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Many of you will be familiar with the Fifteen Puzzle (FIGURE 1, left). Singmaster [16,
§5A, pp. 77–84] gives nearly a hundred references to it. It is often associated with the
name of Sam Loyd, but Sam continues to be a controversial figure [9, Chapter 2, pp.
18–30; 17]. In the unlikely event that you’ve never seen the Fifteen Puzzle, you can
read about it in the review quoted in the next section.

Sliding block puzzles may be represented by graphs in which the vertices represent
possible positions of the blocks and the edges represent the permissible moves of a
block from one position to another. For example, the Fifteen Puzzle may be thought of
as being played on the sixteen vertices of the graph in FIGURE 1. In this graph, don’t
think of the numbers as labels for the vertices, but as labeled blocks that can be slid
from a vertex to an empty vertex. For example, in the figure, either block 12 or block
15 may be slid onto the vertex where � indicates that there is no block.
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Figure 1 The Fifteen Puzzle and its bipartite graph

The notoriety of the puzzle derives from the impossibility of being able to swap the
positions of 14 and 15 in the bottom row, while keeping all the other numbers fixed.
This parity property was noted as early as 1879 [18, Chapter 1; 19].

How many people know Rick Wilson’s general theorem on sliding block puzzles?
We retain Rick’s first name to avoid confusion with the well known theorem of Sir John
Wilson, first proved by Lagrange, that if p is a prime then (p − 1)! + 1 is divisible
by p.
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The set of attainable positions in a sliding block puzzle of n pieces sliding on the
edges of a graph with n + 1 vertices form a group. Rick Wilson’s theorem [25] states
that, apart from simple polygons, and the graph that is the subject of this article, the
group of permutations of attainable positions is either Sn , the full symmetric group, if
the graph contains an odd circuit, or An, the alternating group of even permutations,
if the graph contains only even circuits. In the latter case the graph is bipartite, the
vertices separate into two sets and there are no edges between members of the same
set—the Fifteen Puzzle is the classical example.

We mention that Rick Wilson’s theorem applies only to nonseparable graphs, that
is, graphs that are 2-connected, or without cut-points, so that there are always at least
two paths between any pair of vertices that have no intermediate vertex in common.

What is the exception?

Math Reviews 48 #10882 offers a review by Derek Smith of Wilson’s paper [25],
quoted here with permission from the AMS.

The 15-puzzle consists of fifteen small movable square tiles numbered 1, 2,

. . . , 15 and one empty square, arranged in a 4 × 4 array. One is permitted to
interchange the empty square with a tile next to it as often as desired. The chal-
lenge is to move by a sequence of such interchanges from one position of the
tiles to another specified position. The author generalizes this problem to an ar-
bitrary simple graph and proves that for a finite simple nonseparable graph, with
one exception, any position can be reached from any other position unless the
graph is bipartite. In the bipartite case, the set of positions splits into two sets,
with no position in one set reachable from a position of the other set.

This might be misconstrued to read as though the exception is the set of bipar-
tite graphs. In fact the exception is shown in FIGURE 2. It is a graph on 7 points
with 8 edges. It contains two 5-circuits and a 6-circuit, so that we might expect to be
able to obtain all 6! = 720 permutations of the six counters, labeled with the symbols
0, 1, 2, 3, 4, ∞. Why do we use ∞ instead of 5? Our labels represent the field F5 with
∞ adjoined; this will make the connection with the automorphism group of the puzzle
clearer.
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Figure 2 Rick’s Tricky Six Puzzle
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A little experimentation reveals that there are many arrangements that cannot be
attained. The 6! possible arrangements separate into six equivalence classes, with 5!
positions in each class. We shall see that

∞01234, ∞01243, ∞01324, ∞01342, ∞01423, ∞01432

are representatives, one from each equivalence class. Note that we always read a posi-
tion clockwise, starting from twelve o’clock. It is not possible to get from any one of
these six positions to any other by sliding the disks along the eight edges of the graph.

Not much of a puzzle?

John Conway tells us that he once made a copy of the Tricky Six Puzzle, and we made
one that Art Benjamin helped us demonstrate at the 2006 MathFest, but we doubt if
it will ever catch on commercially. However, it does have considerable mathematical
interest. We shall see that it is related to the projective plane of order 4, to the Hoffman-
Singleton graph, to the Steiner system S(5, 6, 12), to a binary (12, 132, 4) code, to the
ternary Golay code C12, and to shuffling a deck of cards [15, 6]. It is also related to
the invariant theory of six points, to “mystic pentagons” and the two-colorings of the
three-subsets of a six-element set [10], and to the tetracode, the Minimog, and the
Rubicon [5, pp. 320–330], and to many other things that we don’t have room for here.

Many mathematicians are interested in word play, so we asked our favorite ana-
grammatist, Andrew Bremner, to supply a set of six letters that had many anagrams.
He suggested A, C, E, N, R, T. Among the 720 possibilities we found the following
twenty words, names and acronyms.

TABLE 1: Six equivalence classes of anagrams

RECANT ARCNET CARTEN CENTRA CARNET TANCER

CANTER CRANET CRETAN CANTRE TRANCE

CERANT NECTAR CREANT

ENCART TARNEC NETCAR

TERCAN TRACEN TANREC

If you encode these anagrams with R = ∞, E = 0, C = 1, A = 2, N = 3, and
T = 4, you will find that it’s possible to get from one word to any other in the same
column of TABLE 1, but not to any word in a different column. For example, from
RECANT, you can’t CANTER to any of the other words. We list below four things
you CAN do (have we always found the shortest sequence of moves?). If you want
to follow along, and to avoid what Conway calls the “alias-alibi problem” (is it the
counter? or the position it’s in?), then you should label six counters or slips of paper
with the symbols ∞, 0, 1, 2, 3, 4 and the letters R, E, C, A, N, T and slide them about
on an improvised board. When we write a permutation (ABC . . . Z) this means that
A ends up where B started, B ends up where C started, and so on, cyclically, with Z
arriving where A started. By the usual convention, when we string together several
such permutations it is the one on the right that acts first: they don’t act in the order in
which you would normally read them. Compare the out-shuffle with the in-shuffle in
the second example below.

1. Cut the deck: swap the first three symbols ∞, 0, 1, with the last three, 2, 3, 4
respectively. The moves 210∞4310∞4310∞432 take RECANT into ANTREC.
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This is the permutation (∞2)(03)(14). [In anticipation of the next section we will
also write this as x → (x + 2)/(3x + 4) mod 5. Such a mapping is called a Möbius
transformation.]

2. Perform an out-shuffle, or an in-shuffle: cut the deck RECANT into REC and ANT
and interleave letters alternately from each half. In an out-shuffle the top card re-
mains on top: RAENCT = (0132) [x → 2x + 1]. This can be achieved by the
moves 234∞23102∞413. An in-shuffle results in ARNETC = (∞02)(431) [x →
2/(2x + 1)] and results from the moves ∞012∞012∞3412∞30. Note that shuf-
fling one way then unshuffling the other performs a cut: (∞20)(134)(0132) =
(∞2)(03)(14). On the other hand, unshuffling then shuffling swaps alternate cards:
(0132)(∞20)(134) = (∞0)(12)(34) [x → 2/x].

These manipulations of cards don’t generate the whole group of the puzzle; they
only yield 4! of the 5! possible states, those in which the pairs of cards ∞4, 03, 12,
that are equidistant from the centre of the deck, remain so. It doesn’t take much exper-
imentation to discover sequences of moves that break up these pairs and generate the
whole group:

3. Cycle the first four symbols. The moves 210∞2 followed by 10∞21 and 0∞210
and ∞210∞ take RECANT → ARECNT → CARENT → ECARNT and back
into RECANT. These are the transformations (∞012) [x → 1/(2x + 1)],
(∞012)2 = (∞1)(02) [x → (2x + 1)/(2x + 3)], (∞012)3 = (∞210) [x →
(2x + 3)/x], and (∞012)4 = the identity [x → x].

4. Fix the first symbol and cycle the other five. The moves ∞432104∞ send RE-
CANT to RTECAN, ∞01234 to ∞40123, the permutation (01234) [x → x + 1].
In fact, combined with the out-shuffle (0132) [x → 2x + 1], this cycle allows
us to apply any invertible linear polynomial mod 5 to the finite symbols 0, 1,
2, 3, 4, yielding positions such as (0412) [x → 3x + 4], and its inverse (0214)
[x → 2x + 2]. These are illustrated in the first of the six diagrams of FIGURE 4
below as all ways to travel round the pentagon or the pentagram.

What is the group of the Tricky Six Puzzle?

As you may have guessed from the brackets in the last section, it is the group
PGL(2, F5) of Möbius transformations over the field F5.

x → px + q

r x + s
ps − qr �= 0

This F5 is the first of several finite fields we will encounter. In fact for each prime power
q there is a unique field with q elements, which we will denote by Fq . So working in
F5 means working modulo 5—but only because 5 is prime.

There are 52 − 1 = 24 possible nonzero vectors (p, q) for the top row of the matrix(
p q
r s

)
, and then 52 − 5 = 20 vectors (r, s) that are independent of the first row, as

possibilities for the second row; a total of 24 × 20 = 480 nonsingular matrices. But
the matrices M , 2M , 3M , 4M , for example(

1 0
4 4

)
,

(
2 0
3 3

)
,

(
3 0
2 2

)
,

(
4 0
1 1

)
,

all give the same transformation, (0)(3)(∞4)(1 2), taking ∞01234 into 40213∞,
or RECANT into TEACNR, so that the number of different transformations is only
480/4 = 120.
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To the surprise of at least one of the authors, this group is isomorphic to S5, the
group of permutations of five objects. We will show that the isomorphism establishing
this extends naturally to an automorphism of S6, under which the group of the puzzle
maps to an S5 subgroup of S6 given by fixing a point. It’s in this context that the
isomorphism is most illuminatingly presented.

Two different group actions

An inner automorphism of a group is one given by conjugation, that is, each element
x �→ a−1xa for some fixed element a. The automorphisms of a group themselves form
a group, of which the inner automorphisms form a normal subgroup [2, pp. 140–141].
The outer automorphisms are those automorphisms this doesn’t account for: by one
definition any non-inner automorphism is outer; by another the outer automorphism
group is the quotient of the automorphism group by the inner automorphism group.
The symmetric group S6 is the only finite symmetric group that supports a (nontrivial)
outer automorphism [11; 14, Theorem 7.3].

Suppose an abstract group acts on a finite set T (that is, each element of the group
permutes T , and permuting by two group elements in succession is the same as per-
muting by their product). If we were to relabel the elements of T by a permutation a,
then an element that acts via the permutation x after the relabelling would have acted
by a−1xa before it. Now suppose our abstract group was the symmetric group ST all
along. Then a is in ST , so x �→ a−1xa is an inner automorphism of ST .

So the existence of an outer automorphism of S6 means that it can act on sets of
size 6 in a fundamentally different way than the obvious one. We’ll realize the outer
automorphism by constructing such an action, following Sylvester [20, 21, 22, 23, 24].

Consider the complete graph on the six points A, B, C, D, E, F. Sylvester calls
the six points monads, and its

(6
2

) = 15 edges duads. These duads form 15 = 5 × 3
matchings, or triads of independent edges, that Sylvester called synthemes, and graph
theorists know as one-factors. Note that there are 5 choices for A’s partner and 3 ways
to pair the remaining four.

The graph supports six partitions, or synthematic totals, into five synthemes, shown
in TABLE 2 and labeled with their associated Tricky Six blocks, ∞, 0, 1, 2, 3, 4.

TABLE 2: The six totals: the edge-colorings of K6 with five colors

color ∞ 0 1 2 3 4

r AB CF DE AB DE CF AB FD CE AB DC FE AB FE DC AB EC DF

o AC DB EF AC FD EB AC EF DB AC BE DF AC ED BF AC BF ED

y AD EC FB AD CB FE AD BE FC AD FB EC AD CF EB AD FE CB

i AE FD BC AE BF DC AE DC BF AE CF BD AE BC FD AE DB FC

v AF BE CD AF EC BD AF CB ED AF ED CB AF DB CE AF CD BE

The complete graph K6 underlying this construction shouldn’t be confused with
FIGURE 2, the graph of the puzzle itself. As an example, the coloring associated with
the label 2, with AB DC FE colored red, AC BE DF colored orange, etc., is illustrated in
FIGURE 3.

If we fix the monad A and operate on the six totals with the 5! = 120 permutations
of the other five monads, we generate the set of possible arrangements of the Tricky
Six symbols.

Consider the action of our inner automorphism on conjugacy classes. Within a sym-
metric group such as S6 conjugacy classes are just cycle shapes, which we write as
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Figure 3 The edge-coloring 2 of K6, the complete graph on six points

partitions of 6. The cycle shapes on the totals attainable in the puzzle are those that
arise from permutations of the monads which fix A, and these have a fixed point in
their cycle shape.

For example, if we fix A and three other vertices, we obtain
(5

2

) = 10 odd permuta-
tions of order 2. These are involutions; each is its own inverse. They appear as the first
ten entries in TABLE 3:

TABLE 3: Swapping two vertices of K6

(DE) (EF) (FB) (BC) (CD)
(∞0)(12)(34) (∞1)(23)(40) (∞2)(34)(01) (∞3)(40)(12) (∞4)(01)(23)

0210 1114 4121 1124 4111

(CF) (DB) (EC) (FD) (BE)
(∞0)(13)(24) (∞1)(24)(30) (∞2)(30)(41) (∞3)(41)(02) (∞4)(02)(13)

0310 1214 4321 1324 4211

(AB) (AC) (AD) (AE) (AF)
(∞0)(14)(23) (∞1)(20)(34) (∞2)(31)(40) (∞3)(42)(01) (∞4)(03)(12)

together with the permutations of ∞ 0 1 2 3 4 that they realize, and the entries pqrs
of the corresponding Möbius transformation.

For later reference we include as well the five transpositions that move the monad
A; these don’t realize Möbius transformations.

We thus find that permutations of ABCDEF of shape

16 2 · 14 2212 23 3 · 13 321 32 4 · 12 42 51 6

map respectively to permutations of ∞01234 of shape

16 23 2212 2 · 14 32 6 3 · 13 4 · 12 42 51 321.

When A is fixed, respectively

1 10 15 0 20 20 0 30 0 24 0
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of these are attainable. For example, at the entry 4 · 12 we fix A, and one other letter
(5 ways) and cycle the remaining four (4!/4 = 6 ways), contributing 5 × 6 = 30 to
the total of 120. As another example, if we fix A and two other vertices and cycle the
rest, 3 · 13, we obtain

(5
3

) × 2 = 20 even permutations of order 3. They are displayed
in TABLE 4.

TABLE 4: Cycling three of five vertices of K6

(FBC) (BCD) (CDE) (DEF) (EFB)
(∞41)(032) (∞02)(143) (∞13)(204) (∞24)(310) (∞30)(421)

1341 0113 1312 2311 3110

(FCB) (BDC) (CED) (DFE) (EBF)
(∞14)(023) (∞20)(134) (∞31)(240) (∞42)(301) (∞03)(412)

1211 1341 1123 3121 0112

(DEB) (EFC) (FBD) (BCE) (CDF)
(∞32)(014) (∞43)(120) (∞04)(231) (∞10)(342) (∞21)(403)

1121 2131 0411 1410 1132

(DBE) (ECF) (FDB) (BEC) (CFD)
(∞23)(041) (∞34)(102) (∞40)(213) (∞01)(324) (∞12)(430)

1431 3211 1140 0141 1213

It will be found that any of the 6 × 5 × 4 = 120 possible arrangements of the first
three, or indeed of any three, symbols in a Tricky Six position is attainable, the order
of the remaining three then being determined.

All 120 positions are conveniently displayed as the set of six diagrams of FIGURE 4.
The first symbol is in the middle of the appropriate diagram. The next two symbols
determine a directed edge of a pentagon or pentagram. The final three symbols are then
found by continuing to cycle round the pentagon or pentagram in the sense defined by
the edge. For example, the position 241xyz is found in the diagram having 2 in the
middle, where the edge 41 defines the counterclockwise pentagram 41∞30, so that
xyz = ∞30.

∞ 0 1 2 3 4

0 ∞ ∞ ∞ ∞ ∞

1 4 0 1 2 34 1 2 3 4 0

3 3 4 0 1 22 2 3 4 0 1
Figure 4 All 120 Tricky Six positions at a glance

The six diagrams of FIGURE 4 are also conveniently viewed as the six pentago-
nal pyramids that may be sliced from the icosahedron of FIGURE 5, whose opposite
vertices are identified. Each pyramid comprises four cycles. For example,

∞(01234)1 = ∞(01234), ∞(01234)2 = ∞(02413),

∞(01234)3 = ∞(03142), ∞(01234)4 = ∞(04321),

where the superscripts denote powers, that is the lengths of the steps round the pen-
tagon.

As you can see from TABLE 2, there is a unique synthematic total that is invariant
under any five-cycle (JKLMN) on the monads A, B, C, D, E, F. Conway, who introduced
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Figure 5 Another good way to see them all

us to Sylvester’s notation, denotes it by I(JKLMN). The total I(JKLMN) contains the
syntheme IJ KN LM and its images under powers of (JKLMN). FIGURE 6 shows an
example.

B B B B B

C C C C C

D D D D DE E E E E

F F F F F

A A
A A

A

Figure 6 A(BCDEF), the unique synthematic total, also known as ∞, invariant under
(BCDEF)

The identities

I(JKLMN)= I(JKLMN)power = ↔
J(I

↔
LK

↔
NM)

let us bring any of the 6 monads into the initial position, and write the remainder as any
of 5 presentations of any of 4 powers of the five-cycle left over, giving 6 × 5 × 4 = 120
names for each total.

For instance A(BCDEF) = A(BCDEF)? for any exponent ? not divisible by 5,
and its other names are B(ADCFE)? = C(AEDBF)? = D(AFECB)? = E(ABFDC)? =
F(ACBED)?. Each group of names can be thought of as associated with a penta-
gram labeled with letters, with the first letter in the centre, like those in FIGURE 4.
Such pentagrams are fixed by one of the six subgroups of S6 of order 20 that fixes
∞ = A(BCDEF).

Indeed, observe that there is a duality of our construction exchanging monads with
totals and duads with synthemes, realizable as ∞01234 ↔ ABCDEF. Under this ex-
change the names of the total ∞ become just the attainable Tricky Six permutations.
Our situation can be schematized as in FIGURE 7, the symmetry of which makes the
duality obvious.

We saw that the first three symbols determine the whole position, and how to read
it from FIGURE 4. In fact any three symbols determine the position. For example, to
find which of ∞, 0, 2 should be assigned to x in x31y4z, look for the edge 31 in the
∞, 0 and 2 diagrams of FIGURE 4. It respectively defines the pentagram (∞)31420,
the pentagram (0)31∞42, and the pentagon (2)310∞4, of which the second has 4 in
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monads duads synthemes totals

6 15 15 6
I IJ IJ .KL.MN I(M K J L N)

5 2 3 3 2 5

Figure 7 Schematic view of Sylvester’s construction

the required position, 031∞42. For another example we may complete x3y1z4, by
looking in the same three diagrams for the edge 43 (why 43? Think of x as fixed, and
notice that 4 and 3 are adjacent in the remaining cycle 3y1z43). This determines the
pentagons (∞)43210, (0)43∞21, (2)4310∞, of which the first has 1 in the required
position, ∞32104.

It is through this automorphism that Rick’s Tricky Six puzzle is related to the other
objects named at the start of the “Not much of a puzzle” section.

Here’s a first brief example. Implicit in the way we’ve written TABLE 2 is another
set of six objects paired with the totals, the mystic pentagons which begin the interest-
ing paper [10]. The ten duads that don’t contain A form two sets of five: the second
and third columns of each total. Each monad appears twice in each column. If we
forget the synthemes and remember only the column divisions, we get a mystic pen-
tagon, that is, a partition of the edges of complete graph on vertices BCDEF into two
five-cycles. There are in fact only six mystic pentagons, and we get each of them once
(FIGURE 8). Therefore the permutations of the mystic pentagons which can be attained
by permuting BCDEF exactly form the Tricky Six group.

B B B B B B

C C C C C C

D D D D D DE E E E E E

F F F F F F

Figure 8 The six mystic pentagons

The remainder of this paper is devoted to a more leisurely examination of several
other examples.

The projective plane of order 4

The projective plane of order four, PG(2, F4), is often defined by means of a cyclic
difference set, for example {3, 6, 12, 7, 14} modulo 21, whose five members generate
the

(5
2

)
differences ±1, ±2, . . . , ±10. Note that the first three elements generate the

multiples of 3, and the last two generate the multiples of 7. Think of the difference set
as a complete pentagon which cycles round a complete regular 21-gon as in FIGURE

9. Among its 10 edges there is exactly one of every possible length, so that every pair
of the 21 points belongs to just one pentagon. Dually, any two pentagons have just one
vertex in common.

Call the pentagon {3, 6, 12, 7, 14} the line 0. Subtract 3, 4, 9, 11 modulo 21 to give
the respective lines

3: {0, ♠, 9, 4, 11}, 4: {20, 2, 8, ♥, 10},
9: {15, 18, ♦, 19, 5}, 11: {13, 16, 1, 17, ♣}.
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These four lines each pass through the point 3 which is denoted differently in each
of them, by ♠, ♥, ♦, and ♣ in turn, and is circled in FIGURE 9. The other four points
on each of these lines are represented in the figure by the corresponding suit symbols.
They exactly cover the 16 points which are not on line 0.

0

♠
1

♣
20

♥ 2
♥

19
♦

318
♦

4♠17 ♣

5♦16 ♣

615 ♦

714

8
♥

13
♣

9

♠
12

10

♥
11

♠

Figure 9 A difference set generates the projective plane of order 4

In general, we give the line {3 − n, 6 − n, 12 − n, 7 − n, 14 − n} modulo 21 the
name n, 0 ≤ n ≤ 20, as in TABLE 5, which displays a configuration of 21 points and
21 lines with 5 points on each line, 5 lines through each point, every pair of lines
intersecting in a point and every pair of points determining a line. Bold numbers refer
to lines, ordinary numbers to points (or vice versa, since the configuration is self-dual).
The line i passes through the point j if and only if the point i lies on the line j.

TABLE 5: Incidences in the projective plane of order 4

lines 0 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

points 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2
points 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5
points 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9 10 11
points 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6
points 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Twenty-one is not a prime power, so the numbers 0, 1, . . . , 20 do not form a field.
However, they do form an additive cyclic group, and the twelve numbers which are
not multiples of 3 or 7 form a multiplicative group, of which the powers of 2 are a
subgroup.

Let’s find two different actions of S6 in this projective plane. As the two sets of
size six let us take the points 1 2 4 8 16 11 (the powers of two, 20, 21, 22, 23, 24, 25,
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mod 21) and the lines 0 18 15 9 14 7 (zero and the negatives of the original difference
set).

We can begin to rewrite TABLE 2 for the projective plane by replacing the labels A

B C D E F of the vertices of K6 with the respective point numbers 1 2 4 8 16 11. We also
relabel the totals, ∞ 0 1 2 3 4 with the respective line numbers 18 15 14 0 7 9. Then,
with TABLE 5 as our guide, we label the edges AB, CF, DE which join the points 1 & 2,
4 & 11, 8 & 16, with the line-numbers 5 3 19 and similarly for all the fifteen synthemes.
The lines 5 3 19 concur in the point 9 and each syntheme corresponds to a point. The
labels of these fifteen points are just those numbers that are not powers of two, and
TABLE 2 turns into TABLE 6. You can check that this is the same configuration, with
the same labelling, as before.

TABLE 6: An assignment of numbers to TABLE 2

18 15 14 0 7 9

5 3 19 9 5 19 3 9 5 16 8 19 5 20 17 7 5 17 20 7 5 8 16 19
2 4 17 10 2 16 12 12 2 17 4 10 2 12 16 12 2 19 1 5 2 1 19 5
6 8 1 6 6 10 17 18 6 12 3 0 6 1 8 6 6 3 12 0 6 17 10 18

11 16 10 17 11 1 20 13 11 20 1 13 11 3 4 3 11 10 16 17 11 4 3 3
13 12 20 15 13 8 4 20 13 10 19 14 13 19 10 14 13 4 8 20 13 20 12 15

The points 1, 2, 4, 8, 16, of which no three are collinear, form a conic, that is, the
solution set of a homogeneous quadratic over the field of order four. The tangents to
the conic are the lines that meet the conic in just one point (indicated by a hat):

13 {11 14 20 15 1̂}, 16 {8̂ 11 17 12 19}, 1 {2̂ 5 11 6 13},
17 {7 10 1̂6 11 18}, 3 {0 3 9 4̂ 11}.

These are the five lines through the point 11. This point combines with the conic to
form a hyperconic, six points no three of which are collinear. These six points are the
monads, and determine

(6
2

) = 15 lines, the duads, which meet in threes at the other
fifteen points; these correspond to the synthemes. The remaining six lines (0, 7, 14,
9, 18, 15) that don’t meet the hyperconic correspond to the totals; no three of them
concur and they form a set of lines dual to the set of six points.

We repeat FIGURE 7 as FIGURE 10, annotating the nodes further to make clear the
interpretation of the figure as the projective plane.

monads duads synthemes totals

6 615 15
POINTS LINES: POINTS LINES

on the chords of the not on the not meeting the
hyperconic hyperconic hyperconic hyperconic

5 2 3 3 2 5

Figure 10 Schematic view of the projective plane of order 4

Our two nonisomorphic S6-actions show up here as the action that permutes the
points of any six-point hyperconic, like 1 2 4 8 16 11, and the action induced on
the lines not meeting it, in this case 0 7 14 15 18 9. Our numbering makes it easy
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to check that doubling all the vertex labels modulo 21 is an automorphism that fixes
the hyperconic under which line labels are also doubled, so the cycle (1 2 4 8 16 11)
induces the permutation (0)(7 14)(9 18 15) of the six lines. If we swap 1 and 2 and fix
the other four points, (1 2)(4)(8)(16)(11), this induces (0 7)(15 18)(9 14) on the lines
and these two automorphisms are enough to generate the whole group.

We can’t draw the plane with straight lines, so, in FIGURE 11, although the twenty-
one points 0, 1, 2, . . . , 20 are clear, the lines are less so. The line 9 is the incircle of
the pentagon and the lines 0, 14, 15, 18, 7 look like petals. The lines 3, 16, 17, 13, 1
are the diameters through the point 11. The lines 4, 8, 6, 12, 2 are pentagram edges,
that need to be bent round to pass through the respective points 3, 19, 18, 15, 5; and
the lines 11, 5, 10, 20, 19 are pentagon edges, both ends of which should be bent round
to pass through the respective pairs of points 17&13, 7&9, 14&17, 13&7, 9&14.

11

9

17

17

17

14

10

10

3

33

4

4

14

14 14

18

19

19

16

15

15

13

8

8

9

9

9

0

2

2

0

11

18

18

17

13

13

13

7

5

5

1

7

7

7

15

16

6

1

12
12

5
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Figure 11 The projective plane of order 4

The points 3, 6, 12, 7, 14 of line 0 thus lie on the respective lines 3, 6, 12, 7, 14 and,
of course, lie just one on each of the remaining fifteen lines. The other four points on
such a line comprise two pairs that form triples with the line number, each member of
a triple being the number of the line containing the other two points. For example, line
18 contains the point 6 and the four points 9, 15, 10, 17 whose joins to the point 18 are
the respective lines 15, 9, 17, 10 which form the triples {18, 15, 9}, and {18, 17, 10}.
There are ten such triples and they exhibit the ten differences 1 ≤ d ≤ 10 exactly three
times each. For example, the difference 5 occurs in the triples {8, 13, 4}, {11, 16, 7},
and {15, 20, 13}. These ten triples correspond to the sets of edges of pairs of opposite
faces of an icosahedron, half of which is shown in FIGURE 12.
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2 4
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11
13

15

16 16
171819

20

Figure 12 Ten triples form half an icosahedron

Buy one; get several free!

We noticed that the difference set {3, 6, 12, 7, 14} comprised two difference sets:
{7, 14} generates the multiples of 7 and {3, 6, 12} generates the multiples of 3. So the
projective plane of order four contains the not very exciting projective plane of order
one: the triangle {0, 7, 14} and 1119 other copies of it, and the much more interest-
ing projective plane of order two, the so-called Fano configuration (although it was
known more than 40 years earlier to the Rev. T. P. Kirkman [12]). Besides the obvious
example, whose point-numbers are congruent to 0 modulo 3, which is self-dual in
the sense that it has the same line-numbers, and is shown in FIGURE 13, there are
359 others: including the dual pair whose point- and line-numbers are respectively
congruent to 1 and 2 (or to 2 and 1) modulo 3. The figure also shows a dual pair whose
point-numbers differ by 3 from the line-numbers.

3 6 12

0
9

18

15

3 6 12
0

9
18

15

1 16 3

0
8

2

9

6 12 3
11

5

19

4

4 19 6

3
11

5

12

3 9 0
8

2

16

1

Figure 13 Kirkman-Fano configurations

More surprising is the fact [1] that if we throw away a hyperconic we are left with
fifteen points which form a projective geometry of order two in three dimensions!
For example, throw away 1, 2, 4, 8, 16, 11. The remaining points are those of the line
{0, 5, 7, 17, 20}, and its double {0, 10, 14, 13, 19}, together with the multiples of 3.
FIGURE 14 shows this geometry as a tetrahedron, as Polster would draw it [13]. Its
fifteen points are the vertices, 5 7 17 20, the midpoints of the edges (multiples of 3), the
centroids of the faces, 10 14 13 19, and the centroid, 0. Fifteen of the thirty-five lines,
those which meet the hyperconic, are inherited from the plane: they are the twelve
medians of the faces and the three joins of midpoints of opposite edges. The other
twenty are the vertex sets of triangles formed by three of the six lines 0, 7, 14, 9, 18, 15
which avoid the hyperconic. They appear as the six edges of the tetrahedron, the four
joins of the vertices to the centroids of the opposite faces, and ten lines which cannot
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be drawn in Euclidean space: the four incircles of the faces and six similar curves
circumscribing the “medial triangles”:

{3, 14, 19} {6, 10, 14} {9, 10, 13} {12, 13, 14} {15, 10, 19} {18, 13, 19}
formed by the triples of lines

14, 9, 0 14, 0, 18 14, 15, 18 14, 0, 15 14, 9, 18 14, 9, 15.

0

3

5

6

7

9

10

12

13
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15

17

18

19

20

Figure 14 The projective geometry PG(3, F2)

A different and quite revealing labelling of the 15 = 24 − 1 = 4 + 6 + 4 + 1 points
is to assign 1, 2, 4, 8 to the vertices, sums of pairs of these to the midpoints of the
edges, sums of three to the centroids of the faces, and the sum of all four, 15, to the
centroid.

old numbers 5 7 3 17 15 6 13 20 18 12 10 9 14 19 0

new numbers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The thirty-five lines are then those triples whose nim-sums (XOR, binary addition
without carry) are zero: the ten “noneuclidean” lines correspond to those nim-sums
which are not ordinary sums, for example, 3 ⊕ 5 = 6 and 5 ⊕ 11 = 14. The 15 =
24 − 1 = 4 + 6 + 4 + 1 planes of the geometry are Kirkman-Fano configurations: the
four faces of the tetrahedron, the six “medial planes” joining the midpoint of an edge
to the opposite edge, the four “cones” joining a vertex to the incircle of the opposite
face, and the “sphere” of midpoints of edges together with its centre, 15.

Remarkably, the thirty-five lines can be partitioned, in 240 different ways, into
seven sets of five lines, with no two of the five intersecting, each set exactly covering
the fifteen points. That is, the thirty-five lines can be arranged as rows in a Kirkman



VOL. 82, NO. 2, APRIL 2009 97

(15, 3, 1)-design; they provide solutions to the famous Kirkman schoolgirls problem,
with which readers of the previous issue of this MAGAZINE will already be familar
[4]. An example is shown in TABLE 7.

TABLE 7: The thirty-five lines of PG(3,F2) form a Kirkman (15,3,1)-design

Sun Mon Tue Wed Thu Fri Sat

1 2 3 1 4 5 1 6 7 1 8 9 1 10 11 1 12 13 1 14 15
5 8 14 3 9 10 3 8 11 2 4 6 2 5 7 3 4 7 3 5 6
4 11 15 2 12 14 2 13 15 3 12 15 3 13 14 2 9 11 2 8 10
7 9 14 7 8 15 5 9 12 5 11 14 4 8 12 5 10 15 4 9 13
6 10 12 6 11 13 4 10 14 7 10 13 6 9 15 6 8 14 7 11 12

The fifteen Kirkman-Fano planes each appear as seven triples, one from each day
of the week. For example, the “cone” 1 6 7 10 11 12 13 is represented by 6 10 12,
6 11 13, 1 6 7, 7 10 13, 1 10 11, 1 12 13, and 7 11 12.

A somewhat surprising connection between PG(3, F2) and the Lehmers’ method of
factoring integers by means of quadratic forms is made in [7, §§26 & 27].

The Hoffman-Singleton graph

A Moore graph of type v, k is a regular graph of valence v and diameter k with the
maximum possible number of vertices, namely

(
v(v − 1)k − 2

)
/(v − 2). This formula

doesn’t make sense if v = 2, but it tends to the limit 2k + 1 as v approaches 2, and
this is the number of vertices in the valence 2 case. Hoffman & Singleton [8] showed
that for diameter 2 there are at most four such. Their valences are 2 (the pentagon),
3 (the Petersen graph), 7 (the Hoffman-Singleton graph) and possibly 57 (though the
existence of this last remains an unsolved problem). The Hoffman-Singleton graph
has 50 vertices and 175 edges, and like every Moore graph of diameter 2 its shortest
cycles are pentagons so that its girth is 5. Its automorphism group has order 252000 =
2532537. It is arc-transitive, that is it has an automorphism sending a particular edge
to any of its 175 edges with either of 2 orientations. The stabilizer of an oriented edge
thus has order 252000/(175 · 2) = 720, and indeed is isomorphic to S6, as reflected in
the following construction of the graph from our versatile TABLE 2.

To draw the Hoffman-Singleton graph, start with an edge joining vertices which we
label � and G. Label the six other vertices adjacent to � with the letters A B C D E F and
the other six adjacent to G with the symbols ∞ 0 1 2 3 4 as in FIGURE 15. The other 36
vertices are {Xn}, where X runs through the letters A B C D E F and n runs through the
symbols ∞ 0 1 2 3 4, and there are the implied adjacencies, for example vertex C2 is
adjacent to vertices C and 2. It remains to insert the other 175 − (1 + 12 + 36 + 36) =
90 edges. Again, they correspond to our edge-colorings of K6.

Recall the fifteen swaps of TABLE 3. They each provide six adjacencies, for ex-
ample

(CE) (∞2)(30)(41)

provides the six adjacencies

C∞—E2 C2—E∞ C3—E0 C0—E3 C4—E1 C1—E4
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A∞ A0 A1 A2 A3 A4 B∞ B0 B1 B2 B3 B4 C∞ C0 C1 C2 C3 C4 D∞ D0 D1 D2 D3 D4 E∞ E0 E1 E2 E3 E4 F∞ F0 F1 F2 F3 F4

A B C D E F ∞ 0 1 2 3 4

� G

Figure 15 How to construct the Hoffman-Singleton graph

We can also succinctly describe the 6! automorphisms of the graph fixing the edge
�—G: they permute the vertices A B C D E F arbitrarily and the vertices ∞ 0 1 2 3 4 as
dictated by construction.

Other constructions for the Hoffman-Singleton graph are given in [3, §13.1]. Con-
way showed us his perspective, which begins with a distinguished vertex rather than
an edge. We’ll choose � in FIGURE 15 as this vertex. Its neighbors are the six monads
ABCDEF and G, and the other neighbors of G are the totals. This suggests that to place
all seven neighbors of � on an equal footing we should recognize G as a seventh monad
and interpret the other neighbors of an original monad I as the totals on the set of the
six other monads, so that what we before called Xn is reinterpreted as the total n with
X replaced by G. Therefore the vertices adjacent to a numbered total n on ABCDEF are
just the totals Xn on ABCDEFG that differ from it only by a single-letter substitution.
In fact this turns out to be true of any pair of totals, determining all remaining edges
of the graph. The resulting picture of the Hoffman-Singleton graph is FIGURE 16.

�
“absolute” point

G F E D C B A (7 monads)

F(EDCBA)
misses G

G(EDCBA)
misses F

each monad
joins the six

totals on the
remaining six monads

swap F,G

two totals
obtained by swapping

their “misses” are joined

Figure 16 Conway’s description of the Hoffman-Singleton graph
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The Steiner system S(5, 6, 12)

The Steiner system S(5, 6, 12) is a set of blocks of 6 elements, hexads, chosen from a
set of 12 so that each pentad, or choice of 5 elements from the 12, occurs exactly once
in a block. Hence the number of blocks is

(12
5

)/(6
5

) = 132.
We use A B C D E F ∞ 0 1 2 3 4 for our 12 elements: in fact ABCDEF and ∞01234

will be two of the blocks. We get 15 × 6 = 90 blocks that contain four letters and two
numbers, or two letters and four numbers, from the fifteen swaps of TABLE 3.

For example, the swap

(FB) (∞2)(34)(01)

yields the six blocks

A2CDE∞, A4CDE3, A1CDE0, F01B34, ∞012FB, ∞FB234

where the pairs of numbers ∞2, 34, 01 have been substituted for the pair of letters
FB in ABCDEF and, conversely, the letters FB have been substituted for the pairs of
numbers in ∞01234.

The other 40 blocks have three letters and three numbers and may be generated in
pairs from the

(6
3

) = 20 three-cycles of TABLE 4, by substitutions exchanging three
letters and three digits. That table omits the three-cycles moving the monad A, but all
we need here is the partition of the totals into the two three-cycles that these induce,
and this partition is the same one that arises from the cycles on the other three monads.
So for instance the cycles (BDE) and (BED) correspond to the permutations (∞32)(014)
and (∞23)(041) while (ACF) and (AFC) correspond to (∞23)(014) and (∞32)(041).

For example, the cycle (BEF) associated with the permutation (∞30)(214) gives rise
to the four blocks

A∞CD30 A1CD42 ∞0BF3E BF12E4

How do we know that each pentad occurs exactly once? If a pentad consists of 5
letters, or 5 numbers, then the hexad is ABCDEF or ∞01234. If it consists of 4 letters
and a number n the hexad will contain a second number. This is found in TABLE 3
which displays all

(6
2

) = 15 swaps of two vertices. Select the swap of the two letters
which are not in the pentad and take the number paired with n. For example, given
the pentad ACEF3, look at the entry (DB) (∞1)(24)(30) where 3 is paired with 0, so
that the pentad belongs to the unique hexad A3C0EF. If the pentad contains 4 numbers
and a letter, for example, ∞024B, find the entries of TABLE 3 that contain the miss-
ing numbers 13, namely (AD), (CF), (BE). Here B is paired with E, so the hexad is
∞0B2E4. If the pentad contains 3 letters and 2 numbers, or 3 numbers and 2 letters,
we use TABLE 4. For example, for BCF23 we find (FBC) (∞41)(203) so that the hexad
is completed with 0. But if the pentad were BCF24, with 2 and 4 in different triples, the
hexad must be completed with a letter. In TABLE 3 the pair (24) occurs in the swaps
(AE), (BD) and (FC), so the missing letter is D: 2BCD4F.

If the pentad were BCF02, then (02) occurs in (AC), (DF), (EB) with B C F in three
different pairs: the pentad requires a number; TABLE 4 gives (FBC) (∞41)(203); the
missing number is 3.

A (12, 132, 4) binary code and the ternary Golay code C12

In a binary code, the letters of the codewords are zeroes and ones. The number of
letters in a codeword is its length and the number of ones is its weight. The 132 hexads
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of the Steiner system S(5, 6, 12) form a basis for a binary code with words of length
12 and weight 6.

The blocks of the Steiner system indicate which letters of the 12-letter codewords
are occupied by six ones or by six zeroes. In anticipation of the construction of the
ternary Golay code C12 we will put the letters in the order

A 0 1 2 3 4 ∞ B C D E F

and, for ease of reading, we will leave space round the 1st and 7th letters.
For example, our initial blocks ABCDEF and ∞01234 correspond to the codewords

1 00000 0 11111 and 0 11111 1 00000; the blocks

A2CDE∞, A4CDE3, A1CDE0,

and their complements

F01B34, ∞012FB, ∞FB234

correspond respectively to the codewords

1 00100 1 01110, 1 00011 0 01110, 1 11000 0 01110,

and their complements

0 11011 0 10001, 0 11100 1 10001, 0 00111 1 10001,

while the blocks

∞B30EF, 1B24EF, AD12C4, ∞0AC3D

correspond to

0 10010 1 10011, 0 01101 0 10011, 1 01101 0 01100, 1 10010 1 01100.

Each codeword differs from every other in at least four places, that is, the Hamming
distance between any two words is at least 4.

Suppose that you received a codeword 0 01101 1 10101. This contains seven ones,
so there is an error. Assume that the zeroes are correct. They correspond to the pentad
A03CE. TABLE 4 has the (complementary to A C E) entry (FBD) (∞04)(231); 0 and
3 are in different triples, so the missing element is a letter. In TABLE 3 the pair (30)
occurs in (DB), (EC), and (AF), so that the missing letter is F and the final 1 in the
erroneous codeword should have been 0, making it 0 01101 1 10100.

We can pass from this binary code to a ternary code, which we now present in
outline.

To incorporate the words of our binary code into a ternary code we will leave the
zeroes as they are and endow the ones with signs. With a correct choice of signs the
resulting 132 words of length 12 can be made to generate by addition a linear code of
dimension 6, that is a 6-dimensional subspace of the ambient vector space F

12
3 over the

finite field F3 = {−1, 0, +1}. Our code will thus contain 36 = 729 codewords.
Aside from the zero word 0 00000 0 00000, the words will come in pairs of opposite

sign. In fact, we will obtain no nonzero codewords with more zeroes than the signed
manifestations, two apiece, of our 132 words from the binary code. So the minimal
distance of our code will increase to 6. The resulting code is known as the ternary
Golay code and denoted as C12.



VOL. 82, NO. 2, APRIL 2009 101

From [5, p.85] we learn that C12 may be obtained by appending a zero-sum check
digit to C11, the quadratic residue code of length 11 over F3; that a generator matrix is

⎡
⎢⎢⎢⎢⎢⎣

A 0 1 2 3 4 ∞ B C D E F

1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 −1 0 1 −1 −1 1
0 0 1 0 0 0 −1 1 0 1 −1 −1
0 0 0 1 0 0 −1 −1 1 0 1 −1
0 0 0 0 1 0 −1 −1 −1 1 0 1
0 0 0 0 0 1 −1 1 −1 −1 1 0

⎤
⎥⎥⎥⎥⎥⎦

that it has weight enumerator

x12 + 264x6 y6 + 440x3 y9 + 24y12

that is it contains 1, 264, 440, and 24 words with respectively 0, 6, 9, and 12 nonzero
letters, and that its automorphism group is 2.M12, that is it has the Mathieu group M12

as a normal subgroup with quotient (cyclic of order) 2.
But by now we’ve roved far enough from the Tricky Six puzzle, so we pursue codes

no further and turn to the

Conclusion

Our favorite for an actual puzzle changes C into W and T into D, turning RECANT into
REWAND. Manoeuvre #1 of the “Not much of a puzzle” section then gives the figure
on the cover of this MAGAZINE, which should be read clockwise, starting from twelve
o’clock. The solution: move the letters R E W A R E W A R E and read clockwise from
noon again.

Acknowledgment. We are indebted to John Conway for several helpful insights, and to Ezra Brown, Richard
Nowakowski, and two referees, all of whom read our first draft with great care and made many constructive
suggestions for improvement.
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Proof Without Words:
Steiner’s Problem on the Number e

For what positive x is the x th root of x the greatest? [1, 2]

Solution. x > 0 ⇒ x
√

x ≤ e
√

e.

y = x

x

y y = e x/e

0

1

e

e
t

y

y = t1/x

0 x e x/e

x1/x

e1/e

(a) x ≤ ex/e ⇒ (b) x1/x ≤ e1/e

[In the right-hand figure, x > 1; the other case differs only in concavity.]
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