral arrangements are accessible from the initial position. The S4 
action on the vertices, like the A5 action, performs 'only even permutations on the 
twelve vertices/spheres. 

D 

FIGURE 3(a) 

J 

Now comes a pleasant surprise: the two arrangements of the twelve spheres 
(icosahedral and cuboctahedral) may be deformed into one another! This means that 
in our Rubik-like manipulations, we can avail ourselves of both the A5 and S4 
symmetries. 

To deform the cuboctahedron into the icosahedron, move each point along a great 
circle (as indicated in FIGURE 3(a) for selected points) so that each square face of the 
cuboctahedron becomes a pair of triangular faces of the icosahedron. For instance, the 
points 

A-(- ,o, fl 
and 

c= (,o, A) 

both move toward (0, 0, 1), while the point 

B = (,-0 , ?) 
moves toward (0, - 1,0). (This is a variation on the construction given in [5, pp. 
51-53].) We may parametrize this joint motion with a variable t, whose initial value is 
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A(t) = (-cos t,O,sin t) 

B(t) = (O, -sin t,cos t) 

C(t) = (cos t,O,sin t) 

and so on. The distance between A(t) and B(t) is 

-cos2t + sin2t + (sin t - cos t 2-sin 2t, 

which increases from 1 to F as t runs from x/4 to ff/2. The distance between A(t) 
and C(t) is 

2 cos t, 

which decreases from F2 to 0 as t approaches 7T/2. Let us intervene and stop the 
process when the lengths of AB and AC are equal, which occurs at some unique time 
t =0, and write A' =A(O), B' B(O), etc. The symmetry of the procedure now 
guarantees that B'C' = A'B'- B'F' - F'A', so that triangles A'B'C' and A'B'F' are 
congruent equilateral triangles. In fact, the vertices A', .., L' form twenty such 
triangles on the sphere of radius R, and this implies that they are arranged icosahe- 
drally, with labelings as shown in FIGURE 3(b). 

A , 

FCf G 11 F IGURE 3(b) 

(By equating 

(A'B')2 = 2 -sin2O 

and 

(A'C )2 = 4cos20 = 2 + 2cos2O 

one obtains 

-1 ~~~2 
cos2O =- and sin 2 = 

C C5 
so that the common length of the segments is 

A2- 2/U 

This is the side-length of an icosahedron of circumradius 1. Also, the distance between 
A' and F' is 2 sin 0, whose ratio to A'C' = A'B' = 2 cos 0 is tan 0; this may easily be 
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shown to equal the golden ratio (1 + VU)/2. Hence A'I'K'C' is a golden rectangle, as 
is any rectangle formed by two diagonals of the icosahedron.) 

Since it does not matter whether our initial configuration is icosahedral or cubocta- 
hedral, we may as well assume the latter. Let G be the group of permutations of the 
twelve spheres that can be achieved by the operations of rotating the cuboctahedron, 
switching between cuboctahedral and icosahedral formation, and rotating the icosa- 
hedron, in all combinations. (We don't claim that G contains all the achievable 
permutations.) Note that points which were antipodal at the start remain antipodal 
throughout. Also note that since G contains copies of both S4 and A5, its order is at 
least 120. 

If we rotate the labeled icosahedron of FIGURE 3(b) by 72 degrees clockwise about 
its axis A'K', the points are permuted by 

(A')(B'C'D'E'F')(G'H'L'I'J')(K') 

which corresponds to the permutation 

y = (A)(BCDEF)(GHLIJ)(K) 

of the vertices of the cuboctahedron. On the other hand, if we rotate the cuboc- 
tahedron by 90 degrees clockwise about the vertical axis, the points are permuted by 

a = (ABCD)(EFGH)(IJKL). 

Since each of these permutations belongs to G, so does their product 

a-y = (ABDFC)(EG)(HIKLJ). 

But (ay)5 = the two-cycle (E G). Hence, in general, any two antipodal points may be 
exchanged without affecting the final position of the other ten. 

The preceding observation tells us that the group G is a wreath product of the form 
26. H, where H is a group acting on pairs of antipodal points. (For an explanation of 
this notation, see [3].) That is, every element of G is uniquely determined by its action 
on the six principal diagonals of the polyhedron, with a choice of orientation; if you 
like, think of H as a permutation group acting on six coins, and 26. H as the set of 
actions one gets by allowing not only permutations taken from H but also arbitrary 
flips. Let A, B, etc., denote the diagonals AK, BL, etc. Then the image of -y under 
the natural homomorphism from G to H is 

y =(A)(BC DEF 

and similarly, the image of a is 

a = (A B C D F). 

To find generators of the group H, we need to know the generators of G. a and y 
aren't enough, but we'll only need one more. The S4 subgroup of G is generated by 

a = (ABCD)(EFGH)(IJKL) 

(90 degree rotation about the axis through face A B CD) and 

/3= (ABF)(CJE)(DGI)(HKL) 

(120 degree rotation about the axis through face ABF), while the A5 subgroup is 
generated by 
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y= (A)(BCDEF)(GHLIJ)(K) 

(72 degree rotation about axis A'K') and 

8 = (ABF)(CJE)(DGI)(HKL) = 

(120 degree rotation about the axis through face A'B'F'). The images of those 
elements in H are 

a = (A BCD)(EF) 

: A BF)(C DE ) 
'y= (A) BC DEF ) 

and they must generate H. 
Since all three permutations are even, H must be a subgroup of the alternating 

group A6, and in fact H is A6 itself. We prove this by successively examining 
stabilizer subgroups: 

1. The action of H on A, B, C, D, E, F is clearly transitive, so all of its 1-point 
stabilizer subgroups are isomorphic, and have order JH1/6. 

2. y (which belongs to the stabilizer of A) acts transitively on B, C, D, E, F, so 
that all 2-point stabilizer subgroups are isomorphic, and have order {H1/6 5. 

3. Since 

xX2 (A C)BD)E) (F) 

and 

3a:= (A D)(BC)(E)(F) 

(which belong to the stabilizer of E, F) generate a transitive action on A, B, C, D, all 
the 3-point stabilizer subgroups of H are isomorphic, and have order JH1/6 . 5 4. 

4. But since 

ay =A BE)(C)(D)(F) 

belongs to the stabilizer of C, D, F, this 3-point stabilizer must contain the cyclic 
group A3. In fact, it must be A3 itself (S3 is impossible, since xx, /3, y are all even). 
Hence I H 1/6 - 5 . 4 = 3, so that IH = 360 and H = A6, as claimed. 

We have now shown that the S4 and A5 symmetry groups (of the cuboctahedron 
and icosahedron, respectively) combine to give a group G = 26. A6 of order 26. (6!/2) 
= 23,040. But might there be even more feasible permutations of the twelve spheres? 

Here's an idea, inspired by the twisting operation one performs on a Rubik's cube. 
Perhaps one can pull six of the spheres tightly to one side (or "hemisphere") of the 
central sphere, and six to the other side, in such a way that the two groups can be 
twisted past one another. Specifically, we arrange two of the twelve spheres antipod- 
ally, and around each we cluster five spheres as snugly as possible, forming two 
"caps" (top view shown in FIGURE 4(a)). The question is, can the caps be twisted past 
each other? 

This is equivalent to asking whether the sphere in the middle of such a cap (at the 
" north pole", as it were) can simultaneously touch all five surrounding spheres. For, if 
such perfectly snug caps are possible, then six spheres can be restricted to the 
northern hemisphere, and the five that border on the "equator" will graze but not 
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block the other six spheres, which are all restricted to the southern hemisphere (see 
FIGURE 4(b)). So now we need only check whether five points, all with latitude 30 
degrees North on a sphere of radius R = 1, can all be at least distance 1 from each 
other. (Or equivalently: Can five non-overlapping regular tetrahedra share an edge? 
To see the connection, let the common edge be the segment joining the origin to the 
north pole.) 

FIGURE 4(a) FIGURE 4(b) 

But this is simple trigonometry: A regular pentagon inscribed in a circle of radius 1 
has side 

2 - 2cos-2-- = 2 

so one inscribed in a latitude circle of radius V' /2 has side 

2 2 = 1.02. 

This is just barely bigger than 1, but it's enough to ensure that the caps can indeed be 
made snug and then twisted past each other. 

The "twisting") move we have described is a 5-cycle that may be performed on any 
5 vertices of the icosahedron that form a regular pentagon. Since such permutations 
are even, the group they generate must lie in A12' To see what this group is, consider 
the situation shown in FIGURE 5(a), with two pentagons intersecting in two points. Let 

a = (ABGHD) 

and 

8= (BFIKG). 

Then 

aX-lp-lap= (AB)(GK). 

By conjugating this permutation through elements of the 2-point stabilizer of A, B, 
one may show that every permutation (AB)(XY) (with X, Y=AA, B) can be 
achieved. (Look at FIGURE 5(b). Take a pencil and mark those edges to which edge 
GK can be moved by rotating a pentagon that doesn't contain A or B; it will be seen 
that all edges XY not involving A and B eventually get marked, and the moves that 
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A F 

H K 

FIGURE 5(a) 

A 

K 

B 

FIGURE 5(b) 

carry edge GK to the respective edges X Y give precisely the conjugations we need to 
obtain all permutations of the form (A B)(X Y).) The same sort of argument now 
shows that in fact any permutation of the shape (VW)(X Y) can be achieved. Since 
A12 is simple, the normal subgroup generated by these pairs of transpositions must be 
A12 itself. Hence, the twisting moves allow any even permutation on the twelve 
spheres to be performed. 

What happens if we now allow both the cuboctahedron-to-icosahedron maneuver 
and the twist operation? Recall that the group G = 26H contains two-cycles that 
exchange antipodes. Even one such two cycle, if adjoined to the group A12, suffices to 
generate the fuRl symmetric group S12. (Alternatively, one can regard G as primary, 
and adjoin to it a few 5-cycles so that every pair of spheres can be made antipodal; for 
we already know how to exchange antipodes at will.) In either case, we see that every 
permutation of the twelve spheres is feasible, and the "Rubik group" of Kepler's 
spheres is S12' 

Some concluding remarks: 
1. It may interest the reader to know that a related problem leads not to S12 but to 

the Mathieu group M12, one of the sporadic finite simple groups; see [4]. 
2. There are many more possible arrangements of the twelve spheres than the 

cuboctahedral and icosahedral formations, yet the theorem proved above says nothing 
about twelve-spheres-around-one in general position. It seems likely that every posi- 
tion can be reached from every other; to prove this, it would suffice to show that every 
configuration can be "tidied" into icosahedral formation. Perhaps some reader will be 
able to find a proof. 
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3. If anyone built a working model of " Kepler's Spheres," he or she would 
probably give the outer spheres slightly smaller radius than the inner sphere to 
prevent jamming, since both the icosahedron-to-cuboctahedron maneuver and the 
twist operation cause spheres to graze one another. This suggests the following 
question: if the outer spheres in an icosahedral arrangement were given slightly larger 
radius than the inner sphere, would any permutations be possible aside from the 
"trivial" ones obtained from A 5? Perhaps engineers have already developed a theory 
for handling such problems of constrained motion in space-if so, the author would 
be glad to hear of it. 

The problem addressed in this paper and the solution given here were developed jointly by Eugenio 
Calabi, John Conway and myself during Conway's lectures on "Games, Groups, Lattices, and Loops" at the 
University of Pennsylvania. During the writing of this article, I was supported by a National Science 
Foundation Graduate Fellowship. 
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A Characterization of Infinite Dimension 
for Vector Spaces 

HENRY HEATHERLY 
University of Southwestern Louisiana 

Lafayette, LA 70504 

Several different arguments have been used to establish that a finite-dimensional 
vector space over the real or complex number fields cannot have a pair of linear 
transformations whose commutator is the identity; i.e., [A, B] = AB-BA = 1 is 
impossible for such spaces. The oldest argument is implicit in the comments of Max 
Born and Pacual Jordan in their seminal work on a matrix version of quantum 
mechanics [1]. They noted that for finite matrices (over the complex numbers), 
applying the trace function to the equation 

PQ- QP= h 1 2 7i1 
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