TRUE GRIT IN REAL ANALYSIS

DAVID M. BRESSOUD

“When I use a word,” Humpty Dumpty said, in a rather
scornful tone, “it means just what I choose it to mean - nei-
ther more nor less.” “The question is,” said Alice, “whether
you can make words mean so many different things.” “The
question is,” sard Humpty Dumpty, “which is to be master -
that’s all.” Lewis Carroll, Through the Looking Glass [7]

The axiomatic or Euclidean description of mathematics is unmatched for
clarity and precision. It is the ideal toward which all mathematical theories
aspire, and one could assert that no theory is truly mathematical if it cannot
be so rendered. At the same time, one of the great obstacles faced by
undergraduate mathematics majors is understanding and appreciating this
style of presentation. Nowhere is this more apparent than in Real Analysis,
a course that is usually taught in the purest Euclidean format and which
students find confusing, unmotivated, and uninteresting.

The traditional course in Real Analysis proceeds from definitions to ax-
ioms to lemmas to theorems without a sense of narrative, without any grip
holds for students. It all seems so slippery. The pieces fall miraculously
into place, and most students do not know where to begin asking “why?” or
“what if?” The solution is not to abandon the axiomatic ideal, but to recog-
nize this conceptual barrier and to find find ways to overcome it. What this
course needs is grit, that sandy irritant that abrades against the student’s
intuitive understanding, forcing her to struggle with the ideas until they
become her own and she can see the purpose of precise and unambiguous
definitions that are tailored for the proofs that build upon them. This is an
account of my own search for how to put that grit into Real Analysis.

1. LAKATOS’S INSIGHT

The definitions of Real Analysis lie at the core of student difficulties. Like
Humpty Dumpty in Through the Looking Glass, mathematicians use words
to mean whatever they want, and each word means neither more nor less
than its definition. Barbara Edwards [9] has given an account of the difficul-
ties that students encounter when faced with this use of definition. She has
found two necessary conditions for students to be able to work successfully
with mathematical definitions. The first condition is that students must
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realize that mathematicians are not using definitions as they are usually en-
countered, as descriptions of entities that already exist. For mathematicians,
definitions are prescriptive. The second condition is that students must un-
derstand the ideas behind and the reasons for each particular definition, a
context in which to place it.

Imre Lakatos has a lot to say about mathematical definitions. In his
Proofs and Refutations [12] he shows how precise definitions emerge from a
process in which patterns are observed, theorems and their proofs are dis-
covered, and then counter-examples are produced, forcing a re-examination
of underlying assumptions and definitions. This leads to new proofs and new
counter-examples in a cycle of proofs and refutations that eventually pro-
duces the highly refined definitions and proofs that are codified in textbooks.
While Lakatos’s principal illustration comes from the history of Euler’s for-
mula for the relationship of the numbers of vertices, edges, and faces in a
polyhedron, he uses an appendix to illustrate how this process was central
to the development of analysis.

As Lakatos realized, appreciation of this dynamic is essential for under-
standing modern mathematics, and passage directly to Euclidean rigor is
pedagogically indefensible:

The Euclidean method can, in certain problem situations,
have deleterious effects on the development of mathematics.
Most of these problem situations occur in growing mathe-
matical theories, where growing concepts are the vehicles of
progress, where the most exciting developments come from
exploring the boundary regions of concepts, from stretching
them, and from differentiating formerly undifferentiated con-
cepts. In these growing theories intuition is inexperienced, it
stumbles and errs. There is no theory which has not passed
through such a period of growth; moreover, this period is
the most exciting from the historical point of view. These
periods cannot be properly understood without understand-
ing the method of proofs and refutations, without adopting
a fallibilist approach

This is why Euclid has been the evil genius particularly for
the history of mathematics and for the teaching of mathemat-
ics, both on the introductory and the creative levels. [12, p
140]

I became convinced that senior mathematics students must be exposed
to this process, and that in this exposure lies the opportunity to explore
the nature of mathematical definition and to wrestle with the problems
that led to the modern definitions of such concepts as continuity, uniform
convergence, integrability, and measure. Lakatos’s account of Cauchy and
the concept of uniform convergence became one of the pivotal sections of
my own real analysis text, A Radical Approach to Real Analysis [4].
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2. CAUCHY’S ERROR

Cauchy’s Cours d’analyse [8] is actually a pre-calculus textbook written for
college freshmen. Calculus was to follow in the second volume which was
never written.! It is a rigorous pre-calculus text. As Cauchy stated in his
preface, “As for the methods, I have sought to give them all of the rigor than
one insists upon in geometry.” Here we find the first use of £ — § definitions
and the first time the modern definitions of continuity and convergence
appear in a textbook.

Infinite series were considered to be part of pre-calculus at this time.
Cauchy goes to considerable pains to establish them on a solid foundation.
He realizes that one can only prove statements about an infinite sum of
functions by looking at the approximations by finite sums, and then rigor-
ously justifying the passage to the limit. The first theorem that he proves
about infinite sums of functions draws on his definitions of continuity and
convergence. He considers a convergent series of continuous functions,

S(x) = fi(x) + fo(z) + fa(z) +---,

and defines Sy, (x) to be the sum of the first n functions, R, (z) to be the
remainder:

Sn(@) = fil@)+ falz) + -+ fal2),
Ry(z) = S(z)— Sn(x) = fat1(z) + fatalz) +- -

From his definition of convergence, he knows that R, (z) can be made arbi-
trarily small by taking n sufficiently large. Though he will use the phrase
“infinitely small,” it is clear from other contexts that he means “arbitrarily
small.”

Cauchy points out that S, (z), a finite sum of continuous functions, must
be continuous, and then goes on to state:

Let us consider the changes in these three functions when
we increase x by an infinitely small value a. For all possible
values of n, the change in S, (x) will be infinitely small; the
change in R, (x) will be as insignificant as the size of R, ()
when n is made very large. It follows that the change in the
function S(z) can only be an infinitely small quantity. From
this remark, we immediately deduce the following proposi-
tion:

Theorem I — When the terms of a series are functions of
a single variable x and are continuous with respect to this
variable in the neighborhood of a particular value where the
series converges, the sum S(x) of the series is also, in the

!The second volume was never written because his students protested so vociferously
against this book. What Cauchy was doing was good mathematics, but it was totally
inappropriate for his audience.
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neighborhood of this particular value, a continuous function

of .
Cauchy has just proven that any infinite series of continuous functions is
continuous.

Five years later, in a footnote to a paper on the binomial series [1826],
Niels Henrik Abel wrote about this result, “It appears to me that this the-
orem suffers exceptions” [1]. Indeed, everyone by then knew it did. Fourier
series provide the classic examples of infinite sums of continuous functions
that are not themselves continuous.

In my classes, this flawed theorem is an opportunity for students to dis-
sect Cauchy’s proof in search of the error. Some of them find it. Most of
them do not. That is fine. After Abel’s observation, it took the mathe-
matical community more than twenty years to formally identify the missing
assumption in Cauchy’s proof. What is important is that my students are
now actively engaged with the ideas behind the theorem. The context has
been prepared for the concept of uniform convergence. Students are now
able to recognize its importance and usefulness.

Student reactions to the story of Cauchy and the concept of uniform
convergence have been instructive. The first time I sprang this on a class,
it was greeted with astonishment. How could a great mathematician have
been wrong? One student reacted by stating that if he had known earlier
that mathematicians could make such fundamental mistakes, then he never
would have chosen mathematics as his major. The common reaction was
the question, “Then how do we know what is true in mathematics?” There
lies the opportunity to begin training mathematicians.

3. HAWKINS’ CHALLENGE

In the spring of 1997, I taught the second semester of our Real Analysis
course. All twelve of the students had used my text for their first semester.
Where do we go from there?

I decided to stick to the historical theme that they had enjoyed and which
had worked so well, but now to aim for Measure Theory and the Lebesgue
integral. A good historical guide to the Lebesgue integral exists in Thomas
Hawkins’ Lebesgque’s Theory of Integration: Its Origins and Development
[11]. This is challenging reading for those who know measure theory. It was
not at all clear that it would work as a textbook. I supplemented it with
Bartle’s The Elements of Integration and Lebesque Measure [2].

The class met twice a week for thirteen weeks for an hour and a half each
time. We began the semester with Bartle’s chapters on Lebesgue measure,
spending one class each on outer measure (chapters 11 and 12), measurable
sets (chapter 13), Borel sets (chapter 14 and part of 15), approximation
and additivity (remainder of chapter 15 and 16), and nonmeasurable sets
(chapter 17). The structure of these classes was a mixture of short lecture
by me and student presentation of solutions to pre-assigned problems that
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were based on the material for that day. The pace was intentionally fast. 1
wanted students to be familiar with the terminology and principal results of
measure theory. Depth of understanding would come later.

For the next nine weeks, the class was immersed in Hawkins’ book, and I
stayed away from the front of the classroom. Since I had twelve students, 1
had chosen twenty-four nineteenth century mathematicians and twenty-four
issues for individuals to explain to the rest of the class. Most days, two
students presented reports that included a brief biography of the mathe-
matician and a discussion of the issue that had been assigned. They gave
me their reports three days before the class so that I could duplicate them
and get them to the other students in advance. In most cases, students had
come to my office at least once before the report was due to ask questions
and get clarification of the key ideas. In class, the students presenting re-
ports were grilled by me and the other students. Those presenting were also
the local experts for questions about the problems that had been assigned
for that day.

The students found Hawkins’ book extremely frustrating. Since they
came into this course without knowing the theorems that late nineteenth
century mathematicians had struggled to discover, they began by taking all
of Hawkins’s assertions at face value. But Hawkins is recounting history,
not describing mathematical facts. Repeatedly, after seeing a result that
seemed to make sense and seeing an argument that looked reasonable, they
would then encounter—two or three pages later—a counter-example. And
sometimes it was not really a counter-example, it had just seemed like one
to the mathematicians of the time. Hawkins proofs are sketchy, and it takes
close reading to distinguish among a proof, a piece of a proof, an outline of
a proof, an extended example, and a justification of a “fact” that is later
revealed to be wrong. My students constantly felt wrong-footed. More
importantly, they realized that they were not alone.

They began to consider themselves part of that community of nineteenth
century mathematicians who were wrestling with the concept of the integral.
They saw the necessity of Cantor’s development of set theory and sympa-
thized with his contemporaries who could make little sense of what he was
doing. They found the error in Lipschitz’s [13] assertion that any nowhere
dense set must have a finite number of limit points. They admired Torsten
Brodén’s construction [6], built on ideas of Dini, Képcke, and Cantor, of
a function with a bounded, non(Riemann)integrable derivative. They ago-
nized over Harnack’s inability to recognize the limitations of outer content.
More importantly, my students began to ask their own questions: If a set is
closed and has measure zero, can it have positive outer content? As the se-
mester progressed, more and more time was spent on discussion of questions
that the students themselves raised.

The issue of outer content versus outer measure emerged as one of the
dominant themes of the course. The former uses finite covers. The latter
allows countable covers. For twenty years, mathematicians focused on outer
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content rather than measure as they attempted to extend the Riemann in-
tegral to functions unbounded around infinitely many points. My students
knew why. Riemann’s definition of integrability is expressed in terms of a
finite number of subintervals. There is no reason to suspect that a countable
number of subintervals is even appropriate. Moreover, in 1885 Axel Harnack
“proved” that outer measure is internally inconsistent, that it is dependent
on the choice of cover [10]. My students came to realize how much more
difficult it is to use outer content, and that it leaves huge gaps in the attempt
to extend the integral. After the course was over, one student told me that
he had wanted to go back to the nineteenth century and shake some sense
into those guys; tell them to stop focusing on finite covers and start looking
at countable covers.

In the last weeks of the semester, as we started chapter 5 on Lebesgue inte-
gration, I returned to Bartle, using his chapters 2-5 to supplement Hawkins’
treatment. The last three reports were on Lebesgue, Baire, and Fubini, and
these students were responsible for presenting the proofs of the principal
theorems of Lebesgue integration. Borel’s measure theory and Lebesgue’s
integral emerged as shafts of light at the end of a very dark passage. My stu-
dents embraced Bartle’s Elements of Integration as they could not have at
the beginning of the class. Here at last everything was clear and unambigu-
ous, and they could appreciate the struggle that had gone into establishing
this clarity.

For the last week, I turned my students loose on Bartle’s “Return to
the Riemann Integral” [3], a description of and argument for the Henstock
integral. They had little trouble digesting this paper and quickly entered
into a debate on the pros and cons of this approach to integration.

This was a tough course, but all twelve students stuck with it. The
final exam included writing an essay on the problems associated with the
Fundamental Theorem of Calculus and how they were overcome. One of the
students began, “Before elaborating on the problems with the Fundamental
Theorem and their dissolution, I would only like to note that, perhaps for
the first time, I got a very real sense of how plausible the Kuhn-Lakatos etc.
picture of scientific and mathematical progress is.” Another ended his exam
with the comment, “Thanks for the class! It has, indeed, been delightfully
bewildering, and a real treat. ... I'll miss it.”

4. POSTSCRIPT

Macalester offers Topics in Analysis every other year. The next time it
was offered, Spring 1999, I was on sabbatical. In 2001, in response to strong
student demand, I taught a course on elliptic curves, using the McKean and
Moll book [14]. I returned to the course based on Hawkins’ book in 2003 and
2005, but, with fewer students (six and nine, respectively), it never again
had quite the same magic.
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Part of the challenge of presenting students with material they find con-
fusing and frustrating is tuning it so that they believe that they can succeed
in its mastery. By the time of the 2005 class, it was clear that I needed
to provide more structure. This was the genesis of my Radical Approach
to Lebesque’s Theory of Integration [5], providing exercises at a variety of
levels of difficulty and clear statements of theorems and their proofs. But I
still wanted students to experience that sense of uncertainty and confusion
through which the mathematical community had passed in the late 19th
century. My book intentionally leads down some of the enticing but ulti-
mately unproductive ways of understanding integration so that those who
use it can appreciate the solutions that eventually were found. My 2007
class served as a sounding board for an early draft of this book.

The lesson is not that everyone should use Hawkins’ Lebesgue’s Theory
of Integration, or even my own Radical Approach to Lebesgue’s Theory of
Integration, as the textbook for an advanced real analysis course. Rather, it
is that if we want to facilitate real and effective learning in our classes, then
we must force students to experience some of the confusion and uncertainty
that has gone into the creation of mathematics. We must know when to leave
them to struggle and when and how to support them as they work through
to a personal and meaningful understanding. A textbook or a curriculum
is merely a starting point, a framework enabling a good teacher to begin
formulating the experiences and challenges that will work in this particular
place, at this particular time, with this particular group of students.
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