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1. Introduction. Few puzzles have captured the public fancy the way Rubik's cube has. The 
beauty of the puzzle, beyond its mechanical ingenuity and elegance and colorful appearance, lies 
in the contrast between the sheer impossibility of solving the cube by chance (better to bet on the 
proverbial snowball) and the existence of algorithms simple enough that many children master 
and even discover them. The value of the cube for the teacher of mathematics is that it provides a 
setting that is interesting in its own right and in which most of the important notions of 
elementary group theory are illustrated. The purpose of this article is two-fold. First we describe a 
uniform method-The Method-for solving any "Rubik's-type puzzle" (defined in the next 
section). As is the case with all descriptions of solution algorithms, we provide a list of basic 
moves, outline how to use them to unscramble a puzzle, and assure the reader that they will 
always suffice. Despite its generality, The Method is conceptually very simple, illustrating the fact 
that generalization often leads to simplification. The second purpose is to analyse the "Rubik's 
Group ." whose elements are the various states of the puzzle and whose group operation 
describes composition of moves and to prove the adequacy of The Method. The analysis will 
involve an excursion into group theory in which permutation groups, direct sums, homomor- 
phisms and exact sequences appear naturally and which leads to an explicit description of ' as a 
semi-direct product of easily described factors. A by-product of this structure is a notation scheme 
that handles composition easily. We also discover that the octahedral puzzle is unique among 
Rubik's type puzzles in that edge flipping is impossible. In order to make the paper as accessible 
as possible to beginning students, we have collected in Appendix 1 a list of definitions of terms 
that might not be introduced in a first course in algebra. The first use of each term appears in 
italics. 

This paper is an outgrowth of a senior research project by Gold under the direction of Turner. 
It began with a study of the Tetrahedron {Pyraminx} and the Cube; as more puzzles came on the 
market, namely the Impossiball, Alexander's Star and the Megaminx (a dodecahedron), the scope 
of the project widened to consideration of the general puzzle, resulting in the current analysis. 

2. The Method. In this section we describe The Method-an algorithm that will solve any 
Rubik type puzzle. A Rubik type puzzle is a regular solid (see Appendix) composed of pieces 
corresponding to vertices, edges and faces of the solid and for which a basic move is the rotation 
of a face, including edge and vertex pieces. This gives 5 possibilities corresponding to the 5 regular 
solids, which are listed in Table 1 of the next section. The theory also applies to any puzzle whose 
moves are turns about a vertex-e.g., Alexander's star or the Impossiball-by the trick of 
dualization. Inside any regular solid is another whose vertices are the centers of the original faces 
(so a cube contains a smaller octahedron) and vertex turns on the larger correspond to face turns 
on the smaller. To solve a vertex turning puzzle, imagine the dual face turning puzzle inside and 
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618 EDWARD C. TURNER AND KAREN F. GOLD [November 

solve it. This gives another four puzzles (the dual of the tetrahedron is the tetrahedron). Each 
puzzle has simpler versions that don't have all three types of piece: the Impossiball has only faces, 
Alexander's Star only edges and the Rubik's Pocket Cube only vertices. Rubik's Revenge and 
obvious more general n X n X n versions are not Rubik type puzzles in our sense. They admit 
another type of move not equivalent to any combination of face moves-the "slice" moves that 
turn a plane of pieces parallel to face. 

For each puzzle, consider one edge joining vertices a and b together with the adjacent edges on 
the two faces that meet at that edge, as indicated below. 

a 
a 

b 
b b 

Tetrahedron Cube Octahedron 

Dodecahedron Icosahedron 

We denote this schematically as shown in Fig. 1, with the understanding that c = d and e = f 
if faces are triangles and that there are other edges on top and bottom if the vertex degree is more 
than 3. 

c e 

Small letters label vertices, 
L 2 R numbers edges, 

and capitals face terms. 

4/ :\~~5 
4 b\ 

d f 

FIG. 1 

We denote by L and R the clockwise rotations of the faces labeled L and R and use the 
convention that moves in a sequence are applied from left to right. After some experimentation 
with short sequences of basic moves, one discovers the usefulness of the commutator (see 
Appendix) of L and R- 1, which has the effect shown in Fig. 2. 

C is the basic building block of the solution which proceeds in four steps. The face pieces are in 
solved position by the nature of the puzzle and serve as references in placing vertex and edge 
pieces. 
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1985] RUBIK S GROUPS 619 

Effect of C = [L,R] - LR-'L-'R 

Vertex effect 
0 

c >._-1/3__ 

/ \ Rotation is referenced to 
direct parallel translation 

L + 6 1 + 6 R with positive fractions 
denoting clockwise 

b ,' rotations. 

b 

d f 

Edge effect 

1 
X 

k / The effect of C on 
L IN _ R orientation is to preserve 

the small transverse arrows. 

FIG. 2 

Step 1. Place the edges 

C is a 3-cycle on edges. By conjugation we can obtain any 3-cycle of edges; for let T be any 
sequence that moves 1 to 4, 2 to 5 and 3 to 6 (such T always exists) -then T-1 CT cycles 4, 5 and 
6. Since 3-cycles generate the alternating group, we can manage any even permutation of the 
edges. On all puzzles except the Cube, only even permutations are possible and we are done. On 
the Cube, if an odd edge permutation is desired, one basic move-inducing an odd edge 
permutation-converts it to an even permutation. Thus C and its conjugates (see Appendix) 
suffice to place all the edge pieces correctly. 

Step 2. Orient the edges 

Flipping edges in pairs is particularly easy on puzzles with vertex degree 3: let p denote 
clockwise rotation of the puzzle 1/3 of a turn about the diameter through vertex a. (Of course one 
never actually does the p-1. This is the only time we use a rigid motion of the entire puzzle-we 
do so only for ease of description.) As the number of flipped edge pieces is always even, this move 
suffices to right them all. (See figure at the top of p. 620.) 
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620 EDWARD C. TURNER AND KAREN F. GOLD [November 

Effect of [C, p ] =Cp C-1p-' on edges 

flip flip 

Edge flipping on the octahedron and icosahedron is complicated by the presence of other edges 
on top; we show in Lemma 2 of Section 3 that edge flipping on the octahedron is in fact 
impossible. A double edge flipper for the dodecahedron is shown below. (See Fig. 3.) 

Dodecahedron 

T 

[L, R-1]Ti-jT-1[R-l,TR]TTI. 

L R 

FIG. 3 

After steps 1 and 2 have been completed, the edges are in solved position. The remaining steps 
leave them there. 

Step 3. Place the vertices 

We will see that once edges are placed, the vertex permutation must be even and that it suffices 
to have a move that cycles 3 vertices without effecting the edges. Let B denote clockwise rotation 
of the bottom face-the one across edge bd from L in Fig. 1. Then [C, B] permutes vertices by 
(abd) and has no effect on edges. 

Step 4. Orient the vertices 

We will see that it suffices to rotate two vertices in opposite directions. The move [C2, B] 
rotates b clockwise and d counterclockwise (as viewed from outside) and does not affect edges. 

In the next two sections we will see that this algorithm will restore any scrambled puzzle to its 
original-often called pristine-state. It is surely inefficient in terms of time compared to others, 
but is conceptually quite simple and simple in practice in that very few conjugates of basic moves 
are necessary. In fact, the cube can be solved using conjugates only in Step 1. Furthermore, the list 
of basic moves is very short and easily remembered: 

C [C,P] [C,B] [C2 B] 
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1985] RUBIK S GROUPS 621 

(except for the exotic double edge flipper). 
On puzzles lacking edges (like the Rubik's Pocket Cube and the Impossiball) steps 1 and 2 are 

unnecessary and on those lacking vertices (like Alexander's Star) steps 3 and 4 are unnecessary. 
There is, however, a complicating factor when faces are absent, as they are on all the above-it is 
much harder to decide what moves to make without reference face pieces. One learns from 
practice how to deal with this problem and we will ignore it. 

3. The Rubik's group M. With each regular solid is associated a Rubik's type puzzle and a 
Rubik's group, defined below. Table 1 gives the appropriate numbers for each puzzle and the last 
row sets our general notation. 

face vertex # of # of # of 
Regular Solid Group degree degree vertices edges faces 

Tetrahedron _F 3 3 4 6 4 
Cube ' 4 3 8 12 6 
Octahedron d 3 4 6 12 8 
Dodecahedron 9 5 3 20 30 12 
Icosahedron ' 3 5 12 30 20 
Generic M p q V E F 

TABLE 1 

We imagine the central mechanism of the puzzle as fixed, so the face pieces don't move, and 
refer to the F rotations of a face through 2iT/p radians clockwise as "basic moves". An element 
of the group . is a sequence of basic moves, where it is understood that two sequences represent 
the same move if their effect on the puzzle is the same. Otherwise stated, R is the quotient of the 
free group (see Appendix) generated by the basic moves by the normal subgroup of expressions 
that leave all vertex and edge pieces in their original positions and orientations. 

We analyse R by separating the position effect from the orientation effect and the vertex effect 
from the edge effect. Ignoring orientations, each element of R permutes the edges and vertices, 
defining a map pos (for position) 

pos 
-- SE X SV, 

where Sn is the permutation group on n letters. We denote the kernel of pos by , the position 
fixed subgroup of moves that do not move pieces from their original positions and the image of 
pos by E:. Thus by definition we have an exact sequence (see Appendix) 

i pos 
1 --* J- 

1, 

where i denotes inclusion. 
The remainder of this section is devoted to identifying F and E:-the analysis of R is 

completed in the next section with a description of how Y and , interact. 

LEMMA 1. 
(i) If R ' ,then E=AEXAV. 
(ii) If 9 = X, then E = {(u, ,I)Ia and It are both even or both odd}. 

LEMMA 2. There are exact sequences: 
(i) If -q *L 67 

fXr E v Sum 
D 2 ez2e EDZq- Z2xzq-o, 

where 
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622 EDWARD C. TURNER AND KAREN F. GOLD [November 

E V 

Sum(( f, . 9 E ( rl - 0,r)) ?iS5,r 

(ii) If ! = (5), 

r Sum 
0ED Z 2 _*Z 2 ?_ 

This is clearly a split short exact sequence (see Appendix), so this implies that Y is isomorphic 
to 

E-1 V-1 

E Z2 G E Zq. 
1 1 

The splitting is not canonical (see Appendix), however, and it is more natural to think of Y as a 
subgroup of ( EZ2 (D ( Zq. 

Proof of Lemma 1. In case (i), the face degree p is odd, so that each basic move induces an 
even permutation on both edges and faces: thus ? C AE X AV. AE is generated by 3-cycles and 
Step 1 of The Method shows how to achieve any desired 3-cycle of edges. Given (a, tt) E AE X A v 
let M be a sequence of basic moves so that pos(M) = (a,t '). Now p1 is even so (/)-1tt E AV 
and Step 3 shows how to find a sequence of moves N such that pos(N) = (id, (t') -tt). Then 
pos(MN) = (a, tt), so pos is onto AE X AV. 

In case (ii), the face degree is 4, so each basic move induces an odd permutation on both edges 
and vertices-the total parity is even, so 

E c AE x AV u(SE\AE) X(SV\AV). 

The argument of case (i) shows that ? D AE X AV. If a and pt are both odd, then let B be any 
basic move and consider pos (B) * (a, tt) = (a', A). a' and p' are both even, so (a', p') E ?; 
thus (a, tt) E ? and we are done. 

Proof of Lemma 2. The key to Lemma 2 is the question, "How do you measure the flipping of 
an edge piece or the rotation of a vertex piece when it has changed position?" It may seem 
paradoxical to ask this question when we are studying the position fixed subgroup-we do so 
because we need to think of elements of Y as products of basic moves, which do move pieces. To 
answer the question, consider the graph whose vertices are the vertices of the puzzle and whose 
edges join two vertices that can be obtained one from the other by the application of a single basic 
move. (In fact, these will correspond to the edges of the puzzle, but they should be thought of in 
this way.) Now choose a tree (see Appendix) containing all the vertices, and for each edge of the 
tree, choose a basic move that moves a vertex piece along that edge. 

Shown below, in heavy lines, is a particular choice of a vertex tree for W. (See Fig. 4.) 

B 

F F 

B 

F ~~~~F 

FIG. 4 
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1985] RUBIK S GROUPS 623 

The letters are the standard Singmaster notation (see Appendix). A tree has the property that 
there is only one way to get from one vertex to another in the tree. The answer to the key 
question, for vertex pieces, is then "compare the effect of the move in question to the effect of the 
unique sequence of basic moves that moves that vertex along the tree using the labeling moves on 
each edge." This gives a standard of comparison for every possible position change. Thus, for 
example, to move the lower-back-right vertex of ' to the lower-front-right position, the standard 
sequence is B2U- 1F2. The move R, rotation clockwise of the right face, has a different 
effect-namely rotation 1/3 of a turn clockwise from the standard. 

On the general puzzle, for each move M and each vertex piece v, we have an integer rv (M) 
(mod q) that measures how many (2?T/q) radian clockwise rotations are necessary to move the 
standard reference position for that vertex move to the one given by the move in question. In a 
similar manner, consider the edge graph whose vertices are the edge pieces of the puzzle and 
whose edges join pieces that can be gotten one from the other by a single basic move. The edge 
tree is any tree in the edge graph containing all its vertices-it is not necessary to label the edges 
of this tree since the moves are uniquely determined. Shown below is a particular choice of edge 
tree for ', with labels included for convenience. (See Fig. 5.) 

FIG. 5 

Then to each move M and edge piece e we associate an integer fe (M) (mod 2) that measures 
whether or not the edge piece e is flipped relative to the standard by the given move. 

This defines a map 
fXr E V 

9t@Z2 (D Z q9 
1 1 

f(M) = (fel(M)9 ... *feE ( M)), r(M) = (rv (M), . * rVV(M)) 
The proof of Lemma 2 for R + (9 will be complete when we have verified the following claims. 

Claim 1. (f X r)1Y is a homomorphism. 

Claim 2. Image(f X r) C ker(Sum). 

Claim 3. Image(f X r) D ker(Sum) if 9 + (9. 
Note that f x r is not a homomorphism on 9 because of the movement of edges and faces: in 

fact, it is easy to check that 

rv ( M1 M2) = rv( MJ) + rl(v) ( M2), 

fe(MlM2) =fe( M) +fUl(e)(M2), 
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624 EDWARD C. TURNER AND KAREN F. GOLD [November 

where pos(Ml) = (a1, 1). 
Claim 1 is clear from equations (* *). It is also clear that Sum(f X r) = (Zefevrv) is also a 

homomorphism, so that to verify Claim 2, it is only necessary to prove that Sum(f x r)(B) = 0 
for any basic move B. Suppose B is the basic move of a face depicted below (we take p = 5 for 
ease of exposition-the argument is general; see Fig. 6). 

VI 

V5 V 

V4 V3 

FIG. 6 

The indicated vertices are the only ones moved, so 

Sum(r(B)) = r,,(B) + rv(B) + r (B) + r14(B) + r,,(B). 

But formula (* *) says that the right-hand side is r,1(B5), since B'(vl) = v1+,. Since B5 = id, 

lrv, (B)= e0 (mod 5). 
An analogous argument works on the edges. 
(REMARK. It is at this point of the argument that (* *) is essential-an arbitrary method of 

measuring twisting and flipping would be inadequate.) 
The proof of claim 3 for 9 + (9 is an exercise in the use of The Method that is left to the 

reader: it involves explicit construction of moves whose images under f x r generate ker(Sum). 
In the case of the octahedron, the above analysis holds except that: 
(a) No edge flipping is possible, so that Z2 factors measuring flips are absent; 
(b) the vertex rotations must come in units of 2(2'T/4), not 27T/4 as expected. 

Both of these can be seen by dividing the faces into two classes-say rough-textured and 
smooth-textured-so that each edge separates a rough face from a smooth one. The possibility of 
doing this is easily seen to be equivalent to even vertex degrees. Then each basic move and so all 
of (9 preserves the texturing. It follows that edge pieces can't have their rough and smooth facelets 
interchanged nor can vertex pieces be rotated by 27r/4 or 3(27r/4). 

4. The semi-direct product structure on S. 

DEFINITION. Suppose A and B are groups and 4p: B -> Aut(A) is a homomorphism. Then the 
semi-direct product of A and B on 4p is A X B as a set with the product 

(a, b)(a', b') = (acp(b)(a'), bb'). 

It is routine to check that this gives a group structure. It agrees with the direct product if and 
only if 4p is the trivial homomorphism. The following standard theorem describes three equivalent 
ways to express this notion: see for example, W. R. Scott, Group Theory, Prentice-Hall, NJ, 1964, 
p. 213. 

PROPOSITION. The following are equivalent: 
(i) There is a split short exact sequence 
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1985] RUBIK'S GROUPS 625 

a 1B 

1 --A --G G? B - 1. 
4, 

(ii) G - A X 9, B for some (p. 
(iii) G has two subgroups A and B so that 

A<3iG,AfnB={id} and G=AB. 

REMARK. Several 4's may correspond to the same (p: if 42 (b) = 4, ( b) c, where c E Centralizer 
of A, then 4', and {2 will determine the same (p. In particular, this will happen if A is abelian 
and c E A. This illustrates how (p may be canonical in a setting in which 4 is not. 

We now have the tools to complete the analysis of M. Assume edge and vertex trees, with 
labels, have been chosen and let R: ? A by 

Oc(,t) = Mg 

where pos(M) = (a,tt) and f,(M) = rp(M) = 0 for all v and e. (* *) implies that 4 is a 
homomorphism. Corresponding to 4, we have ip: ? -4 Aut(Y) by 

9p(a,t)((f, ... ,fE),(rl,. ..., rv)) = (a(f * ..*. *fE),,drl, * * * rv)) 

where a (f1,-... ,fE) and pt(rl,,... ,rv) are the sequences obtained by permuting the entries 
according to a and tt. 

THEOREM. (i) The following is a split exact sequence: 
pos 

1 -4 F -49T E -41. 

(ii) Ri Jr sx l, 
(iii) R has subgroups Y and 4() such that Yz -I, Yf 74(0) = {id} and SE = M. 

Proof. By the proposition, it suffices to prove any one of the three and to check that 4 and (p 
are correctly related. That 4 splits pos is immediate, verifying (i). The proposition says that 
(p(a, tt) (f) should "permute the edges and faces by a and pt without flips or twists- then flip 
and twist according to f-then restore edges and faces to their original positions without flips or 
twists." This is clearly just what (p(a, tt) (f) does. We point out that 4 was not canonical, 
depending on the choice of tree, but (p is canonical. 

6 9 

5 

e 2 

7 1 

FIG. 7 

The theorem gives an explicit description of R which provides a convenient notation that we 
illustrate for Rubik's Cube. We label the vertex and edge pieces of C with numbers and letters 

This content downloaded from 65.206.22.38 on Mon, 19 May 2014 12:58:51 PM
All use subject to JSTOR Terms and Conditions



626 EDWARD C. TURNER AND KAREN F. GOLD [November 

respectively as below, relative to which the permutations induced by the basic moves in 
Singmaster's notation can be easily determined. (See Fig. 7.) 

Move Value of pos 

R ((a b c d), (1 23 4)) 
L ((i f h k), (5 7 8 6)) 
U ((b e f g), (3 2 5 6)) 
D ((d l k j), (1 4 8 7)) 
F ((a j h e), (2 1 7 5)) 
B ((c g i 1), (4 3 6.8)) 

Now using the vertex and edge trees for C given in ?3, we can determine the flip or rotation 
effect on each piece moved-the effects are filled in below in the gap representing the piece move 
with the absence of a label indicating zero. 

Move Extended notation 

R ((a' b1 c1 d'), (11 21 3 41)) 
L ((il fl h1 kl), (51 71 81 6)) 
U ((b e f g), (3 2 51 61)) 
D ((d l k j), (11 41 8 71)) 
F ((a j h e), (2 1 7 5)) 
B ((c g i 1), (4 3 6 8)) 

Clearly the extended notation determines the move completely. Furthermore, composition of 
moves is described by multiplying permutations in the usual way (left one applied first) and filling 
each gap with the sum of the numbers in the gaps that give rise to it. For example 

RU = ((a1 b1 c1 d1), (11 213 41)) * ((b ef g), (3 215161)) 

= ((a' efgb1 c1 d1), (12 51613 41)(21)) 

where, e.g., 

1 2U1 5. 
R (RU) 

This notation allows us to easily draw a non-obvious conclusion. Note first that it is a relatively 
easy exercise to check that any move can be effected without using one of the six moves-The 
Method, for example, can be used to show how to obtain the effect of F from the other 5. 

CLAIM. It is not generally possible to solve the cube using only 4 of the 6 moves. 

Easy proof. If the two stationary faces are adjacent, the edge piece between them can't be 
moved, and the claim is obvious. If- not, they are opposite and we may assume, without loss of 
generality, that they are R and L. But a glance at the chart shows that this makes edge flipping 
relative to the chosen tree impossible. Q.E.D. 

5. Some group theory related to the method. In this section we describe some interesting 
subgroups of a generated by basic commutators which provide almost all the moves needed to 
solve a puzzle. We encounter two groups K and I-discussed below-that are interesting in their 
own right. Verification of statements not explicitly discussed is tedious but routine. 

DEFINITION. For group a and a degree q vertex v of the corresponding solid, v is the 
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subgroup generated by basic commutators of the form C = [L, R1] for the q pairs of adjacent 
faces containing v. For an edge e, Me is the subgroup generated by all commutators of moves of 
the two faces separated by e- namely [L, R], [L-1, R], [L, R 1] and [L1, R1]. 

The groups v 

v moves q edges and q + 1 vertices. In all cases, any edge flip, corner rotation or even edge 
permutation of these pieces possible in R is also possible in Mv the interest lies in the realizable 
vertex permutations. 

Case (i). R = , W,.9 (q = 3); Image(pos) = A3 X K. 

Case (ii). = (9 (q = 4); Image(pos) = A4 X A5. 

Case (iii). 9 = f (q = 5); Image(pos) = A5 X I. 

The groups Me 

If faces have degree p = 3 (respectively p = 4,5) then 9e moves 5 edges and 4 vertices 
(respectively 5 edges and 6 vertices). 9e has no flip or rotation effect (pick the right tree) so Me is 
isomorphic to Image(pos). 

Case (i). ! = , (9, f (p = 3) Image(pos) = A5 x K. 

Case (ii). = W,. (p = 4,5) Image(pos) = As x I. 

The Klein four group K 

K is the four element subgroup of A4 consisting of double transpositions. That double 
transpositions do not generate A4 (as they do An for n > 5) indicates why it is necessary to bring 
in the move B in Step 3 of The Method. Abstractly, K is just Z2 (D Z2. 

The icosahedral group I 

I is the subgroup of A6 generated by the two 5-cycles X = (12345) and Y = (16235) obtained 
as follows. For R, case (iii), label vertices as shown in Fig. 8 and let C1, C2,... , C. be the basic 
commutators corresponding to edges 1-6, 2-6,.. ., 5-6; then 

X = (12345) = C4Z1C1C2C4 

Y= X-1(C1C5)2X. 

4 12 

3 lXf'/ A=[L,R] 

-- 3- 3 B = [L1,R] 

C= [L, R1] 

D = [L-1,R-1] 

2 6 4 

FIG. 8 FIG. 9 

For Re, case (ii), label vertices as shown in Fig. 9; then X = CA, Y = (CD)2. 
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I is a very famous group which occurs naturally in a number of different settings and is known 
by names that reflect its various origins. It has order 60 and is the smallest example of a 
non-abelian simple group (see Appendix). We end with four descriptions of I other than as 
Image(pos). 

(1) I = <X, Y1X5 = y5 = (XY)3 = (y-1X)2 = 1). 
This notation, from combinational group theory, means that I is a group characterized by the 

fact that it has two generators X and Y satisfying the listed relations and such that any other 
relations are derivable from these together with the group axioms. Descriptions of this type, called 
presentations, are completely general and very efficient but rarely display the special characteris- 
tics that make a group interesting. 

(2) I = A5, the alternating group on 5 letters. 

This is the most familiar form of I. Here 

x= (12534), 
Y= (13452). 

In this form, it is clear that I has elements of orders 1, 2, 3 and 5 only and it's easy to count 
how many of each there are. Furthermore, all elements of order 2 are conjugate, all of order 3 
conjugate and there are two conjugacy classes of elements of order 5. 

( 3) I = PSL(2,9 5) . 

SL(2,5) = (a a,b,c,d E Zs,ad - bc=1 

PSL(2,5)= SL(2, 5) 

Here 

X= [4 1) and Y= I(_ ?) 

(4) I = the symmetry group of the icosahedron. 

In this incarnation, I is the group of rigid motions of the icosahedron-i.e., length and angle 
preserving linear maps (orthogonal maps) of R3 that carry an icosahedron centered at the origin 
back onto itself. Every orthogonal map of R3 is a rotation about some straight line through the 
origin and those in the icosahedral group are of three types depending on whether the line passes 
through the center of an edge, the center of a face or a vertex. If L and R denote adjacent faces as 
well as clockwise rotation about the line through the center of the faces, then 

X= R, 

Y= L2. 

It is a delightful coincidence that the icosahedral group appears in the analysis of the 
icosahedral puzzle. 

Appendix 1-Definitions. 

Regular Solid. A regular or Platonic solid is a convex solid bounded by planar faces each of 
which is a regular polygon with the same number of edges and such that the same number of faces 
meet at each vertex. It was known to the ancient Greeks that Table 1 lists all possibilities-a 
proof appears in Book 13 of Euclid's Elements. 

Commutator. The commutator of x and y in a group G is [x,y] = xyx 1y- . (Some authors 
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use [x, y] = x-1y-1xy.) It measures the degree to which x and y fail to commute with one 
another. 

Conjugate. In a group G, a is conjugate to b if there is a c so that a = cbc-7. Conjugate 
permutations always have the same cycle structure. 

Free group. A free group is a group free of any relations not demanded by the group axioms. A 
group free on symbols X1,... , X,, is the set of all strings-called words-of Xi's with exponents 
+ 1 in which occurrences of Xi Xi1 and Xl 1Xi have been deleted, together with 1 interpreted as 
the empty word. The multiplication is just juxtaposition followed by the above deletions. The 
discipline of combinatorial group theory views all groups as quotients of free groups as in the first 
description of I in Section 5. 

Exact sequence, short exact sequence. An exact sequence is a sequence of group homomor- 
phisms such that the image of each is the kernel of the next. A short exact sequence (the only kind 
considered in this paper) is 5 terms long, beginning and ending with trivial groups. 

a 10 
1-- A -- G -- B -- 1. 

If all groups in the sequence are abelian, denote the trivial group by 0: otherwise 1. 

Split short exact sequence. A splitting of the exact sequence above is a map 4: B -* G such that 
/3 o 14(b) = b. If G is abelian, the existence of a splitting says that G is the direct sum of A and B: 
this follows from the Proposition of ?4. 

Tree. A graph is a tree if it is connected and contains no cycles. This is the same (for finite 
graphs) as saying that the number of vertices is one more than the number of edges. An important 
property of a tree is that there is exactly one way to get from one vertex to another in the tree 
without retracing. 

Singmaster notation. Singmaster's notation-which has become standard-denotes the basic 
moves on the Rubik's cube by letters indicating the face being rotated clockwise (see Fig. 10): 

B 

R 
L F 

Lo D 

FIG. 10 

L = left U= up F= front 

R = right D = down B = back. 

(Note: L and R here should not be confused with L and R in The Method). 

Canonical. A map or construction is canonical if it does not depend on arbitrary choices. In ?3, 
p is canonical but 4 is not, since 4 depends on the trees chosen. 

Simple group. A group is simple if it has no non-trivial normal subgroups, or equivalently, no 
non-trivial quotients. 
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